
PorKI: Making User PKI Safe on Machines of Heterogeneous Trustworthiness∗

Sara Sinclair and Sean W. Smith
Department of Computer Science

Dartmouth College
{sinclair, sws}@cs.dartmouth.edu

Abstract

As evidenced by the proliferation of phishing attacks and
keystroke loggers, we know that human beings are not well-
equipped to make trust decisions about when to use their pass-
words or other personal credentials. Public key cryptography can
reduce this risk of attack, because authentication using PKI is de-
signed to not give away sensitive data. However, using private
keys on standard platforms exposes the user to “keyjacking”; mo-
bile users wishing to use keypairs on an unfamiliar and potentially
untrusted workstation face even more obstacles.

In this paper we present the design and prototype of PorKI, a
software application for mobile devices that offers an alternative
solution to the portable key problem. Through the use of tem-
porary keypairs, proxy certificates, and wireless protocols, PorKI
enables a user to employ her PKI credentials on any Bluetooth-
enabled workstation, including those not part of her organization’s
network, and even those that might be malicious. Moreover, by
crafting XACML policy statements that limit the key usage to the
workstation’s trustworthiness level, and inserting these statements
into extensions of the proxy certificates, PorKI provides the user
or the relying party with the ability to limit the amount of trust that
can be put in the temporary keypair used on that workstation, and
thus the scope of a potential compromise.

1 Introduction

Using client-side public key infrastructure (PKI) can
solve many problems for user authentication to remote ser-
vices, as well as enable signature and encryption function-
ality. However, its effective application in large enterprises
requires several preconditions, including:

1. Private keys must remain private.
2. Private keys must be used only for the operations the

users intend and authorize. (Secrecy of a private key
does not help much if the adversary can still use it at
will.)

∗This research has been supported in part by Intel and the NSF (CCR-
0209144, EIA-9802068). This research program is a part of the Institute
for Security Technology Studies, supported under Award number 2000-
DT-CX-K001 from the U.S. Department of Homeland Security, Science
and Technology Directorate. This paper does not necessarily reflect the
views of the sponsors.

3. The PKI must integrate with the standard desk-
top/laptop computing environments users and enter-
prises already employ.

4. Users should be able to use PKI from any machine in
the enterprise.

5. These machines may have varying levels of trustwor-
thiness. (E.g., in a university environment, these ma-
chines may range from dedicated, well-maintained
single-user machines all the way to de facto public ac-
cess workstations.)

In this paper, we present research and prototype results
for our PorKI project, intended to solve this problem of
portable PKI.

Background. The keyjacking work of Marchesini et al
showed that conditions #1 and #2 fail in situations satisfying
#3 [11]. However, even if an enterprise solves the problem
of securing a user’s private keys at one standard machine, it
is still necessary to make user PKI portable, and to accom-
modate the fact that not all machines in the enterprise will
have the same level of trustworthiness.

Marchesini et al followed the keyjacking work with
a partial solution, Secure Hardware Enhanced MyProxy
(SHEMP) [12]. SHEMP uses a central hardened repository
to store a user’s keypair along with an eXtensible Access
Control Markup Language (XACML) policy. This policy
maps machine types to appropriate key uses (per user and
according to enterprise preferences). System administrators
can sign certificates for machines they administer, indicat-
ing degrees of trustworthiness; more trustworthy machines
will also employ stronger measures to keep their keys pri-
vate. When a user wishes to access remote services from
a given client machine, the repository uses the user’s main
private key to sign a proxy certificate (PC) for a short-lived
keypair on that client, and specifies the appropriate use re-
strictions as extensions in that PC.

SHEMP addresses the keyjacking problem by automat-
ically and transparently limiting the damage that a weak
client can cause. However, SHEMP requires the deploy-
ment and scalability overhead of this centralized repository.
It also provides no effective way for a user to authenticate
to the repository via a potentially untrustworthy client: au-
thentication is by password, which could be keylogged if
the workstation is compromised.

To appear at the 21st Annual Computer Security Applications Conference, Dec 2005 1

mailto:sinclair@cs.dartmouth.edu
mailto:sws@cs.dartmouth.edu


Our Approach. To solve the problem of portable PKI
in heterogeneous trust environments, we start with the
SHEMP framework. However, we remove the centralized
repository, and add an additional set of elements to the mix:
each user carries a Bluetooth-enabled PDA or smartphone,
which plays the role of the repository for that user—and
also provides a trustworthy channel to authenticate the user
to the repository. This approach also provides the founda-
tion for additional capabilities to aid users in making trust
judgments.

This Paper. Section 2 starts by considering the problem
of authentication to remote services from the user’s perspec-
tive. Section 3 presents the design of our PorKI solution,
and Section 4 discusses the prototype. Section 5 discusses
potential applications of this tool. Section 6 considers prior
work in this space, and how PorKI measures up. Section 7
concludes with some directions for future work.

2 User Authentication

One of the most natural ways for humans to authenti-
cate in the digital world is through something they know.
However, humans are not adept at choosing or protecting
their standard credential, passwords. We encourage users
to choose strong passwords and change them often and de-
sign systems to force them to do so. However, no matter
how strong a password, it cannot be protected if the user
gives it away. One recent study showed that 80% of college
students sampled were willing to exchange their password
for a plastic dinosaur or a squirt gun. Another found that
93% of participants (including faculty members) were will-
ing to enter their password into a website that was spoofed
to look like an official college page [20]. In the past year,
such phishing attacks in the wild have grown from a rare
occurrence to a commonplace affair. In February of 2004,
the Anti-Phishing Working Group collected a total of 282
unique phishing attack reports; in February of 2005, the
same organization collected reports on 2625 active phish-
ing sites, almost a tenfold increase [8, 9].

Stronger Solutions for Authentication. Two-factor au-
thentication schemes, which require that a user both have
something and know something in order to authenticate,
can reduce the risk of social engineering attacks that take
advantage of humans’ weakness at making trust decisions.
RSA’s SecurID system requires that users posses a device
that generates passcodes in a predictable yet hard-to-guess
manner. RSA maintains that this scheme can help prevent
phishing attacks from being successful, for even if a user is
willing to give away her SecurID passcode at one moment,
it will not be valid at a later time [6]. Because SecurID
mimics the password interface– the only difference is that
the user doesn’t have to be responsible for generating the
secure passcode– this system is very usable.

Proponents of PKI also advocate that public key cryp-
tography can enable authentication that is more secure than
a single-factor password approach. In the case of PKI, the
user possesses a certificate signed by a Certification Author-
ity (CA) that binds the user’s keypair to the identity or per-
missions put forth in the certificate. The private key of this
keypair is necessary for authentication, but authentication
can be performed without sharing the private key. Thus, al-
though a site performing a phishing attack might be able to
convince the user to attempt to authenticate using her key-
pair, she would not give away her credentials in doing so.
Keyjacking attacks against private keys exist; however, by
the very nature of PKI it is much more difficult to convince
a user to give away a key than it is to give away a password.
PKI also offers other secure functions, such as encryption
and digital signing of documents, in addition to authentica-
tion. And, unlike SecurID, no proprietary software or hard-
ware devices are necessary; furthermore, a user can use the
same credential storage device (be it a software keystore or
a hardware token) to store keys that enable her to authenti-
cate to multiple relying parties.

A Solution for Users. Unfortunately, PKI is notorious
for being difficult to implement in a usable way. Although
security experts are fluent in the language of keypairs and
certificates, these concepts are not intuitive to the average
user. In particular, traditional PKI schemes pose a big prob-
lem with regards to portability; most relying parties expect
users to store their keys in a software repository on their
personal machine, and make no allowance for users who
have multiple machines or need to authenticate from multi-
ple locations. Specialized devices, such as smartcards, offer
some portability, but requiring users to purchase and carry
extra devices with likely limited functionality will not con-
tribute to the popularity of the solution. Users want to be
able to have multiple keys for use with multiple relying par-
ties; they want to be able to use their keys anywhere without
worry of compromise; in short, they want to be able to be
mobile and use their keys securely in environments of het-
erogeneous trust.

3 PorKI Design

The goal of the PorKI system is to present users with a
usable and secure way to store and use their private keys,
without requiring the purchase of special devices, but while
enabling them to make safe trust decisions in heterogeneous
environments.

We will now consider the PorKI design, including an
overview of the system followed by a more in-depth con-
sideration of the repository, the workstation policy infras-
tructure, and the generation and transfer of the temporary
credentials.

To appear at the 21st Annual Computer Security Applications Conference, Dec 2005 2



3.1 System Overview

The generation and transfer of X.509 PKI credentials to a
workstation from a PDA PorKI repository is accomplished
in the following manner:

1. A user pairs her PDA with a workstation to initiate
a Bluetooth connection between the two devices. (In
Section 3.4, we will discuss the implications of current
weaknesses in the Bluetooth pairing handshake.)

2. The user unlocks the PorKI repository.
3. If the workstation is equipped to provide PorKI with

a credential regarding its status, the user launches an
application on the workstation that will enable it to au-
thenticate to the PDA using its keypair.

4. The user chooses a key in the PorKI repository she
would like to use to issue a temporary credential. If
only one is available, this one is selected by default.

5. If the user’s key usage policy allows this issuance to
this workstation, then the PorKI PDA prepares a tem-
porary credential.

(a) An XACML policy statement about the worksta-
tion and user-policy-specified key usage limita-
tions is generated.

(b) A temporary keypair is generated.

(c) A proxy certificate is generated that testifies to
the public key of the temporary keypair, includ-
ing a limit on the duration of its validity. The
proxy certificate has an extension that contains
the XACML policy statement.

(In Section 3.3, we discuss these policy techniques fur-
ther.)

6. The proxy certificate and temporary keypair are trans-
fered to the workstation via Bluetooth.

7. The temporary credentials are imported into a keystore
on the operating system.

8. The Bluetooth connection is closed.

We note that the user need only interact with a device on
steps (1) through (5). Furthermore, step (3) requires inter-
action only if a PorKI-supporting application exists on the
workstation, and step (5) only if it does not and the user is
required to import the temporary credentials manually. In
Section 4 we consider what the working PorKI prototype
indicates about time it will take to accomplish these steps.

3.2 Long-Term Key Repository

A user often receives a long-term keypair from the orga-
nization that issues her a certificate for it; other times she
generates it on her personal workstation. (PKI standards
provide for users to generate their own keypairs and have

them certified by multiple organizations. In practice, how-
ever, key generation often becomes part of the certification
process and is sometimes done by the certificate issuing au-
thority.) Because of this, we envision that a user will most
often choose to import her keypair into her PorKI reposi-
tory on her PDA after the keypair is generated elsewhere
(although PorKI is capable of generating keypairs on the
PDA, should the user choose). We discuss the possibility
of PorKI playing a larger role in the certificate-issuing pro-
cess in Section 5, but we note that an organization should
be able to come up with a reasonably secure way to get
the keypair to the PDA. These methods would likely mirror
those currently used to transfer keypairs to general-purpose
workstations or specialized devices.

Many PKI users find themselves with a proliferation of
certificates and keypairs. As more organizations move to
PKI as an authentication mechanism, it is possible to envi-
sion a user needing to access a collection of keypairs from
a variety of different organizations. The PorKI repository
stored on the PDA is thus equipped to keep multiple cre-
dentials and to allow users to choose which keypair they
would like to use at a given time.

The current PorKI design provides for a single step to
unlock the PorKI repository, with a password. This gen-
erally protects the repository from compromise in the case
of theft of the PDA; although using a password for protec-
tion opens the repository to dictionary or social engineering
attacks, it is still the most intuitive way for a user to authen-
ticate. The current design of PorKI cannot protect against
more advanced attacks, such as those targeted at the PDA
hardware. Thus, a savvy attacker in possession of the PDA
could (with enough time and knowledge) almost certainly
compromise the repository. By that time, however, we hope
that the user would have noticed its absence and the creden-
tials stored on it would have been revoked. In Section 7 we
will consider how the repository might be protected from
this kind of attack as well, although it is generally beyond
the scope of this project.

Because portable devices are prone to being lost or
stolen, many users might wish to back up the keys stored
in their repository, if just to have a record so they can report
the loss for revocation purposes. To this end, PorKI design
includes the ability to export the keystore in a protected for-
mat (similar to the mechanism currently available in many
web browsers). The keys should only be exported to a
trusted workstation. From this workstation, users should
transfer the copied repository directly to an offline format,
such as a CD in the proverbial sock drawer.

3.3 Policy Based on the Workstation

Passwords provide a binary form of authentication: one
either has the required knowledge or one does not; one’s

To appear at the 21st Annual Computer Security Applications Conference, Dec 2005 3



PorKI PDA Workstation Relying Party/Remote Service

User

BLUETOOTH INTERNET

Temporary credential generation Legacy application interaction

Enterprise SysAdmin

Keystore

proxy cert, with
trust extension

New 
temporary 

keypair

Policy

proxy
cert

generator

Trust level 
cert

platform 
keypair

Figure 1. Sketch of an example use of the PorKI system. Here, an enterprise officer helps craft the
key usage policy and also provides a workstation trust-level certificate.

actions are either trusted or they are not. However, in en-
vironments of heterogeneous trustworthiness, it is obvious
that this model is not sufficient. A user could have mul-
tiple passwords with which to log into an online resource
account from differently trusted machines: one password
that allows him read privileges, one that also allows him
write privileges, and one that also allows him to change the
permissions of other users. It is true that this model would
provide the relying party to which the user is authenticating
a good way to limit the damage if the user is authenticat-
ing from on an untrusted workstation where the passwords
might be compromised. However, users want to maintain
the smallest set of credentials possible. More importantly,
users are often ill-equipped to make trust decisions of when
to use their credentials at all.

PorKI takes the task of providing relying parties with in-
formation about the trustworthiness of the authentication
environment out of the user’s hands. Judgments on the
trustworthiness of a workstation are done programatically
through standard PKI methods: if a workstation is in pos-
session of a keypair and list of characteristics, and if these
credentials have been signed by a certificate authority that
PorKI trusts, then PorKI can use that list of characteristics
to craft policy statements.

Following the model of SHEMP, a PorKI PDA will gen-
erate an XACML policy statement if a workstation is able to
provide it with such a trustable list of characteristics. This
set of characteristics might include facts about the worksta-
tion’s physical location (in public library, in a private of-
fice), its virtual location (behind a firewall), its hardware (is
it enhanced with a trusted computing platform?), or its soft-
ware (when was the last time it received critical operating

system patches?). This requires that the signed list of char-
acteristics be in a format that PorKI can parse and interpret,
such as a standardized XACML statement. We assume that
if there exists a path of trust between PorKI and the work-
station, it is because PorKI has been equipped to interpret
statements signed by the issuer of the workstation’s creden-
tials.

In the original SHEMP scheme, users (perhaps in con-
junction with their enterprise administrators) constructed a
key usage policy. This policy specified what usages (both in
terms of functionality—e.g., “client-side SSL”—as well as
application-specific constraints—e.g., “but not for Privacy
Act or HIPPA data”) were acceptable for what types of en-
vironments. The environment types would include a default
“untrusted” type, for machines with no administrator-issued
certificates, all the way to higher-security SELinux/TCG
platforms (e.g., [10]) with TPM hardware protecting the
platform’s private key and binding its use to platform soft-
ware satisfying certain properties. The key usage policy al-
lows a user to pre-define a matching between workstation
trustworthiness and key usages. If a platform can be coaxed
or tricked into somehow sharing its credential and private
key with another, then presumably (and hopefully) the vul-
nerability that permitted this would be implicitly reflected
in the trust level specified by the workstation’s credentials.
Therefore, only machines of low trustworthiness should be
exploitable in this manner, with highly trustworthy work-
stations better able to maintain the integrity of their creden-
tials.

In PorKI, we extend this approach to also put the work-
station characteristics themselves within the policy exten-
sion in the proxy certificate. The relying party that receives

To appear at the 21st Annual Computer Security Applications Conference, Dec 2005 4



the PC thus possess this information during authentication;
its system administrators, having pre-defined a set of au-
thentication policies tied to various workstation types, are
able to dynamically limit the amount of trust awarded to
a user when she is authenticating. This embodies a sound
principle of secure system design: the best-qualified party
should make trust decisions. In SHEMP, users were able
to define their own key usage policies according to work-
station type. It would seem that users might tend to create
more open policies for the sake of usability: “I wanted to
make sure I could have full privileges from any worksta-
tion,” not knowing the security sacrifice they might be mak-
ing for the whole system. By also enabling the relying party
to limit the capabilities of a particular session based on the
workstation information presented at authentication, PorKI
enables the relying party to counteract this user tendency.
By retaining the user-defined key usage policy, it also still
allows users to set limits on trust should they choose to do
so.

Once the policy statement is transfered via the proxy cer-
tificate, in order for the relying party to decide what per-
missions the user should be granted, the relying party must
be able to parse the XACML policy statement, and have in
place permission profiles for the user that correspond to var-
ious levels of workstation trustworthiness. Figure 2 shows
what a small set of permission profiles might look like in
abstract form. We see that user ssmith has administra-
tive privileges when authenticated from a TMP-protected
server, whereas user ssinclair has user privileges. Both
users have read-only access when authenticating from an
untrusted workstation.

It should be straightforward for the relying party to inter-
pret a well-formed policy statement if it and the workstation
maintainer use the same syntax for expressing characteris-
tics. And, again, if the relying party has a path of trust to the
workstation maintainer, then we hope that they have been
able to agree on a characteristic mapping from one organi-
zation to another.

Considerations of policy expression across organiza-
tional boundaries is an important problem for many areas of
PKI research, and establishing a scheme to facilitate map-
ping expressions for PorKI is an area of future work for this
project. Projects such as the Higher-Education Bridge Au-
thority [5] facilitate the exchange of trust among indepen-
dent organizations, and these efforts may increase interest
in developing cross-institutional mappings.

This brings to attention, however, the possibility that the
relying party not have a path of trust to the workstation, even
if the user does. Because SHEMP was only intended to be
deployed within an individual organization, PorKI must ex-
pand the model to also include information about the main-
tainers of the workstation in the policy statement. For ex-
ample, say Alice is a part-time professor at both institutions

A and B. Her PorKI repository can find a path of trust to
a workstation w at A, and is able to use the signed set of
characteristics given to her by w to craft a policy statement
p. Now, when she tries to authenticate to a resource belong-
ing to institution B, we cannot automatically assume that B
has reasons to trust A’s machines, or that B has agreed with
A on what constitutes a “patched” machine, for example,
even if they use the same general format.

In the worst case, if the relying party is unable to es-
tablish a path of trust to the workstation, if there is an in-
compatibility in the policy statement, or if the workstation
simply does not have a certificate to offer the PorKI user,
the policy statement can be left at a default “untrusted” (ei-
ther in the PC or in the interpretation of the unrecognized
credentials by the relying party). Because proxy certificates
are X.509-based and PKIX standards-compliant, a PorKI
user should be able to use her temporary credentials with
any relying party that supports X.509 infrastructure and the
set of Internet community standards. (Compatibility with
legacy applications depends on the certification path valida-
tion algorithm implemented by the application and on the
specific PKI of the organization. Not all will have support
for Proxy Certificates; restrictions, including those on certi-
fication path depth or key usages in the PKI, could also ham-
per proper validation.) This means that a PorKI user can au-
thenticate (albeit with low-security permissions) from vir-
tually any workstation using her PDA as easily as she can
from a highly trusted workstation within her organization’s
network.

3.4 Credentials and Transfer

Once PorKI has received information from the worksta-
tion and crafted a policy statement, it is able to generate the
temporary credentials. PorKI currently generates the key-
pair on the mobile device. However, there may be cases in
which it might be desirable to perform this generation on
the workstation, to reduce the computation load on the mo-
bile device, to reduce the transfer time of the credentials,
or to reduce the risk of key compromise during the transfer.
Work by Boneh et al [2] includes a scheme for generating
keypairs on PDAs with the help of an untrusted workstation;
luckily, because PorKI allows the workstation full access to
the temporary key without risk, the entire task of key gen-
eration could be offloaded.

PorKI transfers the temporary credentials in a standard
format, such as PKCS12, so that they are easy to manually
import into an OS or web browser keystore. This means
that no client software is necessary for the workstation;
PorKI uses the Bluetooth file transfer protocol (which most
Bluetooth-enabled workstations implement by default) to
transfer the credentials. We can also envision the user
downloading a small application that serves as a signing and

To appear at the 21st Annual Computer Security Applications Conference, Dec 2005 5



User Workstation Type Permission Level
ssinclair

TMP-server USER
Personal-comp USER
Public-comp USER
Untrusted READ-ONLY

User Workstation Type Permission Level
ssmith

TMP-server ADMIN
Personal-comp ADMIN-NO-CHMOD
Public-comp USER
Untrusted READ-ONLY

Figure 2. Example profiles mapping workstation types to permissions for the remote resource.

repository utility, either directly from PorKI on the PDA or
from the relying party’s website. We could also eventually
envision a web application by a trusted remote party that
interacts directly with PorKI over Bluetooth for authentica-
tion.

Bluetooth was a very attractive medium for PorKI cre-
dential transfer; it traverses operating systems and platforms
wirelessly, and is fast becoming the de-facto standard for
communication among low-power devices. It is also easy
and inexpensive to retrofit a workstation for Bluetooth com-
munication. However, despite these benefits, there is con-
siderable concern regarding Bluetooth’s security; the pair-
ing process and its use of PINs has come under particular
scrutiny recently, with Shaked and Wool [19] describing a
passive attack that cracks 4-digit PINs used in pairing in
0.06 seconds on a Pentium IV.

The simplest way to improve security of the Bluetooth
connection is to use a longer PIN in pairing, thus increasing
the amount of time necessary to crack it. PorKI could even-
tually even force a user to use a longer pin by simply choos-
ing a random one and displaying it so the user can input it
on the other device. However, this does not protect against
repeat attacks in which the adversary has days to crack the
pin before the PorKI user comes back to use a workstation
again (Bluetooth devices usually “remember” their pairings
from one session to another). However, as soon as PorKI is
able to exchange public keys with the workstation, an addi-
tional layer of encryption beyond the Bluetooth default can
protect communication between the two devices. Alterna-
tively, we could consider using another wireless medium to
transfer the credentials- perhaps near field communications
(NFC). In Section 7, we consider this other methods of se-
curing the trust bootstrapping process between PorKI and a
workstation.

Again, one of the benefits of using temporary and
limited-capability credentials is that even if the Bluetooth
connection or the workstation were to be compromised,
the window during which an adversary could make use
of the credentials for malicious purposes is small. This
fact notwithstanding, it is imperative to the integrity of the
system that the Bluetooth flaws be compensated for; as it
stands, Bluetooth is the “weak link,” and compromise of

the communication channel would be a compromise of the
whole system.

4 PorKI Prototype

The current prototype of PorKI runs on an Apple Power-
book equipped with a 1.33 GHz G4 processor using the
built-in Bluetooth device. The key storage and credential
generation is performed in Java, but the Bluetooth commu-
nication is implemented in Objective C, so as to take use of
the OS X Bluetooth libraries (Bluetooth implementation for
J2SE is not standard, although it is in J2ME.)

The feature set of this prototype is minimal, as we
wanted to determine the feasibility of the project before
moving to a full implementation on a PDA, which is the
next step in our development. Currently, PorKI is able to
pair with a workstation, generate a temporary keypair and
a proxy certificate, sign them with a long-term private key,
and transfer them to a workstation in PKCS12 format. It
is also able to import keys, and provides the user with an
interface to choose which key in the repository to sign. It
protects the repository in a Java Keystore.

4.1 Performance

Key Generation. As we noted in Section 3, we consid-
ered while designing PorKI the possibility of offloading the
temporary keypair generation onto the workstation. To esti-
mate the load on a PDA, we measured how long it takes
to generate the temporary credentials on the Powerbook,
and found that it took 1.67 seconds to perform both the key
and proxy certificate generation and signing, with slightly
over half that time being spent just on the key generation.
If we assume all other things being equal, transferring the
PorKI software directly to a PDA with a 200 MHz processor
(the speed of a lower-end Bluetooth-enabled business model
at this writing) would yield credential generation time of
roughly 11 seconds, about half of which is dedicated to the
keypair.

While this amount of time is certainly significant—the
lag would be very noticeable to a user—we note that Boneh

To appear at the 21st Annual Computer Security Applications Conference, Dec 2005 6



et al [2] cited 1024-bit RSA key generation (the same task
being performed in PorKI) as taking 15 minutes on a PDA
in 2000. If the computation power of PDAs has improved
that much in five years, we can only imagine that key gen-
eration in PorKI would soon not create a noticeable lag.

Click Counts. Because we have not yet developed soft-
ware to interface with PorKI on the workstation, we rely
on the operating system keystore to manage the temporary
credentials. Additionally, we rely on the OS X Bluetooth
device discovery utility to identify the workstation to which
we would like to transfer credentials. Bearing in mind the
fact that a more integrated version of PorKI will require less
user interaction, we counted how much was necessary to
generate, transfer, and import credentials. PorKI itself re-
quired two clicks to launch, two clicks to initiate device
discovery and choose an alias, and a password to unlock
the keystore. Device discovery took three, but could easily
have taken one with a customized interface, for a grand to-
tal of five including launch. Once on the workstation, the
Windows certificate import wizard took eight clicks and a
password, whereas Apple’s Keychain utility only used four
and a password.

This interface is not as seamless as that of a USB token
or a smartcard, which usually just require one click and a
password. However, PorKI offers the added functionality of
being able to store keys and certificates from many different
sources, in addition to the added benefits associated with
policy statements about the workstations. Thus, we feel that
the added interaction is worth the increased functionality.

5 PorKI Applications

We can envision several scenarios in which PorKI could
directly replace existing authentication schemes while pro-
viding a security advantage. We can also envision more
advanced scenarios in which PorKI could be adapted to per-
form other tasks. We will consider examples of both of
these in turn.

Base Form Applications. One scenario in which PorKI
could be easily applied is with highly mobile students in a
diverse computing environment. This application is particu-
larly motivating, given our location. Right now, passwords
are the norm, and efforts to make USB tokens mandatory
have been stymied by lack of token driver support for non-
Windows operating systems.

Another scenario is that of a computer repair person with
contracts at several offices. She might need to authenticate
to her own office network to gain access to software tools
or billing information, but could not be guaranteed that the
client’s computer would have any particular software in-
stalled, or even that it was to be trusted.

Potential Future Applications. Other scenarios could
use an expanded version of PorKI to accomplish more ad-

vanced tasks. For example, a professor might want to del-
egate access to a grades database to his TA. If both users
had PorKI installed on their portable devices, he could ac-
complish this quickly and easily by bringing these devices
in proximity to one another and issuing a few short com-
mands. To stretch things even further, we can envision that
a certification authority might issue certificates directly to a
PorKI keystore, in a way reversing usual flow of informa-
tion in PorKI. This form of certificate issuance could po-
tentially be much simpler than those for USB PKI devices,
in the case that a CA requires a user to appear in person to
receive their certificate.

6 Prior Work

In this section, we will consider some principal previous
work in the space of dongle and PDA-enabled password al-
ternatives that provide authentication capabilities.

RSA SecurID Tokens. One of the first authentica-
tion alternatives on the market was the SecurID card (ini-
tially from Security Dynamics, but now from RSA). Se-
curID provides two-factor authentication with a userid and
a passcode-generating token. In addition to being available
on specialized devices, a token can also be installed on a
PDA as a software program [17]. However, SecurID re-
quires the relying party be running specialized server-side
software, and the purchase of seeds for every token de-
ployed. Additionally, it is difficult for a user to use his Se-
curID token for multiple relying parties.

Mobile Phones and Proxy Servers. Wu, Garfinkel and
Miller presented a highly mobile authentication applica-
tion for use on potentially hostile workstations [26]. This
system, which makes use of a mobile phone and a re-
mote trusted proxy server, can be used to authenticate to
any password-using relying website from any workstation.
However, the protocol between the relying party, the proxy
server, and the mobile phone is somewhat complex, and it
is unclear how this affects the speed at which users can au-
thenticate. The several steps of human interaction required
may affect the overall usability of the system. Moreover,
because the user is still providing passwords to the relying
party, this solution does not prevent a user from exposing
her credentials in a phishing attack, nor does it help her in
making trust decisions.

In earlier work, Clarke et al explore camera-based solu-
tions [3]. (Gobioff et al explored an even more primitive
version of the problem [4].)

USB Tokens and Smartcards. A simple way to make a
public key cryptography keypair portable, and thus take ad-
vantage of PKI’s strengths over passwords as an authentica-
tion measure, is to put a user’s private key on a hardware de-
vice, such as a smartcard. The private key is available to the
workstation once the smartcard is inserted, and unavailable

To appear at the 21st Annual Computer Security Applications Conference, Dec 2005 7



upon removal. However, smartcards require special readers
and drivers to interface with the workstation; although the
newer incarnation, USB PKI tokens, no longer requires a
special hardware interface, the need for drivers can be an
obstacle to using this scheme in new environments.

These portable PKI devices prevent compromise through
theft by requiring authentication to unlock them, either
through a password via the workstation operating system or
directly via a biometric, such as a thumbprint; they are also
designed to be resilient against hardware tampering. Be-
cause the keypair is issued directly to the device, it is easy
for the issuer to keep a secure backup; because the interface
software is designed to not allow export of the key, it is hard
for the user to give away her credentials.

However, if the user is using a compromised worksta-
tion, it is not impossible that vulnerabilities in the operating
system might allow an adversary access to the private key
that is stored on the device. Indeed, the keyjacking work
by Marchesini et al showed that keys stored on the Spyrus
Rosetta USB token and the Aladdin eToken were vulnerable
to attack through the Windows CryptoAPI (CAPI) system,
which those devices use to enable the interface between the
private key and applications on the workstation [11]. PKI
devices such as these do not aid the user in making trust
decisions, nor do they offer relying parties with a way to
judge whether the private key may have been subjected to
keyjacking by a malicious workstation.

Furthermore, in our experience with pilot deployments
of USB PKI dongles, it took over three minutes to issue a
key to a user. In large-scale deployments, this lag imposes
a significant time penalty to using this technology.

PDA Signing Proxy. Work by Balfanz and Felten [1]
showed that a PDA running a specialized software appli-
cation could be used as a smartcard with added benefits.
Their system is beneficial when used on untrusted worksta-
tions, because the PDA can perform private key operations
without ever giving the workstation access to private key
or to sensitive data that has just been decrypted. Also, be-
cause the user authenticates directly to the PDA to unlock
the private key, the smartcard vulnerability to an attack of
password logging and device theft is eliminated (although
the security of the private key if the PDA is stolen is more
in doubt, because standard PDAs are not hardened against
hardware attacks). Although it was not implemented in [1],
the interface between the PDA and the workstation could
be via a standard wireless protocol, thus removing the need
for specialized drivers. However, transferring data between
the workstation adds overhead to PKI operations, and PDAs
are less well-equipped to perform compute intensive cryp-
tographic operations than workstations.

Further work by Oprea et al [15] uses a trusted PDA to
delegate credentials to an untrusted workstation that allows
it temporary and limited access to resources on the user’s

home computer. The PDA and the home computer have ex-
changed certificates out-of-band and can thus communicate
securely through the untrusted workstation. They use this
channel to agree on a single-use password for the worksta-
tion to use, as well as a time limit on the connection of the
workstation. Here, the PDA maintains a direct link to the
home computer for mouse/keyboard events, so the worksta-
tion cannot inject anything into the communication. The
workstation is only used for reading and viewing things on
the home computer.

Section 7 will discuss some ongoing work by Reiter,
van Oorschot, and others on PDA-based authentication, and
how we plan to pursue incorporating some of those ideas in
PorKI.

SHEMP. As discussed earlier, In an effort to create a
portable PKI authentication scheme that reduces the vulner-
ability to keyjacking, Marchesini developed SHEMP [12],
a key repository application that allows users to store their
long-term private keys on a centralized server with hard-
ware protection, and delegate their credentials to worksta-
tions using temporary keys signed by X.509 proxy certifi-
cates [23, 25]. Because the private key never leaves the
SHEMP repository, the extent of the damage a malicious
workstation is capable of is limited by the abilities afforded
to the temporary keypair by the PC. SHEMP builds on pre-
vious MyProxy credential repository systems [14, 7].

Although SHEMP uses temporary keys on workstations,
it can still enable decryption or signing with the private key
by allowing the user to transfer the necessary data back to
the server for those operations. Thus, keypairs stored in
SHEMP, like keypairs stored on smartcards, are good for
more than just authentication.

However, SHEMP also requires that the workstation
have the SHEMP client installed, and that it have access
to a SHEMP repository server. The need for a centralized
repository brings with it all concerns of a centralized server,
including the need for a system administrator to maintain it
and unavailability of the private keys should the server go
down. As noted earlier, SHEMP also does not provide a se-
cure way for the user to authenticate— the user must enter
a password via a potentially untrustworthy client.

Finally, SHEMP, like smartcards, is not ultimately
portable; it is designed to be run on workstations within an
organization’s network. Modifications could enable a user
to gain access to her private key from an out-of-network
workstation, if she were to install the SHEMP client there
and configure it to connect to the appropriate SHEMP
server. However, this installation could be non-trivial and
impractical for a user wishing to authenticate for a short
amount of time.

To appear at the 21st Annual Computer Security Applications Conference, Dec 2005 8



7 Conclusion and Future Work

PorKI is an effective and highly usable solution to the
problem of secure authentication among mobile users. It
both improves on the security of current authentication
schemes through the use of X.509 PKI, and adds a new di-
mension of trust expression to the authentication process
through its use of XACML policy statements. It is our hope
that its simple yet flexible design will encourage other de-
velopments of a similar nature to enable secure authentica-
tion in heterogeneous environments.

In the future, we envision several directions for expan-
sion of PorKI. These include advanced delegation capabil-
ities and the ability for a certification authority to issue a
key directly to the PorKI repository, as discussed in Sec-
tion 5. We might also allow a PorKI user to further limit the
trust level expressed in a policy statement of a proxy certifi-
cate beyond that which would normally be allowed a given
workstation, in order to follow the principle of least privi-
lege. We consider in this section few other areas of potential
expansion.

Email Signing and Encryption. Currently, PorKI does
not provide for digital signing using the long-term private
key, nor does it provide users with a mechanism for decrypt-
ing something that has been encrypted with their long-term
public key. The temporary credentials cannot be used for
signing due to their short validity period. Similarly, only
the long-term private key can decrypt that which has been
encrypted with its public half.

A simple solution would be to transfer the data upon
which these operations need to be performed directly to the
PDA. Given the increase in computation power of PDAs
as noted in Section 4, this is not an infeasible solution, al-
though it is less desirable because the need to transfer so
much data could incur significant overhead. We would like
to pursue alternative schemes that does not involve so much
data transfer, as well as work further on implementing this
one.

Repository Protection. Protecting the repository on the
PDA with a simple password is an effective scheme, pro-
vided that the password is well chosen and not shared. How-
ever, entering a password into a PDA is not a very quick
process, either by stylus or miniature keyboard. It would be
advantageous to consider alternative of passcodes, such as
a series of gestures with a stylus or other forms of “graphic
passwords” [22] or a biometric solution, if one had a PDA
with a fingerprint-reading attachment.

Beyond password alternatives, it would also be worth
considering employing the PDA’s operating system for ad-
ditional measures of protection, depending on the features
it provided.

Methods of protecting the repository when the PDA is
subjected to advanced hardware attacks is a difficult propo-

sition. Encryption of the repository on the PDA helps, but
is likely not sufficient. The only way to truly prevent this
kind of attack is by using a hardened PDA. No such de-
vice is currently available, although the U.S. Government
has contracted to have one built [21].

7.1 Bluetooth Trust Bootstrapping

As we indicated in Section Section 3, it is imperative that
a user choose a strong PIN when pairing two Bluetooth de-
vices. We suggested that PorKI might help the user by gen-
erating a long random PIN, but this would clearly be cum-
bersome for the user to input into the workstation. To re-
duce the risk of compromise, we would thus like to explore
alternate ways of establishing trust between PorKI and the
workstation over Bluetooth. This might include more cre-
ative and usable ways to generate PINs, but it might also
involve a more PKI-oriented approach, by which the PDA
and the workstation exchange public keys and use some ad-
ditional method to verify that the exchange was not subject
to a man-in-the-middle attack. This might include the use of
a visual hash of what the PDA received, which can be veri-
fied by the user if it is also displayed on the workstation, as
in [16]. It could include instead a way for the PDA to re-
ceive a hash out-of-band which it can then verify, as in [13],
where McCune et al use a camera built into a smartphone to
take an image of a visual hash displayed on a workstation’
screen.

An alternative to trying to secure Bluetooth for PorKI
would be to simply use a different wireless transfer mecha-
nism, such as near field communications (NFC) [18]. NFC
implements communication at very short ranges (its propo-
nents bill it as “touch-based”), although it is not yet clear
exactly how much this quality improves its security over
other similar protocols. Also, Bluetooth is currently the
most widely supported and widely implemented short-range
wireless protocol; also, its file-transfer mechanism is very
useful to PorKI when no client software is installed on the
workstation. It is clear that if a new and more secure pro-
tocol becomes widely adopted, it would be easy to replace
the less secure Bluetooth transfer. In the meantime, we will
focus primarily on using the tools we have at hand to make
an effective and deployable solution.

7.2 Location-Aware PorKI

With the rise of wireless devices has come the potential
for “location-aware” computing. If devices can tell where
they are, this awareness of location can serve to help users
perform tasks, or aid in designing secure systems. In [24],
van Oorschot and Stubblebine propose location aware de-
vices as a mechanism for further verifying that a user is
who he says he is and where he says he is, with an interest

To appear at the 21st Annual Computer Security Applications Conference, Dec 2005 9



to preventing identity theft. Integrating location awareness
into PorKI could enable users to employ the keys stored in
their repository to accomplish such tasks as gaining autho-
rization to physical locations.

References

[1] Dirk Balfanz and Edward W.Felten. Hand-Held Computers
Can Be Better Smart Cards. In Proceedings of USENIX Se-
curity, pages 15–24, Washington, DC, August 1999.

[2] Dan Boneh, Nagendra Modadugu, and Michael Kim. Gener-
ating RSA Keys on a Handheld Using an Untrusted Server.
In INDOCRYPT ’00: Proceedings of the First International
Conference on Progress in Cryptology, pages 271–282, Lon-
don, UK, 2000. Springer-Verlag.

[3] Dwaine E. Clarke, Blaise Gassend, Thomas Kotwal, Matt
Burnside, Marten van Dijk, Srinivas Devadas, and Ronald L.
Rivest. The Untrusted Computer Problem and Camera-
Based Authentication. In Pervasive ’02: Proceedings of
the First International Conference on Pervasive Computing,
pages 114–124. Springer-Verlag, 2002.

[4] H. Gobioff, S.W. Smith, J.D. Tygar, and B.S. Yee. Smart
Cards in Hostile Environments. In Proceedings of the 2nd
USENIX Workshop on Electronic Commerce, pages 23–28,
1996.

[5] Higher Education Bridge Certification Authority. http:
//www.educause.edu/hebca/.

[6] RSA Security Inc. Protecting Against Phishing by
Implementing Strong Two-Factor Authentication.
http://www.antiphishing.org/sponsors_
technical_papers/PHISH_WP_0904.

[7] M. Lorch, J. Basney, and D. Kafura. A Hardware-secured
Credential Repository for Grid PKIs. In 4th IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid,
April 2004.

[8] Dan Maier. Phishing Activity Trends Report, March
2004. http://www.antiphishing.org/APWG.
Phishing.Attack.Report.Feb2004.pdf.

[9] Ronnie Manning. Phishing Activity Trends Report,
March 2005. http://www.antiphishing.org/
APWG_Phishing_Activity_Report_Feb05.pdf.

[10] J. Marchesini, S.W. Smith, O. Wild, J. Stabiner, and
A. Barsamian. Open-Source Applications of TCPA Hard-
ware. In 20th Annual Computer Security Applications Con-
ference. IEEE Computer Society, December 2004.

[11] J. Marchesini, S.W. Smith, and M. Zhao. Keyjacking: the
Surprising Insecurity of Client-side SSL. Computers and
Security, 4(2):109–123, March 2005. http://www.cs.
dartmouth.edu/˜sws/papers/kj04.pdf.

[12] John Marchesini and Sean Smith. SHEMP: Secure Hard-
ware Enhanced MyProxy. Technical Report TR2005-
532, Department of Computer Science, Dartmouth Col-
lege, February 2005. ftp://ftp.cs.dartmouth.
edu/TR/TR2005-532.pdf.

[13] Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter.
Using Camera Phones for Human-Verifiable Authentication.
In Proceedings of the 2004 IEEE Symposium on Security and
Privacy, pages 110–124, May 2005.

[14] J. Novotny, S. Tueke, and V. Welch. An Online Credential
Repository for the Grid: MyProxy. In Proceedings of the
Tenth International Symposium on High Performance Dis-
tributed Computing (HPDC-10). IEEE Press, August 2001.

[15] Alina Oprea, Dirk Balfanz, Glen Durfee, and D. K. Smet-
ters. Securing a Remote Terminal Application with a Mobile
Trusted Device. In Proceedings of the Annual Computer Se-
curity Applications Conference (ACSAC), Tucson, AZ, De-
cember 2004.

[16] Adrian Perrig and Dawn Song. Hash Visualization: a New
Technique to improve Real-World Security. In International
Workshop on Cryptographic Techniques and E-Commerce
(CrypTEC) 1999, 1999.

[17] RSA Security Inc. RSA Security Unveils Innovative
Two-Factor Authentication Solution for the Consumer
Market. http://www.rsasecurity.com/press_
release.asp?doc_id=1370.

[18] Phillips Semiconductors. Nokia, sony and phillips estab-
lish the near field communications (nfc) forum. March
2004. http://www.semiconductors.philips.
com/news/content/file_1053.html.

[19] Yanic Shaked and Avishai Wool. Cracking the Bluetooth
Pin. In MobiSys 2005, 2005. http://www.eng.tau.
ac.il/˜yash/shaked-wool-mobisys05/.

[20] Sean W. Smith. Probing User-End IT Security Practices—
via Homework. The Educause Quarterly, 27(4):68–71,
November 2004.

[21] IT-Observer Staff. NSA PDA for the Government. IT-
Observer, August 2005. http://www.it-observer.
com/articles.php?id=848.

[22] Julie Thorpe and P.C. van Oorschot. Graphical Dictionaries
and the Memorable Space of Graphical Passwords. In Pro-
ceedings of USENIX Security, 2004.

[23] S. Tuecke, V. Welch, D. Engert, L. Pearlman,
and M. Thompson. Internet X.509 Public Key
Infrastruture Proxy Certificate Profile, 2003.
http://www.ietf.org/internet-drafts/
draft-ietf-pkix-proxy-10.txt.

[24] P.C. van Oorschot and S. Stubblebine. Countering Iden-
tity Theft Through Digital Uniqueness, Location Cross-
Checking and Funneling. In Financial Cryptography and
Data Security 2005, 2005.

[25] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman,
S. Tuecke, J. Gawor, S. Meder, and F. Siebenlist. X.509
Proxy Certificates for Dynamic Delegation. In 3rd Annual
PKI R&D Workshop Pre-Proceedings, pages 31–47, April
2004.

[26] Min Wu, Simson Garfinkel, and Rob Miller. Secure Web
Authentication with Mobile Phones. In MIT Project Oxygen:
Student Oxygen Workshop 2003 Proceedings, 2003.

To appear at the 21st Annual Computer Security Applications Conference, Dec 2005 10

http://www.educause.edu/hebca/
http://www.educause.edu/hebca/
http://www.antiphishing.org/sponsors_technical_papers/PHISH_WP_0904
http://www.antiphishing.org/sponsors_technical_papers/PHISH_WP_0904
http://www.antiphishing.org/APWG.Phishing.Attack.Report.Feb2004.pdf
http://www.antiphishing.org/APWG.Phishing.Attack.Report.Feb2004.pdf
http://www.antiphishing.org/APWG_Phishing_Activity_Report_Feb05.pdf
http://www.antiphishing.org/APWG_Phishing_Activity_Report_Feb05.pdf
http://www.cs.dartmouth.edu/~sws/papers/kj04.pdf
http://www.cs.dartmouth.edu/~sws/papers/kj04.pdf
ftp://ftp.cs.dartmouth.edu/TR/TR2005-532.pdf
ftp://ftp.cs.dartmouth.edu/TR/TR2005-532.pdf
http://www.rsasecurity.com/press_release.asp?doc_id=1370
http://www.rsasecurity.com/press_release.asp?doc_id=1370
http://www.semiconductors.philips.com/news/content/file_1053.html
http://www.semiconductors.philips.com/news/content/file_1053.html
http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/
http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/
http://www.it-observer.com/articles.php?id=848
http://www.it-observer.com/articles.php?id=848
http://www.ietf.org/ internet-drafts/draft-ietf-pkix-proxy-10.txt
http://www.ietf.org/ internet-drafts/draft-ietf-pkix-proxy-10.txt

	Introduction
	User Authentication
	PorKI Design
	System Overview
	Long-Term Key Repository
	Policy Based on the Workstation
	Credentials and Transfer

	PorKI Prototype
	Performance

	PorKI Applications
	Prior Work
	Conclusion and Future Work
	Bluetooth Trust Bootstrapping
	Location-Aware PorKI

	References

