
Fixed Points in Spectral Complexity

Sean W. Smith Carl Sturtivant

October 1992

CMU-CS-92-190

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under
Contract F33615-90-C-1465, Arpa Order No. 7597. S. Smith also received support from an ONR Graduate
Fellowship and from NSF Grant CCR-8858087. C. Sturtivant is currently a�liated with the Department of
Computer Science at the University of Minnesota, Minneapolis MN 55455.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the o�cial policies, either expressed or implied, of the U.S. Government.

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

Keywords: complexity classes, complexity hierarchies

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

Abstract

Spectral analysis has emerged as an exciting tool in complexity research. In some cases, the
functions in a complexity class can be characterized by specifying a simple property of their
Fourier spectra|even though their truth tables do not display such simple properties.

In this paper, we demonstrate a fundamental limitation of this tool: if a class of func-
tions contains parity and is closed under some simple composition rules, then we can take
the set of Fourier spectra of a subset of that class, close it under some simple projections,
and obtain everything in the original class. Indeed, we can demonstrate this property for
a general family of transforms, of which the parity-based Fourier transform is only one. If
a class contains the basis function of such a transform, then no reduction in complexity is
obtained when we shift from truth tables to spectra.

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

1. Introduction

1.1. Spectral Approaches to Complexity

Complexity classes are usually de�ned in terms of resources; they are the classes of functions
that can be computed by some family of devices: contant-depth circuits, Turing machines
with polynomial space and time, et cetera. The central problem in computational complexity
is that in general it is di�cult to actually characterize these classes of functions. What really
can be computed by some given family?

Spectral analysis has recently been shown to be a way to solve this problem in some cases.
Traditionally, functions are regarded as truth tables: lists of input-output pairs. There may
be no apparent pattern to the set of functions calculated by some family of devices when
we write the functions as truth tables. But if we look at their Fourier spectra, patterns
sometimes emerge. The most well-known spectral result is Linial, Mansour and Nisan's [14]
theorem that the Fourier spectrum of a function computed by an AC0 circuit diminishes
exponentially with \frequency", but there has been a good deal of other spectral work as
well [4] [6] [7] [8] [11].

What exactly is the Fourier transform of a Boolean function? If we embed the Booleans
in the reals by identifying true and false with �1, then the real functions on n Boolean
variables can be thought of as a real 2n dimensional vector space. A natural basis is

f�S : S � f1; :::;ngg

where �S takes the characteristic vector for S to 1 and everything else to 0. This space is
isomorphic to IR2n; the �S correspond to the standard axes, and the Boolean functions cor-
respond to the corners of the unit hypercube. However, there is a class of parity functions|
diagonals on this cube|that also forms a nice basis for this space. Researchers use the term
\Fourier spectrum" to refer to the coordinates of a function with respect to this alternate
basis. (Alternatively, this is known as the Walsh-Hadamard Transform [1].)

1.2. Fixed Points in Spectral Complexity

Let us �rst de�ne some notation.

De�nition 1 (T; TT) If C is a collection of functions, let TT (C) denote the set of truth
tables of those functions. If T is a transform on the class, let T (C) denote the set of spectra
of functions in that class with respect to to the transform T .

De�nition 2 If S is a set of truth tables (or spectra being regarded as truth tables), let S�

be the truth table set obtained by closing S under polynomial projection and constant depth,
constant size composition.

1

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

The main thrust behind spectral complexity research is that the set F (C) of Fourier
spectra of functions in some class C are somehow simpler than the set of truth tables
TT (C). We demonstrate a fundamental limitation of the spectral approach: under very
general conditions, once a class contains parity, then a subset of its Fourier spectra looks
exactly like the set of truth tables for the class. No reduction in complexity is obtained by
shifting from truth tables to spectra. We also establish a similar result for a more general
family of transforms.

We establish this result in the parity case by regarding Fourier spectra as truth tables
and examining the eigenvectors of the Fourier transform. We obtain the surprising fact that
Boolean functions can be eigenvectors|and that these functions can be arbitrarily complex.
Namely, for any Boolean function f there exists a Boolean function g such that

� g is �xed under the Fourier transform|that is, its Fourier spectra di�ers from its truth
table only by a multiplicative constant;

� f can be obtained from g by a polynomial projection;

� and computing g reduces to computing f , parity, and some two-bit functions.

Let C be a class of functions closed under constant-depth �nite-sized composition and
containing the two-bit functions. (Any standard complexity class has this property.) If C
contains parity, then it contains the �xed point g for every f in C. Hence, the set of Fourier
spectra of functions in C contains a subset of things that look just like Boolean functions.
So we cannot obtain any nice dropo� invariants for the spectra. If we close this subset under
polynomial projection, then we obtain exactly the set of truth tables of functions in C. That
is:

TT (C) � F (C)�

Therefore the set of spectra of functions in the class C contains a subset that is just as hard
to characterize as is the set of truth tables of functions in C.

It is interesting to note that this phenomenon of spectra coinciding with truth tables
occurs with the parity-based Fourier transform when the class C contains parity. Indeed,
we can show that this generalizes to other transforms F�, when the class includes the basis
functions � of the transform. For any class C of functions,

� 2 C ^ C = C�) TT (C) � F�(C)
�

We no longer obtain individual functions as �xed points, but the notion of spectra of a class
having the same complexity as the truth tables still hold.

In Section 2, we present an eigenvector-based proof of the result for the parity based
Fourier transform. In Section 3, we present the general proof, which uses only the orthogo-
nality of the transform and its self-similarity for di�erent domain sizes. The parity theorem
follows from the general theorem as a simple corollary.

2

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

2. Boolean Fixed Points of the Fourier Transform

If we identify true and false with +1 and �1 respectively, we can embed Boolean functions
on n bits in the space of real functions on n bits. A natural way to represent a real function
f on n Boolean variables is as its generalized truth table: a list of the values f takes on for
the 2n possible input vectors. Fourier analysis provides an alternative way: each subset S of
f1; :::; ng de�nes a parity function �S, and a function f can be uniquely represented as the
vector of its correlations with these functions.

If we identify subsets of f1; :::;ng with their characteristic Boolean vectors, then the
Fourier transform of a function on n bits is itself a function on n bits. Regarding the
Fourier transform as a map from functions to functions rather than from coordinate axes to
coordinate axes provides new insight into the action of the Fourier transform. The Fourier
transform F induces two orthogonal 2n�1 dimensional spaces of eigenvectors. Everything in
the one space is �xed by F ; everything in the other is negated. Hence any function may be
written as the sum of a �xed and an alternating component; the transform simply negates
the alternating component and multiplies everything by a positive constant.

Our research also yields the surprising result that these �xed point subspaces contain
Boolean functions. In particular, every Boolean function f is the polynomial projection of
some Boolean �xed point g with the property that computing g reduces to computing f and
parity.

2.1. Fourier Analysis of Boolean Functions

The idea of applying Fourier analysis to Boolean functions is discussed in great detail else-
where [14], so we shall only provide a quick overview.

First, we de�ne the space of functions acted on by the Fourier transform.

De�nition 3 De�ne F(Bn; IR) to be the space of real functions on n Boolean variables.

Let us identify true and false with 1 and �1, respectively. Then F(Bn; IR) also contains
the Boolean functions on n bits.

De�nition 4 For S � f1; :::;ng, let aS be the characteristic Boolean vector for S. Let AS

be the function that takes aS to 1 and any other vector to zero. De�ne �S(aT) = �1jS\T j.
For two functions f; g 2 F(Bn; IR) de�ne their inner product < f; g > =

P
S f(aS)g(aS).

Note that this de�nition also di�ers from that used elsewhere [14] in that we don't divide
by 2n when computing the inner product. This conveniently ensures that the inner product
of Boolean functions is always an integer.

3

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

The natural representation for a function f 2 F(Bn; IR) is its truth table. We can restate
this in terms of linear algebra: the functions AS form an orthonormal basis for F(Bn; IR)
under the inner product <>. The main idea of Fourier analysis on Boolean functions is that
the functions �S form a basis for F(Bn; IR) that is almost orthonormal: < �S; �T > is zero
if S 6= T and 2n otherwise. The Fourier transform of a function is just its coordinates in this
basis. If we identify the subsets of f1; :::;ng with their characteristic Boolean vectors, then
the transform itself is in F(Bn; IR).

De�nition 5 For f 2 F(Bn; IR), de�ne its Fourier transform Ff 2 F(Bn; IR) as

X
S

< f; �S > AS

2.2. The Eigenspaces of the Fourier Transform

2.2.1. Preliminaries

Let us recall some de�nitions from linear algebra.

De�nition 6 A nonzero vector v is an eigenvector of a linear transformation G if Gv = cv
for some nonzero c. Such a c is an eigenvalue of G. The set of eigenvectors associated with
some eigenvalue forms a subspace.

Since the Fourier transform F is easily shown to be a linear transformation on F(Bn; IR),
it is natural to ask what its eigenvalues and eigenvectors are. We can directly observe that
for any function f , F 2f = 2nf . So if a real c has the property that some nonzero f satis�es
Ff = cf then c2 = 2n. Hence the only possible eigenvalues for f are �2n

2 .

De�nition 7 When n is �xed, de�ne c = 2
n
2 .

2.2.2. Tensor Product Decomposition

The function space F(Bn; IR) decomposes nicely as the tensor product (Section 28 in Curtis
[5]) of smaller spaces. We can quickly deduce the following from basic de�nitions.

Lemma 8 If positive integers n1; :::;nk satisfy n =
P
ni, then

F(Bn; IR) = F(Bn1 ; IR)
F(Bn2; IR)
 :::
F(Bnk ; IR)

Lemma 9 If f; g 2 F(Bk; IR) and f 0; g0 2 F(Bk0

; IR) then < f
 f 0; g
 g0 >=< f; g ><
f 0; g0 >.

4

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

The Fourier transform decomposes similarly.

De�nition 10 Let Fk denote the Fourier transformation on F(Bk; IR)

A straightfoward manipulation of de�nitions establishes the following.

Theorem 11 If positive integers n1; :::;nk satisfy n =
P
ni then Fn = Fn1
Fn2
:::
Fnl.

2.2.3. The Eigenspaces

The results in Section 2.2.2 provide a simple way to completely characterize the eigenvectors
of F .

De�ne P;N 2 F(B1; IR) (in the truth table basis) byN =

1�p2

1

!
; P =

1 +

p
2

1

!
.

Observe that < P;N >= 0 and that FP = cP and FN = �cN . Apply Lemma 9.

Lemma 12 The vectors of the form G1
 :::
 Gn; where each Gi 2 fP;Ng, form an
orthogonal basis for F(Bn; IR).

Theorem 13 The eigenvalues of F are �c. The subspaces of eiegenvectors associated with
each have dimension 2n�1.

Proof: Consider the vectors from Lemma 12. The 2n�1 of them with an even number of
N factors form an orthogonal basis for the c subspace; the other half form one for the �c
subspace.

De�nition 14 Let us call the subspace of eigenvectors associated with c the positive eiegenspace
of F . De�ne the negative eigenspace similarly.

Corollary 15 Any f 2 F(Bn; IR) can be written uniquely as f+ + f�, where f+ is in the
positive eigenspace and f� in the negative. Further, Ff = cf+ � cf�.

2.3. Boolean Fixed Points

The eigenspaces of F contain Boolean functions that are exactly as computationally hard
as we desire. We will demonstrate this by embedding arbitrary Boolean functions in com-
putationally equivalent Boolean �xed points.

5

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

In the sequel we will be constructing functions on n+2 bits from functions on n bits. For
h 2 F(Bn+2; IR), if the restrictions of h on the last two bits are h��; h�+; h+�; h++ then we

may write h as the matrix

h�+ h++
h�� h+�

!
.

Lemma 16 For f; g 2 F(Bn; IR) de�ne h 2 F(Bn+2; IR) by h =

f g
g �f

!
. Then

Fh =

 �2Ff 2Fg
2Fg 2Ff

!

Lemma 17 Let f; g; h be as in Lemma 16. If Ff = �cf and Fg = cg then h is in the
positive eigenspace of F(Bn+2; IR). If Ff = cf and Fg = �cg then h is in the negative
eigenspace.

De�nition 18 For arbitrary Boolean functions f on n bits, de�ne Boolean functions FP+(f)
and FP�(f) on 2n + 2 bits inductively as follows. If n = 0, f must be constant. De�ne
FP+(f) = f AND and FP�(f) = f OR where AND and OR are functions on 2 bits.
If n > 0; restrict f on xn and to obtain n� 1-bit functions. Then de�ne

FP+(f) =

FP�(f jxn=�1) FP+(f jxn=1)
FP+(f jxn=1) �FP�(f jxn=�1)

!

FP�(f) =

FP+(f jxn=�1) FP�(f jxn=1)
FP�(f jxn=1) �FP+(f jxn=�1)

!

Lemma 19 For any Boolean f , FP+(f) is in the positive eigenspace and FP�(f) is in the
negative.

Proof: AND 2 F(B2; IR) is in the positive eigenspace and OR is in the negative. Apply
Lemma 17.

Lemma 20 For arbitrary Boolean f , f(x1; :::;xn) = FP�(f)(1; 1; x1; 1; x2;1; :::;xn; 1).

Proof: Unravel the de�nition of FP�: the xn; 1 assigned to the rightmost variables selects
the FP of the appropriate restriction of f on xn.

It is not surprising that f reduces to its �xed points. What is surprising is that if we can
do parity, the �xed points reduce to f .

Lemma 21 There exist constants c1; c2; c3 such that for any Boolean f 2 F(Bn; IR) if

6

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

� f is computed by a circuit C with gf gates and depth df

� parity on n bits is computed by a circuit with gp gates and depth dp

then FP+(f) is computed by a circuit with not more than gf + 2gp + c1n + c2 gates and of
depth not more than max(dp; df) + c3. A similar result holds for FP�(f).

Proof: Label the variables in F(B2n+2; IR) as < w1; w2; y1; z1; y2; z2; :::; yn; zn > and use the
standard labeling < x1; :::; xn > for the variables in F(Bn; IR).

From its de�nition we see that FP+(f) equals �FP�(f jxn=yn�zn). The sign out front
follows �yn _ zn; the sign in the exponent follows yn � zn. Telescoping, we see that

FP+(f)(1; 1; y1; z1; :::; yn; zn)

can be computed by calculating f (y1 � z1; :::; yn � zn) and negating this value if there are an
odd number of �1s in the n bits �yi _ zi. However, when the �rst two bits w1 and w2 are not
both 1, we need to know which 0-bit �xed point was used, AND or OR. This is determined
by the parity of the n bits yi � zi.

So we calculate f(y1 � z1; :::; yn � zn), negate depending upon the parity of the �yi_zi, and
then NOT-EXCLUSIVE-OR against AND(w1; w2) or OR(w1; w2) depending on the parity
of the yi � zi.

Theorem 22 For any Boolean function f on n bits there exist Boolean function g; h on
2n+2 bits such that Fg = cg;Fh = �ch, f is a polynomial projection of g and h, and g and
h both reduce to calculating one instance of f , two instances of parity, and a linear number
of two-bit Boolean functions.

We have also proven [16] a companion result to Theorem 22: representatives of each class
exist which cannot be obtained by taking the Sign of anything in the eigenspaces.

Theorem 22 gives us the following directly.

Theorem 23 Let C be a class of functions containing the two-bit functions closed under
constant depth, polysize composition. If C contains parity, then TT (C) � F (C)�.

In Section 3 we will prove a stronger version of this theorem.

3. A General Theorem

We now generalize the results of Section 2. In particular, we generalize Theorems 22 and 23
to apply for more general families of transforms.

7

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

3.1. Preliminaries

3.1.1. Functions

Consider complex functions on some �nite group D.

De�nition 24 (F) Let F(A;B) be the set of functions from A to B.

De�nition 25 (�) For d 2 D de�ne �d 2 F(D; IC) by

�d(x) =

(
1 if x = d
0 otherwise

Then F(D; IC) can be conceived of as a jDj-dimensional vector space over IC with canonical
basis f�d : d 2 Dg. The coordinates of a function in this basis is just its truth table: the
values it takes on for each element of D.

Further, the standard inner product for complex vector spaces conveniently relates to the
correlation between two functions.

De�nition 26 For f; g 2 F(D; IC) de�ne their inner product

< f jg > =
X
d2D

f(d)g(d)

The following is no surprise.

Lemma 27 The � basis is orthonormal.

In our parity work, we had two levels of functions on Boolean variables: those that mapped
into the reals, and those that mapped into �1|the natural embedding of the Booleans in
the reals. The surprise came in that while transforms of the smaller level are generally in
the larger, there existed functions in the small level whose transforms (when multiplied by
a constant) were still in the small level.

This suggests that we want to identify a special subclass of functions in F(D; IC).

De�nition 28 (W;W 0; k) Let W be a �nite group, and let W 0 be a representation of it in
IC. Let jW j = k.

Because W is a �nite group, we have that w 2 W 0) �w 2 W 0. Also, 0 2 W maps to
1 2 W 0 � IC.

So our special class will be F(D;W 0). In general, D will turn out to be n-tuples of W
(that is, we currently cannot think of anything else interesting for D to be).

8

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

3.1.2. Transforms

We need to generalize the idea of the parity transform.

In the parity case, we speci�ed an alternate orthonormal basis for the general function
class (i.e., F(D; IC)). The functions in the new basis were all in the smaller class (i.e.,
F(D;W 0)).

So we need to specify a new basis for F(D; IC) consisting of functions from F(D;W 0).
In order for the transform to be a self-map of the function space, we need to identify each
new basis function with an element of D. Since there are jDj elements in the new basis, we
specify this identi�cation explicitly by indexing the new basis by D| f�d : d 2 Dg.

The complexity �xed point theorem for parity works by considering complexity classes
that contain parity. Conveniently, the basis functions for the parity transform are merely
smaller versions of parity. When we generalize the transform this property may no longer
hold, so we need a way of generalizing the condition on the complexity class.

Since the new basis consists of jDj functions, indexed by D, from D to W 0, we can regard
the basis as a whole as a function from D2 to W 0.

We can now make the following de�nitions.

De�nition 29 Let � 2 F(D2;W 0). Let �d be the restriction of � on its �rst variable|e.g.,
�d1(d2) = �(d1; d2). The transform F� induced by � on F(D; IC) is de�ned by

F�f =
X
d2D

< f j�d > �d

The transform is orthonormal when the �d satisfy

< �d1 ; �d2 >=

(jDj if d1 = d2
0 otherwise

We will write F for F� when � is understood.

3.1.3. Bigger Domains

We observe that, as in all complexity theory, we are only pretending to be working with
one particular F(D;W 0). In reality, we have a family D of domains of increasing size. The
domains|usually tuples of variables|are built up by adjoining smaller domains. Functions
on the smaller domains can be combined to obtained functions on the larger in a natural
way using tensor products.

Similarly, we talk about a function � that operates on D�D but we really mean a family
of �, one for each D. The orthogonal transform � on a family of domains D acutally consists
of a family of transforms, one for each D 2 D.

9

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

There is a natural way to combine orthogonal transforms on two domains D1 and D2 to
obtain one on D1 �D2. We engage in a slight abuse of notation.

De�nition 30 Suppose �1 and �2 are transforms on F(D1; IC) and F(D2; IC). We can de�ne
a transform �1
 �2 on the function space F(D1 �D2; IC) by

(�1
 �2)(< a1; a2 >;< b1; b2 >) = �1(a1; b1)�2(a2; b2)

for ai; bi 2 Di.

We used tensor product notation for the combined transform because in pretty much
every sense, the transform is a tensor product. Each basis element in the new basis is the
tensor product of basis elements in the smaller ones. Further, there is the following directly
obtained fact.

Lemma 31 For < f1; f2 >2 F(D1 �D2; IC),

F�1
�2 < f1; f2 > = F�1f1
 F�2f2

Orthogonality and orthonormality are also preserved.

Lemma 32 If �1 and �2 are orthogonal [orthornormal] transforms, then so is �1
 �2.

So when we talk about about a transform �, we really mean a hierarchy of transforms,
one for each domain.

De�nition 33 Suppose for all domains D, the transform � on D2 is just the tensor square
of the transform � on D, as per De�nition 30. We then say that � is multiplicative.

3.2. The General Theorem

In this section we prove our general �xed-point theorem. We actually obtained this result
by directly generalizing the Boolean parity case. Once we obtained this result, it became
possible to prove it directly. We use the direct approach here.

Theorem 34 Let f 2 F(D;W 0) and let F� be an orthogonal transform. Then there exist
g; h 2 F(D2;W 0) such that

� g; h reduce to each other and �

� F�
�g = jDjh
10

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

� f is a polynomial projection of g

� g and h reduce to f and �

If �(a; b) = �(b; a) then g; h reduce to just each other.

Proof: Given f and �, de�ne

g(a; b) = f (a)�(a; b); h(a; b) = f (b)�(a; b)

Then

(F�
�g)(a; b) = < gj�
 �a;b > (by de�nition of F�
�)

=
P

c;d2D g(c; d) �
 �((a; b); (c; d)) (by de�nition of inner product)

=
P

c;d2D f (c)�(c; d) �
 �((a; b); (c; d)) (by de�nition of g)

=
P

c;d2D f(c)�(c; d) �(a; c) �(b; d) (by de�nition of �
 �)

=
P

c2D f (c) �(a; c)
P

d2D �(c; d) �(b; d) (rearranging sums)

=
P

c2D f(c) �(a; c) < �cj�b > (by de�nition of inner product)

= jDj f (b) �(a; b) (by orthonormality of �)

We can use the existence of g and h to demonstrate the existence of complexity classes
that are �xed under the truth table to spectral transformation.

Theorem 35 Let W be a �nite group and let � be a multiplicative orthonormal transfor-
mation on F(D;W 0). Suppose C � F(D;W 0) satis�es

� C = C�

� C can calculate W -negation and 2-way W -addition.

If C can calculate �, then
TT (C) � F�(C)

�

3.3. Group Characters

Now that we have established a nice theorem about orthogonal transforms and F(D;W 0)
for �nite groups W , it would be nice to demonstrate the existence of interesting transforms
that meet the criteria of the theorem.

Group representation theory [12] [13] provides such a family of tranforms. The simple
characters of a group W are complex functions on W that are pairwise orthogonal. The

11

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

inner product of a simple character with itself is k. Suppose W1; :::;Wr are the conjugacy
classes of W : then there are r simple characters, each of which is �xed on each Wi. Further,
simple characters of W combine to form simple characters on W n exactly the way we want
them to (eg, as per De�nition 30): they multiply.

This suggests that if the simple characters are to form the alternate basis for our function
space F(W n;W 0), then the original basis better have dimension rn and the functions better
be �xed on each conjugacy class. For all practical purposes, the variables range over the
conjugacy classes of W rather than the individual elements. Having each element be its
own conjugacy class would make life much nicer; this happens exactly when W is an abelian
group. A result from algebra tells us that any �nite abelian group isomorphic to the direct
product of cyclic groups. A standard result from group representation theory (eg, Theorem
2.4 in Ledermann [12]) tells us exactly what the simple characters of W are.

Lemma 36 Suppose
W = ZZ=k1 � ZZ=k2 � ::: � ZZ=ks

Then the simple characters of W are the f�w : w 2 Wg, where

�w(x) = e
2�i
Ps

j=1

xjwj

kj

So we can de�ne �(a; b) to be �a(b) and obtain an orthogonal transform for F(W;W 0)
and hence for F(Wn;W 0).

Corollary 37 Suppose W is a �nite abelian group and � is the orthogonal transform of
F(W n;W 0) induced by the simple characters of W . Theorem 34 and Theorem 35 hold for
W and �.

The �xed point property for the Boolean parity transform is just Corollary 37 with
W = ZZ=2.

4. Further Work

This work suggests a couple of unanswered questions.

First, for completeness' sake, we wonder whether the converse to Theorem 35 is true:
that � is the easiest �xed point.

Conjecture 38 Let C be a complexity class and � a su�ciently nice orthogonal transfor-
mation. Then if there exist g; h 2 C with F�g = ch then � 2 C.

12

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

In the Boolean parity case, the parity spectra had �xed points for classes that contained
parity but yielded meaningful invariants for classes that didn't|in particular, for AC0.
Proving this conjecture would provide theoretical evidence that the � spectra will yield
similar invariants for more general classes. What these clases are, and whether the invariants
tell us anything interesting, is another question altogether, and one which we will explore
shortly.

The second avenue for further inquiry is generalizing the family of � to which our theorem
applies. The multiplicative property is rather limiting: we never move beyond multiplication
in IC. However, in principle we only need some kind of self-similarity between � on larger
domains and � on smaller ones. The relation does not really have to be multiplicative.

5. References

1. Ahmed, Nasir and Kamisetty R. Rao. Orthogonal Transforms for Digital Signal Pro-
cessing. Berlin: Springer-Verlag, 1975.

2. Boerner, Hermann. Representations of Groups. Amsterdam: North-Holland, 1963.

3. Bollobas, Bela. Combinatorics. Cambridge: Cambridge University Press, 1986.

4. Bruck, Jehoshua and Roman Smolensky. \Polynomial Threshold Functions, AC0
Functions, and Spectral Norms." 31st FOCS, 1990.

5. Curtis, Charles W. Linear Algebra: An Introductory Approach. New York: Springer-
Verlag UTM, 1984.

6. Furst, Merrick, Je� Jackson and Sean Smith. \Improved Learning of AC0 Functions."
COLT, 1991.

7. Gotsman, Craig. \On Boolean Functions, Polynomials, and Algebraic Threshold Func-
tions." Jerusalem: Institute of Mathematics and Computer Science, the Hebrew Uni-
versity. (rough draft)

8. Gotsman, Craig and Nathan Linial. \Spectral Properties of Threshold Functions."
Submitted to Combinatorica, 1990.

9. Hall, Marshall. Combinatorial Theory. Waltham, MA: Blaisdell Publishing, 1967.

10. Ho�mann, Kenneth and Ray Kunze. Linear Algebra. Englewood Cli�s: Prentice-Hall,
1971.

11. Kahn, Je�, Gil Kalai and Nathan Linial. \The Inuence of Variables on Boolean
Functions." 29th FOCS, 1988.

12. Ledermann, Walter. Introduction to Group Characters. Cambridge: Cambridge Uni-
versity Press, 1977.

13. Leech, J.W. and D.J. Newman. How to use Groups. London: Methuen, 1969.

13

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

14. Linial, Nathan, Yishay Mansour and Noam Nisan. \Constant Depth Circuits, Fourier
Transform, and Learnability." 30th FOCS, 1989.

15. Miller, Willard. Symmetry Groups and their Applications. New York: Academic Press,
1972.

16. Smith, Sean and Carl Sturtivant. \Fixed Points under the Fourier Transform of
Boolean Functions." Pittsburgh: CMU-CS-90-192 (technical report).

14

Carnegie Mellon Computer Science Technical Report CMU-CS-92-190.

