
Chapter 1

PREDICTIVE YASIR: HIGH SECURITY

WITH LOWER LATENCY IN LEGACY

SCADA

Rouslan V. Solomakhin, Patrick P. Tsang and Sean W. Smith

Abstract Message authentication with low latency is necessary to ensure secure
operations in legacy industrial control networks, such as power grid net-
works. Previous authentication solutions by our lab and others looked at
single messages and incurred noticeable latency. To reduce this latency,
we develop Predictive YASIR, a bump-in-the-wire device that looks at
broader patterns of messages. The device (1) predicts the incoming
plaintext based on previous observations; (2) compresses, encrypts, and
authenticates data online; and (3) pre-sends a part of ciphertext be-
fore receiving the whole plaintext. We demonstrate the performance
properties of this approach by implementing it in the Scalable Simu-
lation Framework and testing it on Modbus/ASCII protocol, which is
widely used in the power grid, oil and gas, manufacturing, and water
treatment control networks. By looking at broader message patterns
and using predictive analysis, our results demonstrate a 15.32 ± 0.27%
improvement in latency.

1. Introduction

The United States built the power grid half a century ago, when
network-based attacks were rare. New threats warrant retrofitting se-
curity into the legacy network of the power grid. Protecting a legacy
network is difficult, however, because the critical infrastructure compo-
nents must communicate fast, but security slows them down. In this
work, we develop an approach to optimize the performance of the pre-
vious fastest security solutions.

Power utilities monitor and control the power grid through a partially
unsecured slow legacy network. This network connects substations and
control centers. In a control center, human operators ensure safe and

2

continuous operation of the grid by monitoring data terminals. A ter-
minal provides a visual representation of the data that it receives from
a Front End Processor (FEP), which exchanges messages with Data Ag-
gregators (DA) in substations. A FEP and a DA connect via a slow
legacy point-to-point network, which is often unsecured [3].

For example, a nearby hydro-electric power station consists of a con-
trol center on the bank and a substation on the dam. The substation
communicates with other substations on the river via microwave radio
in unsecured Distributed Network Protocol v3 (DNP3) [5].

Because of the unsecured communication, an adversary can insert
messages into the traffic to impersonate any device on the network. For
example, an adversary can impersonate a FEP and command a DA to
perform tasks that it should not do in normal operation. The adversary
can either replay an “increase power output” message from the FEP
multiple times or increase the value in the message “set power output
to 10 MW,” which would overload the substation, possibly causing a
rolling blackout in the power grid. If the adversary impersonates a DA,
then the adversary can replay old DA status messages to the FEP, which
would forward these messages to operator’s terminal. Since the terminal
would be receiving old status messages, it would not reflect the abnor-
malities in the power grid, and the operator would have a hard time de-
tecting the attack. Even if the operator discovers abnormalities through
an alternative channel, understanding the scope of the problem would
be difficult in absence of correct data on the terminal, which would slow
down the operator’s reaction to the attack. This reaction delay would
buy time for the adversary to subvert more substations. Because the
substations can be manipulated remotely, authorities would struggle to
find the attacker, and the security cameras would not record a trespasser.

Such attacks violate the FEP’s and the DA’s assumption about au-
thenticity of the messages. The messages must be protected, or authen-

ticated. Although a utility can upgrade its FEPs and DAs to more secure
versions, representatives of the power industry tell our lab that these de-
vices are prohibitively expensive, and the upgraded devices would still
have to communicate over the slow legacy network. A network upgrade
is also expensive. The cheaper and faster option is a bump-in-the-wire
device (BitW) [7, 13, 14, 16] that secures all messages that it intercepts
on a legacy network.

Two BitWs work in concert to authenticate a message (Figure 1a).
Before a message from the FEP leaves the control center, the authen-
ticator BitW reformats the original plaintext message into a ciphertext

message with added counter and a redundancy, or a digest of the mes-
sage. The counter stops an attacker that attempts to replay an old

Solomakhin, Tsang & Smith 3

(a)

Control Center

FEP
plaintext

BitW
ciphertext

Substation

BitW
plaintext

DA

Attacker

(b) S
plaintext

A
ciphertext

V
plaintext

R

Figure 1. BitWs. (a) A typical setup. (b) A useful abstraction.

(a) ‘:’ M ‘\r’ ‘\n’

(b) C M1 M2 M3 D

(c) ‘:’ M ‘\r’ ‘\n’ D C ‘\r’ ‘\n’

(d) ‘:’ M ′ ‘\r’ ‘\n’ D C

Figure 2. Message formats for Modbus/ASCII. (a) Plaintext. (b) PE ciphertext in
blocks. (c) YASIR ciphertext. (d) Predictive YASIR ciphertext. The shaded areas
are modified or generated by a BitW. The symbols C and D denote the counter and
digest.

message. The digest depends on the message, the counter, and a key
shared by the pair of BitWs, a digest key. Due to the cryptographic
properties of the mechanism to generate the digest, it is intractable for
an adversary without the digest key to construct the correct digest for
an altered ciphertext. When the ciphertext arrives in the substation, the
verifier BitW compares its own calculation of the ciphertext digest with
what it has received. If the two digests match, the verifier reformats the
ciphertext into a plaintext message and forwards it to the DA.

Note that a BitW is still susceptible to attacks if the adversary gains
access prior to the device.

When a DA sends a message to a FEP, the authenticator and the
verifier switch roles. Due to this symmetry, we prefer to use the words
sender and receiver instead (Figure 1b). We may use the word device
to refer to any sender, authenticator, verifier, or receiver. In the figures,
we denote the devices with letters S, A, V, and R.

In the slow legacy power grid network, the end-to-end latency of a
message typically should not exceed a certain bound. For example, sup-
pose this bound is 300 ms (Figure 3; we use the diagram style from the
YASIR paper [13]). A millisecond equals the time in which a device
transmits 0.9 bytes, or 0.9 byte-times, on a network with a bandwidth
of 9600 baud, if a byte has 10 bits. Because of the low bandwidth, a
BitW should not wait to receive the whole message before processing it,

4

Time

Link

S

R

‘:’ M ‘\r’ ‘\n’

‘:’ M ‘\r’ ‘\n’

Figure 3. Transmission latency without authentication.

Time

Link

S

A

V

R

M

M, D, C

M, D, C

M

good

(a) (b) (c)

(d) (e)

Figure 4. Latency with hold-back. Both BitWs hold-back the whole message before
forwarding it. The shaded areas are modified or generated by a BitW. Hold-back
delays a message by (a) and (c). The transmission delay is (b). The verifier starts
receiving the message at time (d), but starts to forward it to the receiver only at
time (e), when it has checked that the digest is correct. If an attacker modifies the
message, the verifier drops it.

a practice known as hold-back (Figure 4). If both BitWs in a pair hold-
back a message that is longer than 144 bytes, the delay would exceed 300
ms. In contrast, a BitW should forward each byte quickly, or process
the message online. The online processing must thwart an attacker that
attempts to either replay or modify ciphertext.

We consider how online processing handles each type of attack in turn.
Tsang and Smith [13] demonstrated that an online BitW can stop an

attacker that attempts to replay an old message, a replay-attack, without
message delay. The delay is absent because, although the authenticator
transmits the counter at the end of the ciphertext, the verifier forwards
the whole message to the receiver before checking the counter. Since the
counter affects the digest, the verifier increments the counter from the
previous message to calculate the new value. If the calculated value is
larger than what the verifier receives, it ignores the received counter. If

Solomakhin, Tsang & Smith 5

the calculated value is smaller than what the verifier receives, it sets its
own counter to the received value to synchronize with the authenticator.
Before the counter overflows, the BitW pair resets its value to zero and
changes the digest key.

To stop an attacker that attempts to modify a message, a BitW pair
appends a digest after the message, but before the counter. This digest
depends on the message, the counter, and the digest key. The veri-
fier compares the received digest to what it calculates itself. If the two
digests match, then the verifier forwards the message to the receiver. In-
tuitively, one might think that the verifier cannot process the ciphertext
online, that it must wait until it receives the whole digest before it can
forward the message to the receiver, thus incurring a byte-time of la-
tency for each byte in the message. Although some prior approaches do
this, Wright et al. [16] suggested to forward the message as soon as the
verifier receives it, but to introduce a Cyclic Redundancy Check (CRC)
error if an attacker modifies the message, thus exploiting the receiver’s
ability to detect random errors (Figure 5). We use a similar technique
to let the verifier process the message online (Figure 9).

When an authenticator appends the digest to the message, it must
ensure that the verifier can distinguish between them. We have two
options. The first option is to prepend the message length to the ci-
phertext, but a common protocol like Modbus/ASCII (Figure 2a) has
variable length messages and does not specify length in the message.
To find the length of a message in this protocol, an authenticator must
hold-back the full message. The second option is online: delimit the
ciphertext parts with a message-digest separator. If the separator ap-
pears in the message data, then the authenticator marks it with a special
symbol to avoid confusing the verifier, i.e., the authenticator escapes the
separator within the message. Modbus/ASCII has a message-end indi-
cator that can be used as the message-digest separator. In general, new
separators and escapes delay a message, but do not improve its authen-
ticity. At first glance, they are an encoding inefficiency that an online
authenticator must include. As part of our work, we aim to eliminate
these inefficiencies in online processing.

We do not try to eliminate the overhead due to the digest by com-
pressing or pre-sending it. A BitW cannot compress the digest, because
a strong digest does not have a pattern. Also, a BitW cannot pre-send
a part of the digest before the device receives the full plaintext mes-
sage, because this would weaken digest strength. If an authenticator
pre-sends a part of the digest, the pre-sent part would contain no infor-
mation about the part of the message that the authenticator has not yet
received.

6

Organization. The rest of the paper comprises six sections. In
Section 1.2, we list previous approaches to build BitWs that authenti-
cate messages on legacy slow networks. Then our approach is briefly
explained in Section 1.3. In Section 1.4, we describe our approach in
detail and outline the test methodology. We show the evaluation results
in Section 1.5. In Section 1.6, we list future research directions. Finally,
we draw conclusions in Section 1.7.

2. Related Work

Colleagues in the power sector inform our lab that message integrity
is more important than confidentiality, because an attacker may learn
the state of the system from the physical world. For example, an adver-
sary may see the open flood gates of a dam and deduce that the control
station is sending an “open flood gates” message, and the substation is
sending a “flood gates open” message. In contrast, without measures
to ensure message integrity, an adversary may cause actions—such as
opening the flood gates or shutting down a generator—with significant
negative repercussions. If a utility needs to also hide the content of
its messages, a BitW can provide zero-latency confidentiality through a
stream cipher, such as AES in counter mode, which encrypts a plain-
text stream by exclusive-or with a pseudo-random stream. Therefore,
we consider related BitW solutions only if they authenticate messages:
SEL-3021-2, AGA SCM, and YASIR. (Thus we ignore such solutions
as SEL-3021-1, because it does not protect integrity, or PNNL SSCP
embedded device, because it is not a bump-in-the-wire device.)

SEL-3021-2. SEL-3021-2 [7] is a commercial off-the-shelf BitW
from Schweitzer Engineering Laboratories. The device uses the Message
Authentication Protocol (MAP) [6] to provide integrity with HMAC-
SHA-1 or HMAC-SHA-256 digest. The specifications omit the numbers
on how much this device delays a message, instead recommending to not
use SEL-3021-2 if low latency is desired.

AGA SCM. AGA SCM (American Gas Association SCADA Cryp-
tographic Module) [14] is a BitW proposed by AGA 12 Task Group. The
group members have developed a reference implementation [15], which
can use several modes with hold-back and one online mode. The hold-
back modes buffer the whole message before checking the digest and
sending the message on, slowing down the message by the time that is
linear in its size (Figure 4). The online mode is Position Embedding
(PE) [16], which is a modified version of AES in counter mode (AES-
CTR) followed by a standard version of AES in electronic code book

Solomakhin, Tsang & Smith 7

Time

Link

S

A

V

R

M1 M2

C M1 M2 D

C M1 M2 D

M1 M2

goodM2

bad
(a) (b) (c)

(d) (e)

Figure 5. Latency in PE mode. The parts M1 and M2 are blocks of message M . Both
BitWs buffer a 16-byte block of a message before forwarding it, delaying the message
by 32 byte-times, denoted (a) and (c). The verifier starts receiving the message at
time (d) and starts forwarding it to the receiver at time (e). If an attacker attempts to
modify a block in the message, the verifier unconsciously scrambles the block (crossed
out), which the receiver detects by checking the CRC at the end of the message.

mode (AES-ECB) (Figure 6). PE mode delays a message by 32 byte-
times, because both BitWs in a pair buffer 16-byte blocks of data to
apply AES-ECB (Figure 5).

AGA 12 modifies the way AES-CTR generates counters. First, the
authenticator increments a 14-byte session clock by one every r microsec-
onds, where r is termed counter resolution. Second, the authenticator
concatenates the session clock with a 2-byte block counter. The authen-
ticator sets the block counter to zero at the beginning of each message
and increments it by one for each block in the message. Finally, the
authenticator encrypts the resulting 16-byte counter value and applies
exclusive-or operation to the encrypted counter and a plain text block,
as the standard AES-CTR does. To avoid using the same counter for
two messages, AGA 12 requires to set counter resolution such that an
authenticator can send at most one message in a single session clock tick.

For message integrity, PE mode relies on CRC. Note that a CRC in
plaintext protects from random errors, but not from malicious attacks on
message integrity. A BitW cannot protect message integrity with AES-
CTR or AES-ECB alone, either. The counter mode is malleable [2, 9],
i.e., an adversary can modify the ciphertext with predictable changes to
the CRC, even without learning the encryption key.

8

ctr c1 c2 c3 c4

E E E E

E ⊕ E ⊕ E ⊕ E ⊕

◦

◦

◦

◦

1 p1 2 p2 3 p3 4 p4

CRC

Figure 6. PE mode is AES-CTR, followed by AES-ECB with the same key. This
mode relies on CRC to authenticate messages. The symbols ◦ and ⊕ denote concate-
nation and exclusive-or. The symbol E is the encryption function. The plaintext is
p1◦p2◦p3◦p4, and the ciphertext is ctr◦c1◦c2◦c3◦c4. Each block pi and ci is 16 bytes
long. The message counter ctr is 14 bytes long, and the block counters (here 1–4) are
2 bytes long. Depending on the protocol, the CRC is from 2 to 4 bytes long.

The electronic code book mode is vulnerable to a known-plaintext

attack, where an adversary that knows the plaintext of two messages can
splice their parts into a third message, if the CRC of the new message
equals the CRC of one of the original messages.

PE mode prevents splicing and predictable changes to ciphertext by
combining the counter and electronic code book modes of encryption.
The cryptographic community is weary of using such combinations with
CRC for message integrity, however, because similar modes have been
shown to be insecure before. One example is cipher block chaining mode
(CBC), which was shown to not provide message integrity protection
with a CRC. This result was demonstrated by Stubblebine and Gligor,
who exploited predictability of CRC to create undetectable bogus mes-
sages for Kerberos and Remote Procedure Calls (RPC) [12].

Thus, PE mode depends on the nonmalleability of its ciphertext: if
an adversary changes the ciphertext, it is impossible to predict what
happens to the CRC. If an adversary inserts, removes, or reorders blocks,
then the verifier BitW scrambles the plaintext in the CTR step. If an

Solomakhin, Tsang & Smith 9

Time

Link

S

A

V

R

‘:’ M ‘\r’ ‘\n’

‘:’ M ‘\r’ ‘\n’ D C ‘\r’ ‘\n’

‘:’ M ‘\r’ ‘\n’ D C ‘\r’ ‘\n’

‘:’ M ‘\r’ ‘\n’

‘:’ M ‘\r’ ‘\n’

good

bad
(a) (b) (c)

(d) (e) (f)

Figure 7. Latency with YASIR. The authenticator buffers 2 bytes of the message
to detect its end. The verifier buffers 14 bytes of the message to verify its digest.
Total latency is 16 bytes-times, denoted (a) and (c). The verifier starts receiving the
message at time (d) and starts forwarding the message to the receiver at time (e). At
time (f), the verifier knows whether the digest is correct. If an attacker attempts to
modify a message, the verifier sends the wrong CRC (crossed out) to the receiver.

adversary modifies a message in PE mode, the verifier BitW scrambles
the plaintext in ECB step. Because of such scrambling, the receiver
detects a CRC error. The probability of this error is 2−h, where h is the
length of the CRC. Different variants of CRC vary in length between 8
and 32 bits, but AGA specifies to use this mode when the CRC is at
least 16 bits.

YASIR. Our lab’s YASIR [13] is a BitW that authenticates messages
with ≤18 bytes-times of overhead (Figure 2c). The actual overhead de-
pends on the underlying protocol. With Modbus/ASCII, YASIR delays
a message by ∼16 byte-times (Figure 7). The delay comprises the 12
bytes of HMAC-SHA-1-96 digest for data integrity, 2 bytes for the au-
thenticator to detect the end of the message, and 2 bytes for the verifier
to have an opportunity to control the message CRC. Building on the
ideas from the PE mode [14], YASIR turns malicious errors into ran-
dom ones by sending an incorrect CRC to the receiver if the digest is
invalid. In contrast to PE mode, YASIR delays a message by fewer byte-
times and authenticates a message with a fully standard and accepted
cryptographic technique [17].

10

Flow

M5 M4

C2 D2

M3

C1 D1

M2

BitW

Figure 8. A BitW can overlap compressed messages with digests and counters to
avoid overloading a channel that is close to its capacity. Messages M2 and M3 are
compressed to be overlapped with digests and counters for messages M1 and M2.

3. Approach

Previous work [7, 13, 14, 16] looked at authenticating individual mes-
sages with a digest and delayed messages because of encoding inefficien-
cies, namely searching for special symbols in the plaintext and escaping
special symbols in the ciphertext. To eliminate these inefficiencies, we
look at broader message patterns.

Our solution is to use a Bayesian network to predict the incoming
plaintext and pre-send the prediction. As each byte enters the authen-
ticator, the device predicts the rest of the message based on its previous
observations. It compresses and encrypts its hypothesis and pre-sends as
much ciphertext as possible (Figure 10b). In effect, we use prediction to
take advantage of the higher bandwidth for ciphertext that is provided
by this optimistic, a priori compression of the plaintext. Intuitively, my
solution is YASIR that predicts plaintext messages to eliminate encod-
ing inefficiencies (Figure 9). Note that a BitW can also use compression
to avoid overloading a channel that is close to its capacity (Figure 8).

Similar to YASIR, Predictive YASIR causes the receiver to drop the
message if an attacker modifies the ciphertext. The verifier forwards the
message without the last byte to the receiver, which must have the last
byte before it acts on the message. When the verifier receives the digest,
it calculates its own to compare with what it has received. If the two
digests match, the verifier forwards the last byte of the digest to the
receiver (Figure 10e). The receiver now has the complete valid message.
On the other hand, if the two digests differ, the verifier forwards the reset
symbol to the receiver. Upon the reset symbol, the receiver must drop
the incomplete message to adhere to the specifications in Modbus/ASCII
protocol.

If the authenticator changes its hypothesis, the device sends a back-

away signal to the verifier to indicate how much of the prediction is
incorrect plus the delta for the correct ciphertext (Figure 10c). When
the authenticator receives the whole message, it sends the digest and the
counter for this message (Figure 10d–e). The device then updates the

Solomakhin, Tsang & Smith 11

Time

Link

S

A

V

R

‘:’ M ‘\r’ ‘\n’

‘:’ M ′ ‘\r’ ‘\n’ D C

‘:’ M ′ ‘\r’ ‘\n’ D C

‘:’ M ‘\r’ ‘\n’

‘:’ M ‘\r’ ‘:’

good

bad
(a) (b) (c) (d)

(e) (f) (g)

Figure 9. Latency with Predictive YASIR. The authenticator does not buffer the
message, but must delay it by 1 byte-time, denoted (a). The verifier also does not
buffer the message and also must delay it by 1 byte-time, denoted (c). In addition,
the verifier delays the message by |D| − 1 byte-times, denoted (d). When prediction
works well, the overall delay is |D| + 1, which is 13 byte-times. The verifier starts
to receive the message at time (e) and starts forwarding it to the receiver almost
immediately at time (f). At time (g), the verifier knows whether the digest is correct.
If an attacker attempts to modify a message, the verifier resets the receiver with ‘:’

instead of forwarding the whole message.

weights in the Bayesian network. We elaborate on the Bayesian network
in Section 1.4.

Contribution. The solution we provide is a non-intrusive way
to “steal” bandwidth for security needs via data coding techniques and
utilize this bandwidth with help from message prediction. The coding is
effective because data being sent is sufficiently low entropy and can thus
be compressed and predicted to some extent. (If a BitW compresses
without predicting, it would have to wait more of the message, incurring
more latency.)

4. Methods

(For more details, see the upcoming technical report [18].)

Modbus. Control centers often communicate with substations in
Modbus/ASCII [10] protocol. (This protocol is also widely used in oil
and gas, manufacturing, and water treatment control networks.) The
sender begins to transmit a message with the reset symbol ‘:’ (colon).
If a device receives this symbol, it must drop any incompletely received

12

(a) S bel a A V R

(b) S el b a A τυ xy V R

(c) S l abe A τυ ‘\b1’z Vxy cd b a R

(d) S abel A υ τ Vxz l e ab R

(e) S abel A υ Vxzτ l abe R

Figure 10. Example of Predictive YASIR operation. (a) The sender begins message
transmission. (b) The authenticator receives prefix a, predicts that the message is
abcd, compresses and encrypts the prediction into ciphertext xy, and sends out xy.
(c) The authenticator receives prefix abe, changes its prediction to abel, compresses
and encrypts the prediction into xz, and sends the back-away to replace y with z.
(d) The authenticator receives the full message from the sender and transmits the
digest τ to the verifier. (e) The authenticator transmits the counter υ to the verifier.
The verifier compares the received digest τ to its own calculation. If the two digests
match, the verifier forwards the last byte of the message to the receiver. Otherwise,
the verifier resets the receiver.

message, i.e., reset itself. The sender encodes every byte in the message
in ASCII, where this variation of the protocol takes its name. At the end
of the message, the sender appends a CRC and the terminating symbols
‘\r\n’ (a carriage return and a newline).

For example, if the CRC of 0xABCD is 0xEF, then the sender encodes
the hex message 0xABCD into a Modbus/ASCII message ‘:ABCDEF\r\n’,
which is 0x3A4142434445460D0A in hex (Figure 11).

Note that ASCII encoding is inefficient, because every byte of the
message is two bytes in Modbus/ASCII. This inherent inefficiency allows
for greater debugging capabilities in the field, but we use it to compress
messages.

Scalable Simulation Framework. We use the Scalable Simula-
tion Framework (SSF) [1, 11] to construct an experiment and measure
the overhead of our approach. SSF simulates networked entities that ex-
change events. The framework automates collection of various statistics
about the simulation. If the simulation is large and runs slowly on a
single computer, we can scale it up with minimal effort by distributing
the workload over a set of machines. The device entities exchange single
byte events to ensure they can process one byte at a time. To synchro-
nize the timing, a BitW outputs at most one byte for each byte that it
receives, except after it has received the whole message.

Solomakhin, Tsang & Smith 13

‘:’ ‘A’ ‘B’ ‘C’ ‘D’ ‘E’ ‘F’ ‘\r’ ‘\n’

‘A’ ‘B’ ‘C’ ‘D’ ‘E’ ‘F’

AB CD EF

AB CD

Figure 11. Encoding of an example message into Mod-
bus/ASCII.

H(ab)

abc, 10

H(a)

acd, 3

H(ac)

Figure 12. Bayesian net-
work as a bipartite graph.

Device. Our design for a BitW entity has two ports: one for plain-
text and one for ciphertext. The device continuously listens for input on
both ports. The machinery for processing data on these ports is indepen-
dent. If a device receives data on the ciphertext port while processing
plaintext input, the device deals with the two inputs independently in
order.

Bayesian Network. To predict the incoming plaintext, the authen-
ticator models the network traffic with a Bayesian network (Figure 12).
The model is a labeled directed acyclic graph. A vertex label is either a
message prefix or a full message and its frequency. All edges are directed
from the prefixes to the full-length messages. A prefix vertex may have
multiple out-edges. For instance, the prefix ‘:’ has an edge to all ob-
served messages, because all Modbus/ASCII messages begin with this
symbol. Note that a message vertex has in-edges from all of its prefixes.

We implement the Bayesian network with a hash-table of prefixes
and a table of tuples (m, f)—messages and their frequencies. Figure 12
uses H to denote hashing. Each prefix object has a list of the message-
frequency tuples. When a plaintext message passes through an authen-
ticator, the frequency of this message increases by one. To predict the
rest of the message from its prefix, the authenticator looks up the prefix
hash in the Bayesian network. This prefix may have edges to multiple
messages, out of which the authenticator predicts the most frequent one.

Bayes’ Theorem. To prevent incorrect predictions, the authen-
ticator calculates the probability Pr(H|D) of a hypothesis correctness
under current data observation using Bayes’ theorem. A hypothesis is
the message prediction. A data observation is the prefix. If a hypothesis
is less than 50% likely, then the device falls back to its non-predictive
mode, which is similar to YASIR. Bayes’ theorem states Pr(H|D) =
Pr(D|H) · Pr(H) / Pr(D).

14

1 Pr(D|H) is the conditional probability of the current data obser-
vation given our hypothesis. If the predicted message is correct,
then the prefix must occur. Therefore, we have Pr(D|H) = 1.

2 Pr(H) is the prior probability of a hypothesis. This is a ratio of
the number h of occurrences of this hypothesis to the total number
t of messages of same or greater length that passed through the
device. Therefore, we have Pr(H) = h/t.

3 Pr(D) is the prior probability of data occurrence. This is a ratio
of the number d of occurrences of this data over the total number
o of all pieces of data of the same length that passed through the
device. Therefore, we have Pr(D) = d/o.

Substituting these terms into the equation yields Pr(H|D) = (h·o)/(t·d).

Back-away. As an authenticator pre-sends a predicted message,
it monitors the incoming plaintext to verify that the prediction is cor-
rect. If the authenticator discovers an error in its prediction, it sends
the back-away signal ‘\b’ (backspace) to the verifier, followed by the
number of bytes to discard from the predicted message, and transmits
the corrected part of the message (Figure 10c). The discarded bytes
are always the last bytes that the device sends out, because Predictive
YASIR uses stream compression and encryption algorithms. For exam-
ple, if the authenticator needs to discard the last byte and replace it
with z, then it sends the back-away signal ‘\b1’z. The verifier com-
putes the digest on the final version of the message, after it discards all
incorrect predictions.

Cipher Format. Because Modbus/ASCII uses only half of the
available bandwidth, our compression reclaims this space. The authen-
ticator converts each ASCII character (‘0’ to ‘9’ and ‘A’ to ‘F’) into
its equivalent 4-bit representation: 0x0 to 0xF. The authenticator ap-
pends the digest and the counter after the terminating symbol ‘\r\n’.
Thus the whole encrypted and authenticated message comprises ‘:’

symbol, followed by message data, followed by ‘\r\n’, followed by the
digest and the counter (Figure 2d).

Experiment. The simulation contains four components: one FEP,
two BitWs, and one DA (Figure 1a). The FEP connects to the plaintext
port of the first BitW. The two BitWs connect via their ciphertext ports.
The plaintext port on the second BitW connects to the DA.

The FEP has a set of messages that it sends to the DA in random
order. It sends each byte of a message individually, but without delays.

Solomakhin, Tsang & Smith 15

Therefore, the authenticator can only act on information from a single
byte, which simulates a slow legacy network. The authenticator sends
at most one byte of ciphertext for every byte of plaintext it receives,
except after it has received the whole message. This simulates enough
computational power to query the Bayesian network on every byte of
plaintext and enough silence on the wire to avoid congestion due to
ciphertext being longer than plaintext.

The data for the experiment is a trace collected from GE XA/21TM

SCADA / Energy Management System talking to a GE D400 Substa-
tion Data Manager in a lab setting. We are grateful to Paul Myrda of
Electric Power Research Institute for providing this trace. These de-
vices use DNP3 protocol to communicate and record the trace. Before
the simulation, we convert the trace into Modbus/ASCII format suitable
for input into SSF. We do not have Modbus/ASCII traces because it is
difficult to obtain traces from the real-world settings.

Both YASIR and Predictive YASIR run 30 times. In the ith run of the
simulation, the FEP has 10i unique messages to send to the DA. We vary
the number of unique messages because prediction ability may deterio-
rate with many unique messages. Each run lasts for 200,000 SSF ticks,
enough to send each message more than once. We reset the Bayesian
network after each run.

The simulation assumes that the BitWs have enough computational
power so that prediction, compression, encryption, and authentication
operations do not affect latency. We measure the average byte-time la-
tency in each test and calculate the improvement percentage from YASIR
to Predictive YASIR. We do not compare performance of our solution
to previous approaches, because YASIR has the lowest latency.

5. Results

We present the results of the simulation in Figure 13. These results
demonstrate that Predictive YASIR has 15.32% less average latency
than the original YASIR with a 95% confidence interval of 0.27 per-
centage points. Recall that we do not compare Predictive YASIR to
other bump-in-the-wire devices that provide message authenticity, be-
cause they have higher latency than the original YASIR. We find that
prediction performance does not degrade when the number of unique
messages increases. Predictive YASIR latency is 13.55 byte-times with
a 95% confidence interval of 0.04. In contrast, original YASIR latency is
always 16 byte-times. When the authenticator makes a prediction mis-
takes in the experiment, it successfully recovers with a back-away. The

16

L
a
te

n
cy

Number of unique messages

Figure 13. Average end-to-end latency of YASIR and Predictive YASIR simulation.
We include for reference the byte-time latency for perfect prediction with a 12-byte
HMAC digest.

verifier determines all messages to be valid, because we do not introduce
errors into the ciphertext stream.

6. Future Work

We may further modify Predictive YASIR to improve prediction, to
increase the number of protocols that the system can secure, to reduce
the amount of space that the algorithm uses, to manage keys, and to
validate the results in a real world setting.

Historical Data. An authenticator can use historical data to
predict plaintext, similar to a branch predictor in an instruction pipeline.
Historical data can be useful in predicting natural phenomena, such as
temperature. Imagine a sensor to measure the temperature of water in a
river. This temperature is 10◦C in the majority of cases, but recently has
increased to 11◦C and remains at that level. An authenticator that uses
only statistics would continue to mistakenly predict messages with 10◦C
temperature reports. A historical system would adjust its predictions
even though the long-term majority of the temperature reports is still
at 10◦C.

Protocols. We use Modbus/ASCII protocol, but we conjecture that
the technique scales well to other industrial control network protocols,
e.g., DNP3 [5]. Although one can easily compress a Modbus/ASCII
message, all sensors should have a finite and small number of states.
For instance, outdoor water temperature has only 100 integer states in
Celsius and varies little.

Space. From a theoretical perspective, Predictive YASIR com-
putes statistics about the data stream to predict the next message. Our
implementation uses space that is linear in the number of unique mes-

Solomakhin, Tsang & Smith 17

sages in the stream. Many prefer to use more efficient stream statistics
algorithms, such as that of Indyk and Woodruff [8] or Ganguly et al. [4].

Key Management. We do not address key distribution, but con-
centrate on the BitW algorithm. Other works in this area have addressed
this key distribution issue. For example, the AGA SCM design [14] spec-
ifies how devices negotiate the keys and ScadaSafe [15] implements these
specifications. Key management is easy to misconfigure or ignore when
the cryptographic device resides in a locked up substation, creating a
false sense of safety. Therefore, easily and correctly configurable secu-
rity policies deserve our attention.

Validation. Finally, collecting real industrial network data traces
from substations and control centers is an important task to verify cor-
rectness of this simulation and test future hypotheses. Unfortunately,
vendors hesitate to share data, because it may reveal proprietary infor-
mation or trade secrets.

7. Conclusions

We demonstrate how message prediction and coding techniques can
be used to decrease latency due to encoding inefficiencies. We apply this
idea to message authentication in slow legacy power grid networks. We
hypothesize that this method is effective because the data is sufficiently
low entropy and thus a BitW can predict and compress it. Our evalu-
ation demonstrates a 15.32 ± 0.27% improvement in byte-time latency
without compromising on security. Such savings can be significant on
congested networks that require a fast response and in other applications
with encoding inefficiencies. Finally, we propose a range of research di-
rections to further the knowledge of this area.

Acknowledgment: Work supported under DOE Award Number DE-OE0000097.

References

[1] J. Banks, J. Carson II, B. Nelson and D. Nicol, Discrete-Event Sys-
tem Simulation, Prentice Hall, New Jersey, 4th edition, 2005.

[2] D. Dolev, C. Dwork and M. Naor, Non-malleable cryptography, Pro-

ceedings of the 23rd Annual ACM Symposium on Theory of Com-

puting, pp. 542–552, 1991.

[3] T. Fleury, H. Khurana and V. Welch, Towards a Taxonomy of At-
tacks Against Energy Control Systems, Proceedings of the IFIP In-

ternational Conference on Critical Infrastructure Protection, 2008.

18

[4] S. Ganguly, A. Singh and S. Shankar, Finding Frequent Items Over
General Update Streams, Scientific and Statistical Database Man-

agement, 2008.

[5] DNP Users Group, DNP—Overview of the DNP3 Protocol
(www.dnp.org/About).

[6] Schweitzer Engineering Laboratories Inc., SEL-3021-2 Serial En-
crypting Transceiver Data Sheet
(www.selinc.com/WorkArea/DownloadAsset.aspx?id=2855).

[7] Schweitzer Engineering Laboratories Inc., SEL-3021-2 Serial En-
crypting Transceiver (www.selinc.com/SEL-3021-2).

[8] P. Indyk and D. Woodruff, Optimal Approximations of the Fre-
quency Moments of Data Streams, Symposium on Theory of Com-

puting, 2009.

[9] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1st edition, 2001.

[10] Modbus-IDA, MODBUS Application Protocol 1.1b
(www.modbus.org/docs/Modbus Application Protocol V1 1b.pdf).

[11] UIUC Modeling and Networking Systems Research Group, PRIME:
Parallel Real-time Immersive network Modeling environment
(www.primessf.net/bin/view/Public/PRIMEProject).

[12] S. Stubblebine and V. Gligor, On Message Integrity in Crypto-
graphic Protocols, Proceedings of the IEEE Computer Society Sym-

posium on Research in Security and Privacy, pp. 85–104, 1992.

[13] P. Tsang and S. Smith, YASIR: A Low-Latency, High-Integrity Se-
curity Retrofit for Legacy SCADA Systems, Proceedings of the IFIP

TC 11 23rd International Information Security Conference, Volume
278, pp. 445–459, 2008.

[14] A. Wright, AGA 12 Part 2-akw Proposed SCADA Encryption Pro-
tocol (scadasafe.sourceforge.net/Protocol).

[15] A. Wright, ScadaSafe (scadasafe.sourceforge.net).

[16] A. Wright, J. Kinast and J. McCarty, Low-Latency Cryptographic
Protection for SCADA Communications, Proceedings of the 2nd In-

ternational Conference on Applied Cryptography and Network Se-

curity, Springer, pp. 263–277, 2004.

[17] U.S. Department of Commerce, NIST, Information Technol-
ogy Laboratory, Secure Hash Standard, FIPS PUB 180-3
(csrc.nist.gov/publications/fips/fips180-3/fips180-3 final.pdf).

[18] R. Solomakhin, Predictive YASIR: High Security with Lower La-
tency in Legacy SCADA, Dartmouth Computer Science Technical
Report TR2010-665.

