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Abstract
Natural intuition organizes experience into a linear sequence of discrete events, but this approach is
inappropriate for asynchronous distributed systems, where information is distributed and percep-
tion is delayed. Distributed environments require a distributed notion of time, to abstract away not
only irrelevant physical detail but also irrelevant temporal and computational detail. By expressing
distributed systems concepts that are difficult to talk about in terms of real time and by distin-
guishing what really “happens” from what physically occurred, a theory of distributed time would
provide a natural framework for solving problems in distributed environments. This paper lays the
groundwork for that claim by formally building such a theory. This research improves on previous
work on time in distributed systems by supporting temporal relations more general than partial
orders, by supporting abstraction through multiple levels of temporal relations, by separating the
family of temporal relations an application consults from the particular clock implementations that
track them, and by providing a single arena to consider these issues for a wide range of applications.
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Chapter 1

Introduction

Traditionally, we think of computation as some set of things that happen. Since things happen in
real time, we can use real time to organize these events into a linear sequence. By imposing a
discrete structure on events, this traditional view already performs abstraction: full physical detail
does not express what really “happens.” The advent of asynchronous distributed computation
extends this abstraction to time: if two events occur without knowledge of each other, then their
real time sequence does not matter [La78,Pr86]. Expressing what really “happens” in a distributed
computation requires a theory of distributed time that abstracts away both irrelevant physical detail
and irrelevant temporal detail.

A theory of distributed time has practical motivations and uses. Many application problems in
asynchronous distributed systems reduce to asking questions about temporal relations other than
the natural real time sequence. Thinking in terms of these alternative temporal relations would
clarify these problems; providing clocks for these relations would simplify protocol design. Indeed,
building protocols for these problems requires confronting these clock issues in one form or another.
However, doing wonderful things with alternative temporal relations requires understanding the
underlying framework. This paper considers the question of the appropriate notion of time for
distributed systems, and develops formal mechanisms for a theory of distributed time. Later papers
will use these mechanisms to build a framework for secure applications.

Previous research developed the notion of time as a partial order. Lamport [La78] used partial
orders to track causal dependency in distributed systems; Pratt [Pr86] argued for the universality
of partial order time. Fidge [Fi88] and Mattern [Ma89] explored partial order time and built vector
clocks; the author explored security issues in tracking partial order time.1 Other research includes
calls for departing from the order of real time ([Je85] uses total orders; [Gr75] uses partial orders),
and explorations of the role of partial orders and asynchrony in application problems such as
communication [BiJo87, PBS89], distributed debugging [Fi89, Sp89], deadlock detection [Ma87,
TaLo91], distributed snapshots [ChLa85, Ma93], and rollback recovery [StYe85, Jo89, JoZw90,
PeKe93].

This paper improves on earlier work by providing a single, general theory of distributed time
suitable for a wide range of applications. By supporting temporal relations more general than

1The author’s Ph.D. proposal [Sm91] discusses these issues, and presents a secure protocol for partial order time.
[ReGo93] also explores security for partial order clocks; more recent work by the author [SmTy93] improves on these
earlier protocols. [AmJa93] considers some related security issues.

1
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partial orders2 and by supporting hierarchies of temporal abstraction, this theory can express the
computational abstraction appropriate for families of application problems. By providing a general
approach to distributed time, this theory allows us to unify in a single framework protocols that
separately consult and affect time, and to consider once the clock issues central to each separate
protocol. By introducing orthogonality between temporal relations and the clocks that track them,
this theory allows us to consider (and alter) clock implementations without changing higher-level
protocols.

The author’s current research [Sm94] involves building a single arena to analyze the tempo-
ral aspects of distributed application problems, to design protocols in terms of distributed time
primitives, and to independently consider secure implementations of these primitives. This paper
provides a theoretical foundation for that work.

1.1. Describing Computation

Loosely speaking, we use time to identify the things that happen and the order in which they
happen. What is the best way to describe what actually “happens” in a computation?

Describing Physical Reality On a basic level, computation is a physical activity. Physical
devices react to each other and the environment as time progresses. From this perspective, the
best description is a straightforward record of the physical activity: the notebook of an omniscient
observer who, each time something changes, glances at his watch and jots down what occurred and
when. Figure 1.1 gives a toy example.

Abstracting to Discrete Events However, merely recording physical activity is too naive.
Even the above toy example reveals a fundamental problem with this approach: granularity.
Recording a list requires imposing a granularity on actions: one thing happens, then another, then
another. This imposition raises two issues.

First, the granularity we desire when describing computation is usually far coarser than the level
in an exhaustive physical description. A computational event represents some bundle of physical
events. Figure 1.2 illustrates this abstraction.

0:01
LDR1

0:03
INR1

0:04
STR1

0:07
NOP

0:08
LDR1

0:09
LDR2

0:11
ADD

0:13
STR1

Figure 1.1 An example of an exhaustive physical description
is a timestamped list of machine instructions.

2For example, non-transitive relations and cyclic relations both have some use.

2
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0:01
LDR1

0:03
INR1

0:04
STR1

0:07
NOP

0:08
LDR1

0:09
LDR2

0:11
ADD

0:13
STR1

A1 A2

Figure 1.2 We may abstract away from the physical description by bundling basic
physical events into computational events. The detailed machine code becomes
“event A1, then event A2.”

Secondly, even constructing an exhaustive physical description begs the granularity question.
Why should we record machine instructions, rather than gate firings, transistor activity, or subatomic
particles? Event abstraction continues at lower layers. Figure 1.3 sketches one approach.

Abstracting from Real Time If physical computation is taking place in a distributed environ-
ment, then the physical description should indicate not only when things happen, but also where.
The computational level should leave concurrent any events that represent simultaneous activity.
(See Figure 1.4.)

Suppose the system is asynchronous as well. Events A and B were not genuinely simultaneous
but only apparently simultaneous: that is, they had no knowledge of each other. Then we may still
want to leave them unordered. (See Figure 1.5.)

0:01
LDR1

0:00.34
Gate 5

0:00.90
Gate 23

0:00.342
Transistor
478

...

... 0:00.349
Transistor
523

Figure 1.3 The physical description is itself an abstraction: each instruction may
represent gate firings or transistor actions. The level of description we choose for
our base is essentially arbitrary.

3
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0:01
LDR1

0:03
INR1

0:04
STR1

0:01
LDR1

0:03
INR1

0:04
STR1

A1

B1

q:

p:

Figure 1.4 Abstract eventsA1 andB1 represent genuinely simultaneous
computation; we regard these events as concurrent.

A1

B1

0:01
LDR1

0:03
INR1

0:04
STR1

0:04
LDR1

0:05
INR1

0:07
STR1

q:

p:

Figure 1.5 Abstract events A1 and B1 now represent computation that only “ap-
pears” simultaneous; nevertheless, we still regard these events as concurrent.

4
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Lacking any access to real-time clocks and unable to perceive each other except through
messages, process p and process q cannot distinguish the actual physical order of A and B in
this example. Hence we have not just condensed physical activity to events and removed edges;
we have condensed a set of physical descriptions to a single computational description. (See
Figure 1.6.) The processes should not know which physical description in this class is the “true”
description.

Abstracting from Abstractions Situations arise when even a single layer of abstraction
does not suffice. For example, consider the problem of rollback: modifying the computation
so that certain events appear to have never occurred. (Rollback arises arises when considering
fault-tolerance and checkpointing [Jo89, JoZw90], and will be considered in subsequent work.)
Suppose process p wants to roll back event A2 and execute A2

0 instead. Initially we pretended
that the computational description, not the physical description, is what “really happens.” But now
we want to ignore detail in the computational description as well—we want to abstract away the
original event A2, and the rolled back computation that depended on it. Figure 1.7 sketches how
rollback induces two levels of abstraction.

A1

B1

...

0:01
LDR1

0:03
INR1

0:04
STR1

0:01
LDR1

0:03
INR1

0:04
STR1

0:01
LDR1

0:03
INR1

0:04
STR1

0:04
LDR1

0:05
INR1

0:07
STR1q:

p:

q:

p:

Figure 1.6 An abstract computation graph represents a set of possible physical
computations. Once we abstract to the graph, we forget the presumably irrelevant
physical detail.

5
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0:01
LDR1

0:03
INR1

0:04
STR1

0:07
NOP

0:08
LDR1

0:09
LDR2

0:11
ADD

0:13
STR1

0:15
OOPS!

0:18
LDR1

0:20
LDR2

0:21
ADD

0:25
STR1

A1

A2A1 A2

A2

RBα

β

Figure 1.7 Rollback induces two levels of abstraction. We prune away irrelevant
machine details to obtain description �; however, we presumably want to prune
away irrelevant rollback details to obtain the “real” description �.

1.2. Distributed Time

These informal sketches demonstrate some issues critical to building a theory of time.

� We want to represent a computation as some abstract set of “things that happen,” with a
relation indicating the temporal order in which these things happened.

� The components in these abstractions themselves represent various parts of the exhaustive
physical description.

� These abstractions should permit temporal relations more general than that of linear time.

The rollback example of Section 1.1 motivates two more issues:

� We need to distinguish between the way we obtain the abstract representations, and the
representations themselves (since we may have multiple routes to the same representation).

� We will want to apply abstractions to abstractions.

We conclude that a general theory of distributed time should contain three components:

� a standard format for these abstract representations (so we can talk about computations)

� a way to specify time models: representational transformations on these objects (so we can
abstract from one representation to another)

6
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� a way to translate some level of physical description into this format (so our chains of
abstraction have some footing in reality)

Once we develop a framework for distributed time, the challenge remains of developing and
using models in this framework. Our sketches in Section 1.1 featured two implicit goals:

� to express the ordering that processes in an asynchronous distributed system perceive

� to use some natural level of discrete events

Initially we see two principal motivations for using distributed time models:

Best Approximation of Reality If the complete physical description is unavailable, our time
model should express as much as we can know about it.

Convenient Expressiveness If the complete physical description obscures key concepts, then
our time model should provide a more appropriate description.

The rollback example of Section 1.1 raises a third motivation:

Virtual Computation If the processes collectively pretend that the “current” computation differs
from the one a complete physical description would record, then our time model should
express this abstraction.

If an application problem broaches these issues, then distributed time will be relevant to that
application. We quickly sketch a few examples:

� The problem of distributed snapshots consists of one process trying to take a snapshot of
the state of the system at some instant. Distribution and asynchrony impose knowledge
limitations that make this task difficult: anything that the process can perceive about the rest
of the system is out-of-date.

� The problem of orphan detection requires determining if a given event might have perceived
(and thus depend on) an aborted event. This perceive/depend relation forms a partial order—
real time alone fails to give enough information.

� The problem of rollback requires modifying the computation to pretend that a simpler one
(or at least a different one) occurred. The processes cooperate to add an additional level
of abstraction, and this new level—describing a fault-free computation that never really
happened—becomes the “real” computation.

Chapter 15 will return to these topics, and subsequent work will explore them more thoroughly.

7
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1.3. Overview of this Paper

This paper formally develops a theory of distributed time. The initial goal is to build a framework
to express the ordering perceivable in asynchronous distributed systems; however, the framework
will extend to wider domains.

As we already observed, computation is fundamentally a physical activity; hence talking about
abstract representations of computation requires choosing some arbitrary level of physical de-
scription. Part I presents our system model, the level of physical description we choose for this
work.

Part II builds the machinery for time models. This construction follows the schema of
Section 1.2: we develop a computation graph format for abstract representations, translate the
physical description into this format, and build a family of representational transformations

Part III explores the relationship between modeled time and real time—the relationship between
logical simultaneity and genuine simultaneity. We extend the time model machinery to apply to
parallel computation, and we explore timeslices: sets of logically simultaneous events.

Chapter 15 concludes this paper by discussing the second half of the problem: using this theory
of time as a framework for a secure applications.

(A guide to the symbols and terminology we use follows the text of this paper.)

8
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Part I

Computation

The immediate focus of our work is building time models for computation in asynchronous dis-
tributed systems. However, before we can build models, we need to specify the things we want to
model. Part I handles this task. Chapter 2 presents the formalism we use for our distributed system
system: a collection of finite automata communicating with each other, and with the outside world
(via I/O devices, also automata). Chapter 3 then defines the system trace format we use for the
ground-level, exhaustive physical description of computation.

9
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(Part I)

Chapter 2

Systems

A process is a sequential, localized computational entity. A process may interact with its local
environment through a collection of I/O devices. A system is a finite collection of processes and I/O
devices. Processes and I/O devices have unique names. For a given system, let PROC-NAMES
be the set of process names, DEV-NAMES the set of I/O device names, and NAMES be their
union. (To keep things simple, we assume these sets are static.)

Processes interact with each other and with the I/O devices by asynchronously passing messages
that arrive either once (after an unpredictable delay) or not at all. (Thus, the system does not
necessarily preserve message order, and may lose messages.) A message is a triple indicating the
sender, the destination, and the message content. Formally, define

MESSAGES = NAMES� NAMES� �

where � is the set of finite binary strings.

2.1. Processes

The Automata Model Internally, a process is a deterministic finite automaton operating in real
time. Each process has a finite set of states Q (with initial state q0 2 Q) and a send queue S and
a receive queue R from MESSAGES�.1 (These queues are not necessarily FIFO.) Such triples
constitute process configurations:

CONFIGS = Q�MESSAGES� �MESSAGES�

Transition Functions A process also has a transition function � that specifies transformations
of the process configuration.

� : CONFIGS!CONFIGS

1The notationW � denotes the set of strings of items from a setW .
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However, not just any function will do. All transition functions must respect the operation of the
send and receive queues. For example, the send queue lists the messages sent by this process that
have not found their way into the network yet. Transition functions must treat the send queues as
write-only.

Exactly how a transition function should treat the receive queue—the list of messages that have
arrived at that process but have not yet been “received”—is another matter. Should a process be
able to execute only “blocking receives,” where a receive operation causes the process to read
a message off its queue (if the queue is nonempty) or wait indefinitely until a message arrives?
Should the arrival of a message interrupt the process, so that a receive happens spontaneously on
the arrival of a message? Or should a process have a poll operation, where it formally determines
if a message is waiting?

A Interrupt/Polling � As an example, we develop a specification that admits transition functions
that can do both explicit polling and spontaneous interrupts.

The Informal Version We want such a � to allow a process to examine its current state and
whether or not the receive queue is empty. This information alone then enables one of three types
of transitions:

� send: the process changes state and adds a message to the send queue.

� receive: the process changes state, removes a message from the receive queue, and reads it.

� compute: the process only changes state (without modifying the queues).

The receive transition can only be enabled if a message is waiting, and only in a receive transition
may the process actually examine the value of the of the message at the head of the queue.

The Formal Version Let EMPTY be the predicate indicating that a queue is empty, CAR

return the first element of a nonempty queue, CDR return the remainder, and APPEND(s; x) return
the queue s with the element x appended.

Axiom 2.1 (Interrupt/Poll) There exist functions

CLASS : Q� ftrue; falseg ! fsend; receive; computeg
STATEsi : Q� ftrue; falseg ! Q

STATEr : Q�MESSAGES ! Q

MESS : Q� ftrue; falseg ! MESSAGES

such that

CLASS(q; x) = receive =) x = true

12
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and

�(q;S;R) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�
STATEsi(q; EMPTY(R)); APPEND(S; MESS(q; EMPTY(R)); R

�
if CLASS(q; EMPTY(R)) = send

�
STATEr(q; CAR(R)); S; CDR(R)

�
if CLASS(q; EMPTY(R)) = receive

�
STATEsi(q; EMPTY(R)); S; R

�
if CLASS(q; EMPTY(R)) = compute

This paper assumes the processes in the example systems have transition functions that satisfy this
axiom.

In Real Time A process operates in real time. Each process receives ticks; at each tick, the
process transforms its state according to �. This paper treats transformations as instantaneous (to
insure they are atomic), and assumes a past-closed convention (to keep state well-defined). If a
tick occurs at time u, the old configuration persists for t � u, and the new one exists for t > u

(until the next tick).

Since the processes are asynchronous, these ticks occur at indeterminate intervals, indepen-
dently at each process. However, these intervals must be “reasonable.” The following axiom
presents one characterization of reasonableness.

Axiom 2.2 (Discrete Behavior) In any finite period of time, a process receives only
a finite number of ticks.

Philosophy Central to the family of time systems we build in this paper is the assumption that
the system is indeed asynchronous and distributed. Processes have no access to real time: an
outside observer can generate timestamps from God’s wristwatch, but individual processes never
get to look at this device. Further, processes may perceive the rest of the system only through the
messages they receive.2

2.2. I/O Devices

Throughout its execution, a process may interact with local parts of the outside world—perhaps a
hard disk, a user at the console, or a fermentation vat with sensors and valves. From a process’s

2Local input and output (through I/O devices) provides an avenue for covert communication that violates this distri-
bution requirement. Such pathology lies beyond the scope of this paper (but subsequent research will examine this
issue).
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point of view, these I/O devices are black boxes. The process can communicate with them and may
have some idea of what they might be doing, but the environments essentially have nondeterministic
behavior and unobservable state.

Similar to processes, I/O devices appear in our model as automata, with a set of states QDEV

(containing initial state q0), a send queue, a receive queue, configurations of the form

DEV-CONFIGS = QDEV �MESSAGES� �MESSAGES�

and a transition function �.

An I/O-device automaton differs from a process automaton in two important ways. First, the
state set QDEV may be countably infinite (since the real world can be fairly complex). Second,
a given configuration may enable transitions to several new configurations (to allow for the ran-
domizing influence of the outside world). The transition function for I/O-device automata maps
configurations to sets of configurations:3

� : DEV-CONFIGS!P(DEV-CONFIGS)

In a transition from configuration c, the automaton takes on one of the new configurations from
�(c) nondeterministically.

Each process has a (possibly empty) collection of I/O devices. We make the simplifying
assumption that these collections are disjoint. The I/O devices that a process uses are private to
that process (e.g., only process p communicates with its I/O devices).

As with process automata, asynchronous, independent ticks (satisfying the Discrete Behavior
Axiom) trigger transitions in I/O-device automata.

2.3. Message Transmission

The previous sections presented automata models for process behavior and I/O devices. This
section completes the picture by formally describing their interaction: message transmission.

A process automaton (or I/O-device automaton) sends a message by appending it to the send
queue, and receives a message by examining the receive queue (according to its �). However,
forces external to the actual automata determine how messages get from one queue to the other.
In our model, a message added to a send queue remains there an indeterminate amount of time,
after which it spontaneously vanishes into the ether. The message might arrive in the appropriate
receive queue after some unpredictable positive delay, or it might remain in the ether forever.

As with configuration transitions, these changes are past-closed and instantaneous: the old state
exists for time t � u, and the new state for time t > u.

3The notationP(W ) denotes the set of all subsets of a setW .
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(Conceivably, we may wish to require more predictable message behavior for I/O messages—
such as bounded transmission time—because of their connection to a process is presumably more
reliable than the network between processes.)
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(Part I)

Chapter 3

Traces

Having described what the system is, we now describe what the system does.

3.1. What Influences an Execution

A system consists of a set of process automata, each with its corresponding I/O-device automata. In
a given system, each process has an individual program. In a particular execution, the system starts
computation at time t = 0 with each process and I/O device in its initial configuration (q0; 6; 6).
Naturally the program at each automata influence how the configurations evolve in this execution.
But there are woollier influences: the tick sequences, the transitions of I/O-device automata, and
the lifetime and fate of messages.

The behavior of these influences—the delays on messages and ticks, the choices of state
and fate—is unpredictable from the point of view of a process, or even of an outside observer
with perfect knowledge of all the processes (or even of the entire system). But formalizing this
nondeterminism is tricky. For example, what mechanism best models the generation of a process’s
ticks in a particular execution? A simple random choice—e.g., at time t the process obtains a
positive real � at random, and moves again at t+�—does not suffice. Neither does obtaining an
increasing sequence from a set of permissible sequences (according to some specified distribution),
nor does any mechanism obtaining one process’s sequence independently from the other sequences.

In reality, the universe calculates this behavior. The delays and transitions that occur in a
particular execution depend on the state of the universe when the execution commences. But
since the universe is a fairly intractable beast, in our model things just happen unpredictably. We
formally acknowledge this lack of determinism.

Axiom 3.1 In an execution, any pattern of behavior (obeying the Finiteness Axiom)
may occur.

17

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.



3.2. Observing Computations

An execution begins when an outside observer sets his stopwatch to 0 and simultaneously resets
the processes and their I/O-devices to their initial configurations. The automata rules of Chapter 2,
and the particular way the ticks, state choices, and message fates unfold, allow the process and
I/O-device configurations to be well-defined for all time t � 0.

A system trace is a discrete representation of what an omniscient observer outside the system
can realistically perceive of a computation over a finite period of time. In a particular computation,
the observer takes a finite series of photos of the system and jots down the time of each photo on the
back. We assume the observer is lucky enough to catch all the action by taking at least one photo
immediately after every change to a process configuration: after every process tick, and after every
message arriving at a process’s receive queue or vanishing from a process’s send queue. (Since the
I/O-device automata are black boxes, we shield their behavior from the observer.)

We can imagine traces to be tables, with one column for each photo. In each column, the first
row contains the time of the photo, and the remaining rows (one for each process) contain the
process configurations that the photo captures.

Definition 3.2 Suppose a system has n processes, P1 through Pn. A system trace
is a finite tuple T = ((t0; s0); :::; (tk; sk)), where each ti is a nonnegative integer and
each si is an n-tuple (ci 1; :::; ci n) of process configurations, such that

� t0 < t2 < ::: < tk

� s0 consists of the initial configurations.

� There exists some system computation such that each ci j is the configuration of
process Pj at time ti

� For this computation, let u0 < u1 < ::: < um be the sequence of time values
from the closed interval [t0; tk] at which a process ticks, a message arrives at a
process receive queue, or a message leaves a process send queue. Then:

– t0 < u0

– um < tk

– For each j < m, at least one ti falls between uj and uj+1.
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Part II

Time Models

A system trace provides the maximum amount of physically observable information about a com-
putation. However, this information contains too much detail and too little structure. Consequently,
we develop a time model framework for transforming the detailed representations to more abstract
representations. Presumably, these abstract representations better express the essential aspects of a
computation by abstracting away the irrelevant details.

Part II builds this framework. Chapter 4 develops the definition of time models. Chapter 5 ex-
plores some basic properties of time models, and presents some basic operators (which themselves
take the form of time models—abstracting abstractions). Chapter 6 develops a particular family
of time models (to express the hierarchy of abstractions) from real time ordering of all events to
partial ordering of interesting events. Collections of models suggest some natural relationships;
Chapter 7 explores these relationships.
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(Part II)

Chapter 4

Developing a Definition

Loosely speaking, time is a mechanism for ordering things that happen. Talking about a computa-
tion requires enumerating the things that happen and placing some type of order on them. Hence,
we introduce a computation graph format to describe a computation as a particular set of “ordered”1

objects. Modeling a computation entails taking its description in this format and constructing a new
description (also in this format), whose parts may represent various parts of the old description. A
time model is thus a representational transformation of computation graphs. For these chains of
transformed graphs to talk about the physical reality of computing, they require a foundation: a
computation graph that explicitly describes computation, rather than one that is just an image of
another graph. We provide this foundation by transforming traces into ground-level computation
graphs.2

Section 4.1 develops this computation graph representation. Section 4.2 translates system
traces to ground-level graphs. Section 4.3 then presents the notion of a time model as a particular
way of transforming (and presumably abstracting) sets of computation graphs.

4.1. Computation Graphs

4.1.1. A Definition

Abstractly, a computation is some set of discrete events that happen in some particular order. (In
this paper, we assume that this set is always finite.)

1Strictly speaking, this temporal relation may not always be an order.
2As we observed in Section 1.1, the choice of what constitutes ground-level is somewhat arbitrary. In this paper,
ground-level graphs come from traces; other uses of this theory might require other foundations.
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We express this abstraction as a computation graph: a labeled directed graph representing a
computation.3 The graph consists of directed edges and labeled nodes. Each node is an event—a
distinct “thing that happens.” The label describes the event. We distinguish between events and
event labels in order to allow repeated occurrences of the same type of event.

The edges have two roles: to indicate the temporal relation of events, and to indicate the
transition from one event to another. The role an edge plays will be clear from the construction of
a graph.

4.1.2. Notation

The atoms of a graph are its nodes (with labels) its edges. Where convenient, we will regard a
graph as the set of its atoms: x 2 � refers to an atom x from graph �. Lower-case Greek letters
denote computation graphs. Upper-case Roman letters from the beginning of the alphabet denote
specific nodes, and lower-case Roman letters starting with x denote specific atoms. Variations on
the notation G will denote special sets of computation graphs—e.g., the graphs obtained in some
particular way, with event labels from some specified set.

4.1.3. Subgraphs

We obtain a subgraph of a computation graph in the natural way: by pruning away some nodes
and edges.

Definition 4.1 A subgraph of a computation graph � is the graph obtained by
removing from �:

� a subset of the nodes

� a subset of the edges, including any edge incident to a deleted node

When computation graph �0 is a subgraph of computation graph �, we write

�0 � �

4.1.4. Identity and Isomorphism

We introduce terminology to describe when two computation graphs completely match:

3Labeled graphs are essentially identical to ordered multisets, which surface in the literature (such as Pratt’s work
on partial order time [Pr86]). However, we feel the former representation is more amenable to computer scientists.
Further, using graphs rather than pomsets grants us the liberty to use more general temporal relations.
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Definition 4.2 Two computation graphs �1 and �2 are identical

�1 � �2

when they match: when a bijection exists giving an exact matching of nodes and edges.

Since nodes in computation graphs have labels (by definition), for two nodes to match, they must
possess the same label. The standard graph-theoretic notion of isomorphism ignores labels and
consequently gives a weaker correspondence:

Definition 4.3 Two computation graphs �1 and �2 are isomorphic

�1
�= �2

when they are identical, except for the node labeling. That is, we can relabel the nodes
in �1 to obtain a graph �0

1 satisfying �0

1 � �2.

Both identity and isomorphism depend on the existence of a bijection between two graphs.
Having explicit access to this bijection will be useful:

Definition 4.4 A pairing between two graphs �1 and �2 is simply a subset P of
�1 � �2. If �1 � �2 and pairing P enumerates the identification, we write

�1 �P �2

Similarly, if �1
�= �2 and pairing P enumerates the isomorphism, we write

�1
�=P �2

The correspondence between two identical or isomorphic computation graphs does not neces-
sarily induce unique pairings: consider two copies of an edgeless graph consisting of two nodes
with the same label.

Identity and Isomorphism on Subgraphs Suppose two graphs have identical subgraphs:

�1 � �0

1 �P �0

2 � �2

Then the pairing P between the subgraphs extends to be a pairing between graphs. The pairing
not only enumerates the identification between the subgraphs but also specifies the subgraphs.
Figure 4.1 illustrates this relationship.

This technique also applies to isomorphic subgraphs.
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Figure 4.1 The pairing enumerating the identification between two identical sub-
graphs also specifies the subgraphs. Here, each �0

i � �0

i, and�0

1 �P �2. However,
P is a pairing not only between the subgraphs �0

i but is also a pairing between the
graphs �i. Given �1 and �2 and P , we can figure out that the �i subgraphs are
identical.

4.2. Ground-Level Computation Graphs

Currently we describe real physical computation via traces. Our time models will provide the
means for more abstract descriptions. In order to have closure on composition, time models will
operate on computation graphs. Thus, in order for time models to apply to real computations, we
need to lift traces into this computation graph format.

We want to perform this action with a minimum of abstraction, since abstraction is the duty of
models. This lifting is just some sleight of hand so that models can talk about the real world.

4.2.1. Turning Traces into Graphs

Since we will perform abstractions on computation graphs, we need to make sure that the
ground-level graph for a trace contains everything of interest in the trace. Consider the trace
T = ((t0; s0); :::; (tk; sk)), with si = (ci 1; ci 2; :::; ci n). This trace expresses a handful of interesting
things about the underlying computation:

� At time ti, the jth process is in configuration ci j .

� Either this configuration persists through ti+1, or there exists exactly one time ui in the open
interval (ti; ti+1) at which this process changes configurations. This change must have one
of the following forms:

– the process undergoes a send, receive, or compute transition (from Axiom 2.1).

– a message departs from the send queue of this process

– a message arrives at the receive queue of this process

But the exact value of ui is not known.

� If the trace indicates that two different processes each undergo a configuration change in the
interval (ti; ti+1), the changes occurred at the same instant. (This follows from the definition
of trace: otherwise the observer would have taken an intermediate photograph.)
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We construct the ground-level computation graph of T by, for each process, creating a node for
each of these interesting actions. (Thus, each of these actions becomes an “event.”) We then draw
edges to represent the basic transitions from action to action at each process. The basic transitions
go from photo to photo, if nothing happened, or from photo to configuration change and from
configuration change to the next photo.

We choose event labels from the set:

PROC-NAMES � ( (fphotog � CONFIGS� non-negative reals)

[ (fsend; receive; depart;arriveg �MESSAGES)

[ fcomputeg )

This set just follows the above schema. Each label is a pair containing a process name, and a
description of the event: a timestamped photograph or a configuration transition.

4.2.2. Computations and Ground-Level Graphs

Physical computation takes place in space and time. The computation that trace T represents takes
place in the space-time region PROC-NAMES � [t0; tk] (the cross-product of a discrete set with
a closed interval of the reals). The ground-level graph for T has two important properties relating
to this region.

� Each atom of the ground-level graph of T naturally represents some part of the underlying
region.

– Event (p; (photo; c; ti)) represents the instant (p; ti) of the photo.

– A configuration change event (p; foo) (between the ti and ti+1 photos) represents the
instant of transition foo: the point (p; u) for the [unknown] instant u in the open interval
(ti; ti+1) when the change occurred.

– Edges represent the transitions between consecutive events at the same process. We
induce the region this edge represents from the regions the events represent: the edge
from the (p; t) node to the (p; u) node represents the region (p; (t; u)).

� The regions represented by the atoms in the graph of T form a partition of the region
represented by T .

Every instant at every process in a computation that trace T describes corresponds to exactly one
atom in the ground-level computation graph. Every atom in the ground-level computation graph
represents a disjoint set of these instants. Figure 4.2 sketches an example of these properties.

4.2.3. No Abstraction

We reiterate that the ground-level computation graph of T is merely a graph version of the trace T ,
expanded to include the (inferred) configuration transitions. The graph contains no explicit ordering
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Figure 4.2 A ground-level computation graph represents computational
space-time. Each atom in the ground-level graph � represents activity at process
p or q at some point or interval of real time.
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information that was not already present in the trace. The graph also contains information—such
as the times of the photos, and even the existence of the photos—not available to the processes.

The graph version of a trace merely expresses the trace in graph format. Any higher abstraction
(such as imposing orders or pruning away uninteresting actions) is the job of a time model.

4.3. Time Models

Formally, a time model is a particular way of transforming one set of computation graphs into
another set, presumably more abstract. Concomitant with this transformation is a notion of repre-
sentation: an atom in the transformed graph may represent a set of atoms in the original graph. Time
models usually depart from physical reality in order to better express some underlying conceptual
structure.

4.3.1. Events and Temporal Relations

Events As we saw in Section 4.1, building computation graphs requires bundling process activity
into discrete packages called events. We identify events, the basic “things that happen,” with their
nodes. Events are atomic in the sense that they provide the fundamental level of granularity in the
computation graph: in this graph, one cannot talk about anything finer. The label on an event should
describe that event in sufficient detail for the level of abstraction in this graph—for example, if a
graph represents what a process perceives about a computation, the labels should make no reference
to things that process cannot observe, such as real time.

Temporal Relations In the ground-level computation graphs from Section 4.2, edges represent
transitions between events. In more general graphs, the edges will represent a temporal relation
on events—the “order” in which they happen.

A temporal relation is a binary precedes relation on a collection of elements (which, in this
paper, will be events). We write A�!B to indicate that event A precedes event B in this relation.
We also use some variations:

� A �! B when A�!B or A = B

� A =�!B when A does not precede B

� A !B when A�!B and B �!A

� A !B when A !B or A = B

� A = !B when neither A�!B nor B �!A
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A relation is transitive when (for any events A;B;C) if A�!B and B �! C then A�! C .
A relation is antisymmetric when A�!B and B �!A cannot both hold for A 6= B. A relation
is irreflexive when no A�!A. A partial order is a relation that transitive, antisymmetric, and
irreflexive; a total order is a partial order that is complete: for any A 6= B either A�!B or
B �!A.

We introduce a new term: a linear time order is a partial order where concurrency is an
equivalence relation whose equivalence classes induce a total order. In a linear time order, we can
assign each event A a real number T (A), such that T (A) < T (B) iff A�!B, for distinct A;B.
(A linear time order is just a total order that allows for simultaneous events.)

4.3.2. Representation

From Graph to Graph Events represent discrete units of computation. In the physical system,
computation takes place in space and time. Expressing computation as traces imposes a granularity
on perception: things happen at processes (the space coordinates), and time values from the trace
must delimit the time periods (the time coordinates). The graph version of a trace constructs
events and edges by packaging portions of the space-time computation region as single atoms. As
Section 4.2.2 observes, this packaging has some convenient properties: each atom represents a
disjoint subregion, and together these subregions constitute a partition of the full region.

Constructing a computation graph � to model another computation graph � should proceed
in the same fashion. Each atom in � may represent some portion of the computation region that
� expresses. (A ghost atom is one that represents nothing.) However, this region is no longer
space-time, but rather is the graph �. As with traces, the structure of the region forces a granularity
on the perceivable subregions: they must be composed of subsets of atoms of �.

We could express this representation in a number of ways (regarding a graph as the set of its
atoms):

� as a relation between � and �

� as a partial function from � to �

� as a function from � toP(�)

� as a function from � toP(�)

The first approach makes composition of models awkward; the second forces each atom in
� to have at most one representative in � (a restriction which we suspect may cause problems
eventually); the third makes it difficult to talk about the multiple atoms a single atom might
represent.

We conclude that the fourth approach is the cleanest and the most flexible. It most closely
follows the principle that each atom in � represents some set of atoms in �. It also allows us to
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express easily properties such as “each � atom has at most one representative in �” and “� may
have no ghost nodes.” Such a function naturally extends to act on sets of atoms: apply the function
to the individual elements in the set and take the union of the results.

Terminology Suppose graph � represents graph �. A representation map is a function taking
each atom of � to a set of atoms of �. (As we will see in the next section, representation maps will
accompany model applications.)

Since we’re talking about representation, we’ll adopt a democratic model for terminology. Let
x be an atom of �, y an atom of �, and R a representation map from � to �. Then we say:

� x is a representative of y (if y 2 R(x))

� R(x) is the constituency of x

� y is a constituent of x (if y 2 R(x))

However, we allow for general, Chicago-style democracy:

� Some representatives may have overlapping constituencies.

� Some representatives may have empty constituencies.

� The collection of constituencies might not cover the entire populace.

4.3.3. Models

A Formal Definition We put the elements of Section 4.3.1 and Section 4.3.2 together to produce
a formal definition of a time model: a uniform way to build a computation graph whose pieces
explicitly represent pieces of another computation graph.

Definition 4.5 A time model is a partial functionM taking computation graphs to
computation graphs, such that (ifM is defined on graph�) the application� 7�!M(�)
induces a representation map fromM(�) back to �. We write

hM; � i

to indicate this representation map.

Figure 4.3 illustrates the action of a time model and its representation map.
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Figure 4.3 ModelM transforms computation graph� to computation graph M(�).
The representation map hM; � i takes each atom of M(�) back to the set of atoms
in � it represents. The bold arrow indicates the action of M; the dashed arrows
indicate the action of hM; � i.

Conventions Models are partial functions, so the domain of a model is the set D of graphs for
which it is defined.

When � is understood to be a particular computation graph that modelM generates from graph
�, we write

A�!B inM

to indicate that event A precedes event B in � (and, implicitly, that events A and B appear in �).
(In some situations, we will want to emphasize the model, not the particular graph names. This
shorthand makes such emphasis possible.)

A time model M naturally induces transformations of graph sets that its domain contains:
M(G) is the set consisting of the transformed graphs fM(�) : � 2 Gg.

Composition and Inversion Simple manipulations of functions apply to models too—the
only trick is handling the representation maps. For example, composing models yields a model.

Definition 4.6 Suppose modelM1 (with domain D1) and modelM2 (with domain
D2) satisfy

M1(D1) � D2

Then their compositionM2 �M1 is the model on domainD1 taking � toM2(M1(�)),
with

hM2 �M1; � i = hM1; � i � hM2; M1(�) i
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Figure 4.4 To obtain � = (M2 �M1)(�), we transform � according to M1, and then
transform the result according to M2. To figure out what an atom of � represents in
�, we obtain the set of atoms it represents in M1(�), and then figure out what each
of these represents in �. Solid arrows indicate the action of M1 and M2; the bold
solid arrow indicates the action of M2�M1. Dashed arrows indicate the action of the
representation maps hM1; � i and hM2; M1(�) i; the bold dashed arrow indicates
the action of the representation map hM2 �M1; � i.
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Figure 4.4 illustrates composition of models.

We can also talk about the inverse image of graphs (relative to a given model and class). If �
is a graph fromM(G) where G is understood, thenM�1(�) is the set

f� 2 G : M(�) = �g

A Simple Example The computation that a trace T expresses has a natural synchronized
structure. But the ground-level computation graph of T not only fails to express this structure—it
also includes items from the trace (the photographs) and items induced from the trace (arrive and
depart nodes) that one ordinarily would not regard as genuine events in the computation. We
now introduce a simple time model that abstracts ground-level graphs to graphs that more cleanly
represent the computational activity.

Definition 4.7 The model LINEAR takes ground-level graph � to the graph � built
as follows. Let � be the graph of trace T = ((t0; s0); :::; (tk; sk)).

Nodes For each process p:

� Create a node ? in � for the node (p; photo; t0) in �.

� Create a node > in � for the node (p; photo; tk) in �.

� Node (p; photo; ti) leads to node (p; photo; ti+1) in �, possibly through an
intermediate node Ai. Examine this transition:

– If the intermediate node Ai exists and is a send, receive or compute, then
create a copy of this node (minus the p name) in �.

– Otherwise, nothing interesting happened, so create a node idle in �.

Edges Thus, there exists a node in � for time t0 at each process, for time tk at each
process, and for the transition from ti to ti+1 at each process. Draw an edge from
node A to node B in �—not necessarily from the same process—whenever any
of the following hold:

� A represents the transition from ti to ti+1, and B represents the transition
from ti+1 to ti+2

� A represents t0 and B represents the transition from t0 to t1.

� A represents the transition from tk�1 to tk, and B represents tk
� A represents t0 and B represents t1, in the degenerate case when k = 1.

The representation map formalizes this natural representation. hLINEAR; � i takes
each non-idle node in � to the corresponding node in �, and the idle nodes in � to the
atoms lying between the corresponding pair of photo nodes. The edges in � between
sequential nodes at the same process represent the internal atoms in the paths between
the nodes they represent; the cross-process edges are ghosts.

Figure 4.5 shows the application of LINEAR to a simple trace graph.
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Figure 4.5 We obtain � by applying LINEAR to the simple ground-level compu-
tation graph �. Dashed lines connect each atom in � to the atoms it maps to under
hLINEAR; � i.

The LINEAR model derives its name from the fact that it expresses the basic steps in the natural
linear time order on computations. Fully expressing the linear time order requires one more tool
(which Section 5.1 will provide).
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(Part II)

Chapter 5

Properties and Operators

This chapter presents machinery to talk about some properties of computation graphs and time
models. We develop this machinery both by considering the actual properties—of graphs, of sets
of graphs, and of models that produce such graphs—and also by considering operators on graphs
that ensure that some given property holds. (Conveniently, such operators take a familiar form:
time models.) Section 5.1, Section 5.2 and Section 5.3 consider some special issues arising from
relations. Section 5.4 and Section 5.5 consider the generation and representation issues arising
from model applications. Finally, Section 5.6 considers the issues involved in merging computation
graphs and merging the models that produce them.

5.1. Transitivity

The computation graphs that we’ve seen so far (ground-level graphs and their LINEAR images)
express events and transitions between events. However, usually we think of temporal relations as
being transitive: if event A happens before event B, and event B happens before event C , then
event A happens before event C .

Defining Transitive Closure Hence, we say that a computation graph � is transitive if its
relation is transitive: an edge exists from A to B whenever B is reachable from A. We obtain the
transitive closure � of a graph � by adding an edge from A to B whenever a path but no edge
exists between them.

A model is transitive when it produces only transitive computation graphs. Taking the transitive
closure of a model seems a natural operation, but the representational aspect of models makes this
operation somewhat non-trivial. Suppose modelM acts on graph �. Clearly we want the transitive
closure ofM to produce a transitive version ofM(�). UnlessM(�) already is transitive, we will
need to add edges. Which edges should we add? What should these edges represent?
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In this paper, we choose the simplest approach:1 simply take the transitive closure of each graph
thatM produces, and let any new edges be ghosts. Here we begin to see some of the expressiveness
of time models: the transitive closure operator is itself a time model that copies a graph and adds
edges. We call this model TRANS, and use the shorthand:

M = TRANS �M

Using Transitive Closure As we have mentioned, usually we think of temporal relations as
transitive. However, these relations usually arise by first considering some “basic” transitions on
events. Having an explicit transitive closure operator allows us to follow this technique when
building models.

For example, the transitive closure LINEAR expresses the full linear time ordering of process
actions induced by real time.

Asking about precedence in graphM(�) is equivalent to asking about paths inM(�). (Having
the flexibility to talk about both the “full” version and the “single-step” version of a time model
will be useful in subsequent papers when we consider knowability issues.)

5.2. Bounds

Is there a well-defined “earliest” or “latest” event in a computation? In this section, we define what
this means and present an operator to force models that produce extremal events to produce unique
extremal events.

The Property An event is minimal in a graph if no event precedes it. Similarly, an event is
maximal if no event succeeds it.

A computation graph � is bounded when it contains a unique minimum that precedes all other
events in �, and a unique maximum that follows all other events in �. When a graph is bounded,
the unique extrema are its bounding nodes.

1Another approach would be to add an edge for each nontrivial path from event A to event B. The new edge would
represent the internal atoms in this path. This alternative approach allows us to reach through some precedence
assertion to the individual steps that cause it to hold. This ability might be useful: for example, it makes it easier to
state one of our preliminary security results [Sm91]: an honest process (using a certain clock implementation) will
always detect the presence of an edge, if the events that edge represents occur only at honest processes.

Should we eventually be interested in the more complicated form of closure, we could insert that betweenM and
M by first defining TRANS1 (which adds representative edges for each nontrivial path) and then TRANS2 (which
replaces all edges from A to B by a single representative ghost edge). Then we would re-define TRANS as the
composition TRANS2 � TRANS1.
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A modelM is bounded when it produces only bounded graphs.

A graph � is transitively bounded when � is bounded; a modelM is transitively bounded when
M is bounded.

An Operator Suppose modelM produces graphs whose transitive closure contains minima and
maxima. One way to insure thatM is transitively bounded is to collapse the extrema into single
events.

Definition 5.1 The model EXTREMA takes a graph � to the graph � as follows:

Nodes Partition the nodes of the transitive closure � into three sets: S? containing
the minima, S> containing the maxima, and S other the remaining nodes. The
nodes of � consist of one copy of each node in S other, plus a new node labeled ?
if S? is nonempty, plus a new node labeled > if S> is nonempty.

Edges The node construction induces a natural surjectionF from nodes in� to nodes
in �. Use this surjection to draw edges: if an edge exists from A to B in �, then
draw one from F (A) to F (B) in �. (Thus F extends to a surjection F 0 from
atoms to atoms.)

The representation map hEXTREMA; � i is the inverse of the surjection F 0.

Applying EXTREMA to a model does not necessarily yield a transitively bounded model. For
an easy counterexample, suppose model M produces graphs that are simple cycles. Since M
produces no minima or maxima, we have

EXTREMA �M = M

and thusM is not bounded.

5.3. Cycles

Given a directed graph, a natural question is to ask whether it contains any cycles. This question
applies to our work, since time models produce computational graphs.

Hence, we say that a node A in graph � is acyclic when no cycle in � contains it. We say that
graph � is acyclic when it contains no cycles. Finally, we say that a modelM is acyclic when it
produces only acyclic graphs.

Conversely, a node A is cyclic if it is contained in a cycle; a graph � is cyclic if it contains a
cycle.
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5.4. Generators

On a basic level, we might regard possible system behavior—what the system does in a given set
of circumstances—as a set of possible system traces. Our time theory allow us to regard possible
system behavior instead as a set of possible computation graphs. However, this set of graphs
cannot stand alone as a descriptive entity; we need to specify how this particular set originates in
the ground-level graphs.

This specification consists of two things: a modelM and a graph set G2 such that G1 =M(G2).
We say that such a model is a generator of set G1. If G2 consists of ground-level computation
graphs, thenM is a grounding generator of G1: each graph in G1 is grounded in physical reality. If
M produces no ghost events in G1, then it is a concrete generator of G1: each event in a G1 graph
has concrete meaning in its G2 pre-image.

Some interesting scenarios will develop when a set of models induces multiple grounding
generators for a single graph set. For example, the graph � in Figure 1.7 might arise from failure-
free execution or from a faulty execution simulating (through rollback) a failure-free execution.
Subsequent papers will present a more thorough exploration of this topic.

5.5. Disjoint and Complete Models

Suppose computation graph � lies in the domain of modelM. The new graphM(�) represents
the original graph �. How expressive is this representation? Two issues arise immediately.

� Do the atoms inM(�) have unique meanings?

� In theM(�) graph, can we still talk about every atom in �?

We introduce two terms to handle these issues. ModelM is disjoint on � if the constituencies
of the atoms in M(�) are disjoint (that is, no atom of � has multiple representatives in M(�)).
ModelM is complete on � if the constituencies ofM(�) completely cover � (that is, each atom of
� has at least one representative inM(�)). IfM is complete and disjoint on � andM(�) is free
of ghosts, then hM; � i partitions the atoms of �.

The modelM is itself disjoint when it is disjoint on every graph in its domain; similarly, the
modelM is complete when it is complete on every graph in its domain.

Suppose graph � lies in the domain of model M. If M is complete, every atom in � is
represented inM(�). We can useM(�) to talk about every atom of � (although we may not be
able to distinguish some atoms). IfM is disjoint, every atom from � that is represented inM(�)
is represented uniquely. We may not be able to talk about every part of the original graph �, but
we can distinguish everything we can talk about.

Every model we consider in this paper will be disjoint.
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5.6. Merging Graphs and Models

Suppose computation graph� lies in the domain of two modelsM1 andM2. We have two different
abstractions of �: the graphs �1 =M1(�) and �2 =M2(�). (Perhaps each �i isolates and abstracts
some particular aspect of �).

How can we merge �1 and �2 to obtain a single, more complete abstraction of �? How can we
mergeM1 andM2 into a model that always produces this more complete abstraction?

5.6.1. Merging Graphs

Suppose we are given two computation graphs �1 and �2, and we we want to construct a graph that
retains all the information in both. The semantics of computation graphs make this task tricky: a
graph may have multiple nodes with the same label. Suppose �1 and �2 each have a node labeled
A. Should we merge these nodes or keep them separate? What if �1 and �2 instead have identical
subgraphs �0i a bit more complicated than the singleton A? If �1 and �2 have multiple pairs of
identical subgraphs, which pair should we merge?

To rectify this confusion, we need to explicitly the pairs of atoms we will identify (that is, the
pairs of atoms that will take on the same identity in the merged graph). Section 4.1.4 gives us the
necessary tools.

Definition 5.2 Suppose computation graph�1 has subgraph�01, computation graph
�2 has �02, and �01 �P �

0
2 We obtain the union with respect to P

�1 [P �2

by joining the two graphs �i and merging the two atoms in each pair in P .

Of course a quick and dirty solution to the problem of merging graphs is to take the disjoint
union: deliberately keep all nodes and edges separate, and obtain a disconnected graph with two
components �1 and �2. This is just taking the union with respect to the empty pairing.

Figure 5.1 illustrates the two forms of graph union.

5.6.2. Merging Models

SupposeM1 andM2 share domain D. Merging these models by merging the graphs they produce
requires specifying which atoms in these graphs will be identified. Hence, for each � 2 D, we
need to exhibit a pairing P between theMi(�). However, not just any pairing will do, since the
atoms in a transformed graph represent atoms in the original graph. The pairing must respect this
representation.
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Figure 5.1 Suppose two computation graphs �1 and �2 have identical subgraphs
(�01 and �02, respectively), matched by pairing P (left). We obtain the union �1[P�2

by merging the �0i according to the pairingP (top right); we obtain the disjoint union
�1[Ø�2 by keeping both graphs separate and disconnected (bottom right).
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The possible presence of ghosts makes constructing this list slightly nontrivial. Should two
ghost nodes with the same label be considered the same? What about two ghost edges?

In this paper, we take the most straightforward approach to this dilemma—we keep ghost nodes
distinct but we merge ghost edges that obviously coincide.

Let M1 andM2 share domain D, and let � be a graph from D. Let �i be the imageMi(�).
Suppose node A1 in �1 and node A2 in �2 have the same label and represent the same (nonempty)
part of �:

hM1; � i(A1) = hM2; � i(A2) 6= 6

Then clearly we should regard A1 and A2 as the same node in the merged graph.

For preserving edges, we drop the prohibitionagainst ghosts, but add another rule: the endpoints
must be common. If edge Ei connects node Ai to node Bi in graph �i, node A1 is identified with
node A2, node B1 is identified with node B2, and hM1; � i(E1) = hM2; � i(E2) then we identify
these edges.

Definition 5.3 For models M1 and M2 and graph � in the domain of both, let
COMM(M1;M2; �) denote the pairing between M1(�) and M2(�) constructed as
above.

That is, COMM(M1;M2; �) is a list of pairs of nodes and pairs of edges. A pair of
nodes (A1; A2) is in the list iff the Ai have the same label and the same non-empty
constituency; a pair of edges (E1; E2) is in the list iff (A1; A2) and (B1; B2) are in the
list (where Ei connects Ai to Bi), and the Ei constituencies are equal.

The COMM pairing behaves as desired:

Proposition 5.4 Let � lie in the domain of models M1 and M2. Let P be the
pairing COMM(M1;M2; �) and let �i =Mi(�). Then

1. The atoms of �i occurring in the pairing P form a subgraph, �0i

2. � 01 �P �
0

2

Proof These results follow directly from Definition 5.3, Definition 4.4 and Definition 4.1.

We can now extend union to models:

Definition 5.5 The union of model M1 and M2 is the model M1 [M2 on the
intersection of their domains, with

(M1 [M2)(�) = M1(�) [COMM(M1;M2;�)M2(�)
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Since the representation maps hM1; � i and hM2; � i agree on pairs of atoms from
M1(�) and M2(�) that get identified, define the representation map M1 [M2 as
follows:

hM1 [M2; � i =

(
hM1; � i on atoms fromM1(�)
hM2; � i on atoms fromM2(�)

Of course, the quick and dirty approach to merging models works as well:

Definition 5.6 The disjoint union of modelM1 andM2 is the modelM1[ØM2 on
the intersection of their domains. M1[ØM2 takes takes � toM1(�)[ØM2(�) with the
representation map

hM1[ØM2; � i =

(
hM1; � i on atoms fromM1(�)
hM2; � i on atoms fromM2(�)

We extend these operations to act on finite sets of models in the natural way.

[fM1; :::;Mkg = M1 [M2 [ ::: [Mk

This operation is well-defined:

Proposition 5.7 The above two unions on models are associative. For models
M1;M2;M3:

1. (M1 [M2) [M3 =M1 [ (M2 [M3)

2. (M1[ØM2)[ØM3 =M1[Ø(M2[ØM3)

Proof The disjoint union case is trivial. For the other case, observe that nodes don’t go away. Let
Ai be fromMi; if you merge A1 and A2 in (M1 [M2), then A2 will still be around in (M2 [M3)
to merge with A1. A similar argument works for edges.
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(Part II)

Chapter 6

Developing a Family of Models

Section 5.1 developed the LINEAR model to express the linear time ordering that real time induces.
Yet the crux of the discussion in Chapter 1 is that real time sequences are not sufficient—so this
chapter uses the model tools from Chapter 5 to formally develop an alternative model: partial order
time.

Section 6.1 develops a collection of timelines: models imposing a linear structure on events at a
single process. Section 6.2 presents two models relating events at different processes. Section 6.3
uses these components and the tools from Chapter 5 to assemble the partial order time model POT.

Figure 6.1 shows the compositional development of this family of models.

6.1. Within Processes

A ground-level computation graph gives a linear sequence of events for each process: a start point,
a sequence of process actions, and a stop point.

We’ve already seen LINEAR perform this abstraction:

Definition 6.1 For each process p 2 PROC-NAMES, define LINLINEp to be
the model that takes a ground-level graph � and returns the LINEAR(�) subgraph
corresponding to process p.

However, these timelines still contain elements that we would not normally consider part of the
computation: the idle events. We introduce a model to abstract them away:

Definition 6.2 Define the model NONIDLE to remove the idle events from graphs.

� NONIDLE applies only to graphs � whose idle nodes have in-degree one and
out-degree one. (For example, LINLINE graphs meet this criteria.)

� Such � have well-defined maximal idle chains. NONIDLE copies the entire
graph, but replaces each maximal chain with a single edge.
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LINLINE q
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Figure 6.1 The models we discuss here fit into a composition hierarchy. The
boxes indicate sets of computation graphs; an arrow M between two boxes indi-
cates that model M is a surjection from the one set onto the other. What’s more,
the functional identities we illustrate here are also model identities—e.g., the model
LINEAR equals the composition of models SYNC � LINLINES.
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� The graph NONIDLE(�) consists thus of atoms from � and new edges. The
atoms from � represent themselves; the new edges represent the chain they
replaced.

Figure 6.2 illustrates the action of the NONIDLE model.

We can now define the linear timeline of interesting events.:

Definition 6.3 For process p 2 PROC-NAMES, let

TIMELINEp = NONIDLE � LINLINEp

We frequently want to consider the set of timelines as a whole, so we set up some shorthand:

Definition 6.4 Define the models LINLINES and TIMELINES:

LINLINES = [ØfLINLINEp : p 2 PROC-NAMESg

TIMELINES = [ØfTIMELINEp : p 2 PROC-NAMESg

6.2. Across Processes

Messages We define a model that captures a cross-process order induced by message passing:

Definition 6.5 The model MSG on ground-level computation graph � retains only
send and receive nodes, and draws a ghost edge fromA toB only whenB is the receipt
of the message sent at A.

Edges are ghosts in MSG because all we want to know is if a message got through or not. If we
were interested in exploring fault tolerance in message transmission, then perhaps we would want
to expand what an edge represents.

idle idle idle

NONIDLE

Figure 6.2 The model NONIDLE replaces maximal
chains of idle nodes by a representative edge.
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Linear Synchronization As an aside, we can define a model SYNC that links up equal length
straight-line graphs by grouping each “column” of events into an equivalence class.

Definition 6.6 Let the model SYNC act on a collection of equal length timelines,
one per process, by drawing a ghost edge from the m node at process Pi to the m+ 1
node at each process Pj (j 6= i).

Whether SYNC actually performs meaningful synchronization depends on the graphs it acts on—
whether the equivalence classes can be meaningfully regarded as synchronized units.

For example, SYNC allows us to give a bottom-up definition of LINEAR:

LINEAR = SYNC � LINLINES

6.3. Partial Order Time

The model LINEAR induces the linear time order LINEAR. This only makes sense, as the trace
ordering follows real time. However, our building blocks allows us to define an alternative:

Definition 6.7 Define the partial order time model POT:

POT = MSG [ (EXTREMA � TIMELINES)

Essentially capturing Lamport’s causal dependency partial order, the POT model is the primary
focus of the remainder of this paper.
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(Part II)

Chapter 7

Relationships Between Models

The handful of models presented so far suggest some natural ways we can consider one model to
be “part” of another. For example:

� POT(�) is always a subgraph of (EXTREMA � LINEAR)(�).

� If two graphs �1 and �2 give the same POT image, then they give the same TIMELINEp

image.

� Indeed, given any graph generated by POT, we can uniquely identify the component that
TIMELINEp generates.

� In a rough sense, POT almost appears to be a model on its TIMELINES components.

This chapter presents formal machinery to describe these relationships. Section 7.1 describes forms
of containment (the first bullet); Section 7.2 presents refinement (the second bullet); and Section 7.3
presents components (the third bullet). Finally, Section 7.4 describes how a set of components may
comprise a decomposition of a model, and how we can factor this decomposition out of the model
(the fourth bullet).

7.1. Containment

We want to describe the relationship when the action of one model always includes the action of
another. Section 7.1.1 develops the containment relation; Section 7.1.2 introduces a related tool,
the containment map, and Section 7.1.3 sketches some uses of containment.
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7.1.1. The Containment Relation

Suppose two modelsM1 and M2 share1 the same domain D. A minimum requirement forM1

to be contained in M2 is that for any � 2 D, M1(�) is isomorphic.2 However, once again the
representational aspect of models complicates things. The atoms in M1(�) and M2(�) carry
additional meaning: their constituencies in �. ForM1 to be contained inM2, we also require that
corresponding constituencies also satisfy a containment relation.

To avoid some pathological situations, we will require uniqueness of pairing.

Definition 7.1 Suppose modelsM1 andM2 act on the same domainD. ModelM1

is contained inM2, written

M1
�� M2

when for each � 2 D, there exists a unique pairing P between M1(�) and M2(�)
satisfying these two conditions:

1. Isomorphism There exists � �M2(�) such that

M1(�) �=P �

2. Constituency Containment If (x1; x2) 2 P then

hM1; � i(x1) � hM2; � i(x2)

The symbol for containment (�� ) contains two elements, suggesting isomorphism ( �= ) and sub-
graph ( � ). These concepts characterize containment: M1

��M2 when eachM1 graph is isomor-
phic to a subgraph of the correspondingM2 graph (with representation behaving nicely).

Special Cases SupposeM1
��M2, with domain D. Then for each � 2 D, Definition 7.1 tells

us that two graphs—M1(�) and a a subgraph ofM2(�)—will satisfy Condition 1 and Condition
2. However, each of these conditions has a natural alternative that is more restrictive:

10. Identity The graphs are identical.

20. Constituency Equality The constituency of each atom in theM2 subgraph equals the con-
stituency of the corresponding atom in theM1 graph.

1Naturally, we can make any pair of models share the a domain by replacing the individual domains with their
intersection.
2We could require identity instead of isomorphism, but that would lead to some label awkwardness in Chapter 8 when
we want to merge individual process graphs into a global graph. The relabeling that isomorphism permits will be
convenient.
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We obtain special cases of containment by replacing the original conditions with their stronger
versions:

Definition 7.2 SupposeM1
��M2.

� IfM1 andM2 also satisfy Definition 7.1 with Condition 1 replaced by Condition
10, we say thatM1 directly containsM2 and write

M1 � M2

� IfM1 andM2 also satisfy Definition 7.1 with Condition 2 replaced by Condition
20, we say thatM1 strongly containsM2 and write

M1
�
� M2

Since the two conditions of Definition 7.1 are independent, we can strengthen both
simultaneously, giving a third version:

� IfM1 andM2 also satisfy Definition 7.1 with Condition 1 replaced by Condition
10 and Condition 2 replaced by Condition 20, we say that M1 strongly directly
containsM2 and write

M1 � M2

Each of these relations is clearly transitive.

Figure 7.1 distinguishes containment from direct containment; Figure 7.2 distinguishes con-
tainment from strong containment.

Proposition 7.3 For anyM1;M2,

1. M1�M2 =) M1
�
�M2

2. M1�M2 =) M1�M2

Proof Condition 10 implies Condition 1, and Condition 20 implies Condition 2.

7.1.2. The Containment Map

It will be useful to transform the unique pairing from Definition 7.1 into a function:

Definition 7.4 SupposeM1
��M2, with shared domainD. For � 2 D, let P be the

unique pairing satisfying Definition 7.1. Define the containment map hhM2; M1; � ii
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M1 M2 M1 M2

≅

α

M1 α(  )

M2 α(  )

α

M2 α(  )

M1 α(  )

Figure 7.1 Containment of any form requires that one model always produces
a graph isomorphic to a subgraph of what another model produces. However
for direct containment, this isomorphism is in fact the identity. The left diagram
shows ordinary containment: M1

��M2; the right diagram shows direct containment:
M1�M2.

≅

M1 ,α M2 ,α

x y
≅

M1 ,α M2 ,α

x y

Figure 7.2 If M1
��M2, then the M1 representation on any atom x yields a subset

of what the M2 representation yields on the matching atom y (left). For strong
containment M1

�
�M2, the representations are equal (right).
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to be the bijection that P determines from theM2(�) subgraph back toM1(�). That
is,

hhM2; M1; � ii(x2) = x1 () (x1; x2) 2 P

We can regard hhM2; M1; � ii as a partial function on all ofM2(�).

Figure 7.3 illustrates the action of the containment map.

Hiding Awkward Notation Strictly speaking, the hhM2; M1; � ii function is partial. As
such, it is not defined for some elements of its domain: namely, the atoms fromM2(�) that are
not part of the subgraph corresponding to M1(�). In order to prevent statements like “take the
union of hhM2; M1; � ii over the set W ” from becoming too awkward—because we would have
to explicitly specify the subset of W for which the containment map is defined—we will adopt the
convention that identification maps are “defined” on the remaining elements in the domain, but
they just produce the empty set.

M1 M2

α

M1 α(  )

M2 α(  )

,αM1,M2

≅ β

Figure 7.3 When one model contains another, a unique pairing connects the
graphs they produce. Here we see that M1

��M2, so M1(�) is isomorphic to a
subgraph � of M2(�). The containment map hhM2; M1; � ii acts on all of M2(�) to
take this subgraph � back to M1(�).
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This convention allows statements like the following:

M1(�) =

0
@ [
x2M2(�)

hhM2; M1; � ii(x)

1
A

7.1.3. Using Containment

Temporal Relations SupposeM1
��M2 act on graph �. Then we obtainM2(�) by copying

M1(�), changing the labels, and adding more edges and nodes. This observation yields the
following facts:

Proposition 7.5 Suppose M1
��M2 act on graph �. Let A2 and B2 be nodes in

M1(�). Suppose hhM2; M1; � ii is defined on these nodes; define:

A1 = hhM2; M1; � ii (A2)

B1 = hhM2; M1; � ii (B2)

Then:

A1 �! B1 =) A2 �! B2

A2 = !B2 =) A1 = !B1

Proof Edges in theM1 graph show up in its isomorphic image in theM2 graph.

Ignoring Edges Situations arise when we would rather ignore the edge constituencies when
worrying about containment. To handle these cases, we introduce a new operator:

Definition 7.6 The model GHOSTIFY transforms a computation graph by forcing
all edges to be ghosts.

Transitive Closure Taking the transitive closure will not cause containment to stop holding:

Proposition 7.7 For modelsM1;M2:

M1
��M2 =) M1

��M2

M1�M2 =) M1�M2

Proof TRANS adds only ghost edges; and if TRANS adds an edge to theM1 graph that didn’t
already exist in theM2 graph, then TRANS will also add that edge to theM2 graph.

Proposition 7.7 does not hold for strong containment: supposeM2 already has transitive edges
in itsM1 image, except these edges are not ghosts.
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Examples of Containment The family of models from Chapter 6 provides a number of natural
examples of containment:

Proposition 7.8 For p 2 PROC-NAMES:

TIMELINEp � EXTREMA � TIMELINES

EXTREMA � TIMELINES � POT

TIMELINEp � POT

GHOSTIFY � POT � EXTREMA � LINEAR

LINLINES � LINEAR

Proof

1. The p timeline shows up in the complete set; the representations coincide exactly except for
the transitive extrema.

2. Only the message edges (and the transitive edges they imply) are missing.

3. Containment is transitive.

4. The POT graph is clearly a subgraph. The nodes have identical representations. But the
edges of POT that do not appear in LINEAR will correspond to ghost edges in LINEAR.
The POT versions of these edges may actually represent something; hence the GHOSTIFY.

5. Only the SYNC edges are missing.

7.2. Refinement

Suppose we have two time models act on the same domain of computation graphs. Section 7.1
provides the terminology to talk about the situation when one model’s graphs always contain images
of the other model’s graphs. However, our research has demonstrated the need to talk about a more
subtle correlation: if modelM1 collapses a set of input graphs by taking each of them to the same
output graph, then modelM2 also collapses this set. This property allows us to compareM1 and
M2 graphs without having to go all the way back to the input graphs.

Formally, a modelM with domain D induces a natural partition on a set G � D : just take the
collection of setsM�1(M(G)). If two modelsM1 andM2 on the same domain have the property
that, for any set, theM2 partition is strictly coarser, then specifying the computation graphM1(�)
also determines the specific computation graph M2(�). In some sense, the actual value of � is
irrelevant.
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Definition 7.9 Suppose models M1 and M2 on the domain D have the property
that, for all �;�0 2 D:

M1(�) =M1(�
0) =) M2(�) =M2(�

0)

Then we say thatM1 refines toM2, and we writeM1 >M2.

Clearly, refinement is transitive.

The relationM1 >M2 induces a function fromM1(D) toM2(D)): we write �1 > �2 when
�i 2Mi(D) andM�1

1 (�1) �M
�1
2 (�2). (This function does not extend to be a model itself because

of the lack of any kind of representation. We have no well-defined correspondence between the
atoms of a particular graph thatM2 produces and the atoms of the graph thatM1 produces on the
same input.)

Figure 7.4 illustrates these relationships.

Transitive Closure Taking the transitive closure will not cause refinement to stop holding:

Proposition 7.10 For modelsM1;M2:

M1 >M2 =) M1 >M2

Proof This follows directly from Definition 7.9.

Abstraction Hierarchies Refinement allows us to put models into “abstraction hierarchies”:
chains of models on a given domain that monotonically lose information—or gain abstraction.

Proposition 7.11 For any p 2 PROC-NAMES:

LINEAR > POT > TIMELINES > TIMELINEp

LINEAR > LINLINES > LINLINEp

Proof These assertions follow directly from the definitions of the models.

7.3. Components

Suppose M1
��M2, with shared domain D. Then for any � 2 D, M1(�) shows up in M2(�).

However, this is still not sufficient to talk about theM1 component of a graph� 2M2(D): suppose
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M2

M1 M1 M1 M1

M2M2M2

α

α

1β

2β

D

DM1(   )

DM2(   )

M1 (    )1β-1

M2 (    )2β-1

Figure 7.4 This diagram illustrates refinement: M1 > M2. The dashed arrows
indicate the action of M1; the solid arrows indicate the action of M2. We see
that when M1 identifies two graphs (for example, � and �0) by taking them to the
same image, then M2 also identifies those two graphs. We see that the M1 value
determines the M2 value: for example, knowing that M1 takes a graph to �1 is
sufficient to conclude that M2 takes that graph to �2. We write �1 > �2 to describe
this relationship.
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α

M1M2

γ

α

β

M1 M2

β≅ ≅

Figure 7.5 Containment does not guarantee well-defined components. Although
M1

��M2 model M1 may be isomorphic to different subgraphs depending on the
original graph. Here,  = M2(�) = M2(�0) but �, the subgraph isomorphic to M1(�)
differs from �0, the subgraph isomorphic to M1(�0).

 is theM2 image of both � and �0 in D (that is,M2(�) = M2(�0) = �), butM1(�) 6=M1(�0).
Figure 7.5 illustrates this counterexample.

Talking unambiguously about the M1 component of a graph generated by M2 requires both
containment and refinement:

Definition 7.12 SupposeM1 andM2 act on the same domain. M1 is a component
ofM2

M1
�
< M2

whenM1
��M2 andM2 >M1.

Each special case of containment (from Definition 7.2) gives rise to a corresponding special case
of components:

Definition 7.13 SupposeM1 andM2 act on the same domain.

� IfM1�M2 andM2 >M1, thenM1 is a direct component ofM2:

M1 < M2

� IfM1
�
�M2 andM2 >M1, thenM1 is a strong component ofM2:

M1
�
v M2

56

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.



� IfM1�M2 andM2 >M1, thenM1 is a strong direct component ofM2:

M1 v M2

Each of these relations is transitive.

Informally,M1
�
<M2 when the containment isomorphism takes theM1 graph to a well-defined

subgraph of M2. One can take any graph produced by M2 and unambiguously select the M1

component.

Transitive Closure As with containment, taking the transitive closure will not cause non-strong
containment to stop holding.

Proposition 7.14 For modelsM1;M2:

M1
�
<M2 =) M1

�
<M2

M1<M2 =) M1<M2

Proof This follows directly from Proposition 7.7 and Proposition 7.10.

Examples Our family of models provides some examples of components.

Proposition 7.15 For each p 2 PROC-NAMES:

TIMELINEp < POT

LINLINEp v LINEAR

Proof Proposition 7.8 gives containment; Proposition 7.11 gives refinement.

7.4. Decomposition

We have seen in Chapter 6 that our two more complex time models, LINEAR and POT, each have
a fairly significant straight-line substructure. The LINEAR model has LINLINES; the POT model
has TIMELINES.

Informally, we want to be able to talk about temporal orderings both in such higher-level models
and in their substructures. The LINEAR model easily grants this ability. Not only is LINLINES a
component of LINEAR; the “factorization”

LINEAR = SYNC � LINLINES
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gives us a straightforward way to talk about the LINLINES graph of a computation as an interme-
diate step on the way to the LINEAR graph.

Performing the same task with the POT model is challenging. It cannot be the case that
TIMELINES�<POT because TIMELINES��POT cannot hold: since the global extrema of POT
graphs bind together the local extrema of TIMELINES graphs, a bijection cannot exist. However,
the POT model does contain the individual TIMELINEp models. Further, the collection of these
individual component models refines to the POT model.

Suppose we defined a model MSG0 that takes graphs with send and receive events and adds the
MSG edges:

MSG0(�) = � [ MSG(�)

Then we could factor POT as well:

POT = (MSG0 � EXTREMA) � TIMELINES

In this paper, we lay the foundations for work with models more general than POT and LINEAR.
Hence, we want to isolate the general rule at work in this factorization. This section carries out
this task. In Section 7.4.1 we explore the relationship between a modelM and a singleM1

�
<M.

In Section 7.4.2 we demonstrate that a sufficiently rich set of components fM1; :::;Mkg will form
a decomposition of a modelM: a substructure that we can factor out.

7.4.1. Model and Component

Suppose M1 is a submodel of M. For any � in the shared domain, the containment map
hhM; M1; � ii takes the atoms of theM graph back to the atoms of theM1 graph. Suppose, for
all �, some further properties hold:

� M1 >M

� The containment map hhM; M1; � ii is defined on all non-ghosts in theM graph.

� Whenever an atom of the M graph represents anything, it represents the same thing its
hhM; M1; � ii image in theM1 graph.

The first property implies that eachM1 graph determines anM graph, and the second and third
imply that the atoms of theM1 graph determine (through the containment map) the constituencies
of the atoms of theM graph.

Hence we can obtain a modelM2 satisfyingM =M2 �M1.

Such an induced model would be practically the identity—we’re just taking the M1 graph,
relabeling the nodes, and possibly adding ghosts. However, if we had a set of components fMig
satisfying a few convenient properties, rather than just the single submodel M1, then we can
induce a model that is not so trivial. This insight yields the technique of decomposing models into
components.
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7.4.2. Decomposing Models into Components

When a collection of modelsM1,M2, ...,Mk are each components of a modelM, then each atom
in M(�) maps to a set (possibly empty) of atoms in the collection of graphsMi(�). If this set
determines the � representation of theM atom, and the disjoint union of the collection refines to
M, then we can do some fun things.

Definition 7.16 SupposeM is a model on domainD, fM1; :::;Mkg is a finite set of
models on the same domain, andM0 = [ØfM1; :::;Mkg. ThenM0 is a decomposition
ofM, with decomposition set fM1; :::;Mkg, when:

� Mi
�
<M for each i

� M0 > M

� For all graphs � 2 D and for all atoms x 2M(�)

hM; � i(x) =
[

i

�
hMi; � i � hhM; Mi; � ii (x)

�

Figure 7.6 illustrates the representation condition (the third bullet).

Proposition 7.17 IfM0 is a decomposition ofM, thenM0 is a decomposition of
M.

Proof This assertion follows from Proposition 7.10, Proposition 7.14 and Definition 7.16.

Proposition 7.18 The following hold:

1. TIMELINES is a decomposition of POT.

2. LINLINES is a decomposition of LINEAR.

Proof Both statements assert that a model decomposes to a disjoint union of a set of models.
Proposition 7.15 gives that each element in the set is a component of the model. Proposition 7.11
gives refinement; and the definitions of the models gives the representation condition.

Model Your Own Decomposition When a collection of components fMig is a decomposition
set for model M, then we can determine whatever any M atom represents from what its fMig
atoms represent. Hence we can perform the desired factorization and insert fMig between the
input graphs andM.
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α

M,α ,αMi

M( )α

( )αMi

,αM,Mi

Figure 7.6 For a set of components to form a decomposition of a model, the
constituencies of the set should determine the constituencies of the model. In
this example, we consider the model M and the set of components fMig. We
have two routes from an atom in M(�) back to �. We can go directly through the
representation map hM; � i (solid arrow); or we can go to each Mi(�) through the
containment maps hhM; Mi; � ii, and from there to � through the representation
maps hMi; � i (dashed arrows). For the model M0 = [ØfMig to be a decomposition,
these routes must always yield the same set of atoms in �.
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Definition 7.19 SupposeM on domain D has decompositionM0, with decompo-
sition set fM1; :::;Mkg. Define the factoring model M=M0 on the domainM0(D) as
follows.

Let � = M0(�), for � 2 D. Then M=M0 takes � to the  fromM(D) satisfying
� > . The representation map applies each containment map to an atom and collects
the results:

h M=M0 ; � i(x) = fhhM; Mi; � ii(x) : 1 � i � kg

Figure 7.7 sketches the structures from Definition 7.19.

Theorem 7.20 (Factorization) Suppose modelM has decompositionM0. Then

M = M=M0 � M0

Proof This assertion follows directly from Definition 7.16 and Definition 7.19: the composition
on the right gives the same transformation action and representation map as the modelM.

The observations from the beginning of this section are special cases of the Factorization
Theorem:

LINEAR=LINLINES = SYNC

POT=TIMELINES = MSG0 � EXTREMA

Proposition 7.21 Suppose modelM has decompositionM0, with decomposition
set fM1; :::;Mkg. Under M/M’ , for any i, an atom x from M represents either
nothing atMi or an image of itself atMi.

Proof By Definition 7.16,Mi
�
<M, henceMi

��M. ThusMi(�) is isomorphic to a subgraph
ofM(�), and this relationship determines the representations in M=M0 .
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α

,αM,Mi

Mβ

γ

( )UO M

( )M/ M ( ),M/ M α

Figure 7.7 Model M with decomposition M0 induces a factoring model M=M0 . The
decomposition M0 = [ØfMig takes � (bottom) to � (middle) ; the model M takes �
to  (top). The factoring model M=M0 takes � to ; in the new model, an atom of
 represents the union of its images in each Mi component. (Solid arrows indicate
both the action and the representation of the new model. Dashed arrows indicate
the action of M, M0, and the containment maps.)
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Part III

Simultaneity

The desire to distinguish between genuine real time and the temporal relations that processes
themselves perceive motivated the development of the model family in Chapter 6. The LINEAR
model expresses the former; the POT model expresses the latter.

A natural concept from traditional linear time is simultaneity: at any given moment, a single
photograph describes the state of the system. However, simultaneity is one of the first casualties
of asynchrony in a distributed system. We can still talk about “consistent” global states, but
these states may never have physically occurred. Time ceases to be a nicely behaved sequence of
individual moments.

Part III explores these issues, and extends the previous work of Mattern [Ma89] and Johnson
[Jo89, JoZw90].

Section 7.4 observed that the goal here is to lay a foundation for more general work with more
general models than POT and LINEAR; hence Part III begins in Chapter 8 by characterizing these
models.

Chapter 9 explores logical simultaneity—global states, in terms of the semantics of time
models—and shows how these can form a lattice structure. Chapter 10 discusses two convenient
vector structures that arise from logical simultaneity. We then relate logical simultaneity to the
simultaneity of real time: Chapter 11 explores the basic structures; Chapter 12 examines why
models such as POT fail to give the desired simultaneity properties; and Chapter 13 proposes some
solutions.

Finally, Chapter 14 makes some deeper observations about the structure of logical global states.
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(Part III)

Chapter 8

Parallel Models

This chapter characterizes the models to which the machinery of of Part III applies: computation
that takes place at different processes in parallel. Section 8.1 introduces the structure of the
multiprocess pair: a model describing the local process computation, along with one describing
the global system computation. Section 8.2 presents some tools for models from this structure, and
Section 8.3 isolates some interesting subsets of multiprocess pairs—including the subset parallel
pairs, describing parallel computation.

8.1. Multiple Processes

We want a two-level perspective on system behavior: things happen locally at processes, but these
things also happen globally in the system. We define a mechanism to provide this dual perspective:

Definition 8.1 Suppose models M and M0 on ground-level computation graphs
satisfy the following:

1. M0 is a decomposition ofM, with decomposition set fMig

2. EachMi describes events at a unique process.1

3. The factoring model M=M0 has no ghost events.

Then we say that (M;M0) is a multiprocess pair. ModelM is a multiprocess model,
with multicomponentM0.

The family of models from Chapter 6 provides some natural (and intentional) examples: both
(LINEAR;LINLINES) and (POT;TIMELINES) are multiprocess pairs.

1Actually, there’s no reason why the “process” for this decomposition should be the same as the “process” for the basic
system model of Chapter 2. This work should easily extend to handle such wrinkles as process migration and virtual
processes.
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Suppose multiprocess pair (M;M0) acts on graph�. The multicomponentM0 transforms graph
� into a set of local process descriptions; the modelM transforms graph � to the global system
description. The factoring model M=M0 takes the local process descriptions to the global system
descriptions; events from different processes may merge, but no new events are added.

Multiple Perspectives The two models in a multiprocess pair provide two views of a compu-
tation: as independent local threads, and as a unified global whole. Frequently we want to make
another kind of distinction: between basic transitions and full transitive precedence. For example,
in the (POT;TIMELINES) we may want to distinguish between immediate precedence

A�!B in TIMELINES

and transitive precedence

A�!B in TIMELINES

Proposition 7.17 tells us that if (M;M0) is a multiprocess pair, then so is (M;M0). So suppose
we want to build transitive temporal relations arising from some notion of “basic transition steps.”
If we build (M;M0) so that edges express basic steps, then (M;M0) is a parallel pair giving the
full transitive steps. Thus the multiprocess pair (M;M0) provides four views of an underlying
computation �. Figure 8.1 illustrates the multiple perspectives.

8.2. Tools

We now introduce some tools to facilitate using the multiprocess pair machinery.

8.2.1. Projection

Working with multiprocess pairs will frequently require constructing objects with the structure
“one thing per each process component.” We use standard notation to move between each object
and the individual entries:

Definition 8.2 When a set has the property that each p 2 PROC-NAMES is un-
ambiguously associated with a unique element of the set, we use projection to select
these elements. For example,M0 is the disjoint union of process models; �pM

0 refers
to the model for process p.
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TRAN
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local: global:

full
transitive
precedence:

basic
transition
steps:

Figure 8.1 A multiprocess pair provides four views of a computation, according to
two independent choices: whether we use the model or the multicomponent, and
whether or not we take the transitive closure. Here, pair (M;M0) acts on graph �,
with � = M0(�) and  = M(�). Graph � provides the basic transition step version
of the local computation; graph � provides the full transitive closure. Graphs  and
 provide the global system descriptions.
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8.2.2. Events in Models and Multicomponents

Multiple Roles Suppose graph � lies in the shared domain of multiprocess pair (M;M0). Each
atom thatM produces has its origins in the process components fromM0. In this sense, an atom x
fromM(�) has multiple roles:

� as itself: x 2M(�)

� as the atom (if any) it represents at a particular process component ofM0:
hhM; �pM

0; � ii(x)

An atom x fromM(�) has two more roles:

� as itsM0 constituency: h M=M0 ; M0(�) i(x)

� as the atom (if any) it represents at a particular process component ofM0:
hhM; �pM0; � ii(x)

To simplify discussing these multiple roles, we introduce some notational shortcuts:

Definition 8.3 When multiprocess pair (M;M0) acting on graph � are understood,
define these operators on atoms x fromM(�):

� xjM0 = h M=M0 ; M0(�) i(x)

� xjp = hhM; �pM
0; � ii(x), for p 2 PROC-NAMES

For atoms x inM(�) define two more operators:

� xj
M0

= h M=M0 ; M0(�) i(x)

� xjp = hhM; M0; � ii(x), for p 2 PROC-NAMES

Extend each operator to act on sets of atoms by applying it to each element of the set
and collecting the results.

The operators from Definition 8.3 possess simple mnemonics: xjfoo takes atom x to whatever it
represents in foo. These operations also satisfy some easy identities:

Proposition 8.4 For multiprocess pair (M;M0), let x be an atom in a graph gen-
erated byM. Then:

xjM0 = fxjp : p 2 PROC-NAMESg

If x is an atom in a graph generated byM, then

xj
M0

= fxjp : p 2 PROC-NAMESg

If x is a node, then for any p 2 PROC-NAMES:

xjp = xjp
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Proof These assertions follows directly from Definition 8.3 and Definition 7.16, and the fact that
transitive closure only adds edges.

From “Nodes” to “Events” Time models produce computation graphs. However, in prac-
tice these graphs describe computations; nodes in a graph represent correspond to events in the
computation.

Until now, we’ve talked about computation graphs as graphs; hence we’ve referred to nodes as
nodes. But now we want to begin using graphs as descriptions of computations; hence we shift
terminology from “node” (the object in the graph) to “event” (the reality presumably
behind this object).

8.2.3. Temporal Relations in Models and Multicomponents.

Localizations Since the individual process models are in fact components of the global model,
a path between two events in the multicomponent induces an edge between those events in a
multiprocess model. It will be useful to talk about these edges without having to move down to
the multicomponent and back up. We can perform this by trimming down theM graph to include
only those edges arising out ofM0. These will be the non-ghosts in the factoring model.

Definition 8.5 The localization of multiprocess pair (M;M0) is the model L that
takes the event set fromM and draws the edges induced byM0.

For example, the model EXTREMA � TIMELINES is the localization of multiprocess pair
(POT;TIMELINES).

Proposition 8.6 Suppose multiprocess pair (M;M0) with localization L acts on
graph �. Let  =M(�), L = L(�) and � =M(�):

Events A;B 2  satisfy A�!B in L iff some A0 2 AjM0 and B0 2 BjM0 satisfy
A0 �!B0 in �.

Proof This follows from the definitions. If A0 �!B0 in some transitive process component,
then A�!B in  by an edge representing an edge in �.

Corollary 8.7 Let (M;M0) be a multiprocess pair. If M0 is acyclic, then the
localization has no self-loops: no edge connects a node to itself.

While the localization is not transitive, it does possess a “local transitivity.” Suppose when we
construct the localization, we label each edge with the process model from whence it came. Then
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the localization has the property that if a path exists whose edges are all labelled with process p,
then an equivalent edge exists, also labeled with p.

Localization adds an intermediate perspective between the localM0 and the globalM: we use
the events from M but retain only the edges from M0. Since taking the transitive closure of the
localization would ruin Proposition 8.6, the localization perspective is intermediate on that axis
too. Figure 8.2 illustrates the revised view.

Local Closures Another useful operation is collecting the events that locally precede some set
of system events.

M

α

M

γ

γ
_

M/ M

M/ M

TRAN

β

β
_

TRAN

local: global:

Lγ

L

full
transitive
precedence:

basic
transition
steps:

Figure 8.2 The localization of a a multiprocess pair provides a intermediate per-
spective between the local and the global, and between the transitive and the
non-transitive. With localization, we now have five views: the localization is cen-
tral. Here, pair (M;M0) with localization L acts on graph �, with � = M0(�),
L = L(�) and  = M(�).
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Definition 8.8 Suppose multiprocess pair (M;M0)with localizationL acts on graph
�. Let  =M(�), � =M0(�), and L = L(�).

For a set of events X from , define its local past-closure dXe to be the set of event
that precede or equal X in L.

dXe = fA : for some B 2 X , A �! B in Lg

Define the local future-closure bXc similarly.

Local closures select events from an M graph on the basis of the relations of their pre-images in
M0. Hence, if a set X consists of POT events at different processes, dXe contains only copy of?,
rather than a copy for each process.

8.3. Variations

8.3.1. Concurrent Pairs

The definition of multiprocess pair says very little about how the global model glues together
the individual process components. For example, we could take multicomponent LINLINES and
merge one process’s maximum with another’s minimum.

To describe the situation when the activity at different processes takes place concurrently, we
introduce a special term:

Definition 8.9 Suppose multiprocess pair (M;M0) has domain D. We say that
(M;M0) is concurrent when for any � 2 D,

1. If A and B are maxima from different process components inM0, then

(M=M0) (A) = ! (M=M0) (B)

2. If A and B are minima from different process components inM0, then

(M=M0) (A) = ! (M=M0) (B)

Both (LINEAR;LINLINES) and (POT;TIMELINES) are concurrent.

If the model is transitively bounded as well, then the extrema have a simple structure:

Proposition 8.10 If a concurrent model is transitively bounded, then the unique
global maximum represents the individual process maxima (and similarly for the min-
ima).
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Proof LetM be the concurrent model. Fix an input graph �, and let A be the global maximum
in M(�). By Definition 8.1, event A has to represent some event A0 at some process p. Event
A0 must be a p maximum, for otherwise A could not be maximal. Let B0 6= A0 be a maximum at
process q (not necessarily distinct from p) and let B be its image inM. If B 6= A, then B �!A
(because A is maximal) and hence the model could not be concurrent.

8.3.2. Multilinear Pairs

The definition of multiprocess pair also says very little about the individual process components.
We introduce a special term to describe when these components look like timelines:

Definition 8.11 A multiprocess pair (M;M0) is multilinear when the individual
process components produce only straight-line graphs.

8.3.3. Parallel Models

Definition 8.9 ensures that the local process components happen in “parallel.” Definition 8.11
ensures that process components are timelines. Together, these conditions describe what we
usually regard as “parallel computation.” Figure 8.3 illustrates this taxonomy.

Definition 8.12 Suppose multiprocess pair (M;M0) is concurrent, and each M0

component always produces straight-line graphs. We say that M is parallel and that
(M;M0) is a parallel pair.

Both (LINEAR;LINLINES) and (POT;TIMELINES) are parallel pairs.

Other Directions Part III explores properties of parallel pairs. However, more advanced
work may require dealing with more general varieties; for example, rollback may require allowing
process components to be trees rather than straight-line graphs. Hence, future research may involve
slightly generalizing our parallel pair machinery.
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ParallelMultilinear Concurrent

Multiprocess

Figure 8.3 A parallel pair is a multiprocess pair that is concurrent, and
where each process component is a straight-line graph.
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(Part III)

Chapter 9

Logical Simultaneity

A time modelM on ground-level computation graphs imposes a web of ordering on the events in
an unfolding computation. A maximal set of mutually concurrent events represents a logical slice
of time across this computation—“logical” in the sense that in the semantics of the time model,
this set describes a possible moment of simultaneity.

Section 9.1 considers a number of approaches to describing logical global states in parallel
pairs, and shows how they all arise from timeslices: sets of events forming logical slices of time.1

Section 9.2 presents some natural operations on event sets; Section 9.3 uses these operations to
establish the set of timeslices forms a lattice.

The literature diverges on the exact definitions of many of the terms that arise here (e.g.,
“consistent cut”); to avoid any ambiguity, we take pains to indicate clearly the definitions we use.

9.1. Timeslices

9.1.1. Vectors and Cuts

We want an object to express a system-wide “system state.” Informally, this should be a tuple of
events, one per process. However, the fact that events can occur at multiple processes complicates
matters.

Thus, in general this “one-per-process” rule has two possible formal characterizations. We
introduce terms for both:

Definition 9.1 Suppose (M;M0) is an multiprocess pair, and  is a graph fromM.

1. An event vector is an array of events from  with the constraint that the process
p entry occurs at process p.

1[Sp89] uses the term “timeslice” (and [Ma89] uses “time slice”); the timeslices there are special cases of the timeslice
here.
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2. An event cut is a set of events from  such that for each process p, exactly one
event occurs at p.

Vectors are arrays, rather than sets or multisets, because events may occur at multiple processes.
Indexing allows the entries in a vector to carry a banner indicating their origin. Suppose distinct
events A and B both occur at processes p and q, and a vector V contains both A and B. Without
indexing, we could not tell which was the process p entry of vector V .

Every cut is the event set from a unique vector: the cut provides exactly one event for each
vector entry. However, not every vector has an event set that is a cut: suppose events A 6= B both
occur at both p and q; vector V may contain both.

In graph theory, a cut is a set of nodes whose removal leaves the graph disconnected. In our
usage, a cut is a set of events that cuts each timeline in a parallel pair.

9.1.2. Timeslices

So far, we’ve just used the fact that each process’s component describes a concurrent part of the
computation. A computation graph specifies temporal ordering on events, and hence on the events
in a set.

Definition 9.2 A set of events X in a computation graph is mutually concurrent
when no events A;B in X (not necessarily distinct) satisfy A�!B.

When a set of events is mutually concurrent, then—in the semantics of the model—no event
in this set happened before another event. If the set is maximal, then any other event in the
computation must have happened either before or after some event in this set. Thus in terms of the
model, this set describes a possible simultaneous moment.

Definition 9.3 A timeslice from a computation graph� is a maximal set of mutually
concurrent events. An �-timeslice is a timeslice in graph �. An M-timeslice is a
timeslice in a graph that modelM generates.

SupposeM1
�
<M2. Applying Proposition 7.5 tells us how timeslices fromM1 relate to time-

slices fromM2:

� Timeslices fromM1 map into sets of events inM2 (since we might gain edges inM2).

� Conversely, timeslices fromM2 map to subsets of timeslices inM1 (since we may lose edges
and even events going back toM1).
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9.1.3. Timeslices in Parallel Pairs

If we’re using a parallel pair to describe temporal precedence on global events, then we have three
perspectives: the transitive local model, the localization, and the transitive global model. We’ve
already seen timeslices from two of these structures.

Timeslices in the Local Model Timeslices from the transitive local model are isomorphic to
vectors.

Proposition 9.4 Let (M;M0) be a parallel pair. Then V is a vector in M iff
f (�p V )jp : p 2 PROC-NAMESg is a timeslice inM0.

Proof M0 produces a collection of total orders, one from each process.

Timeslices in the Localization Timeslices in the localization are cuts.

Proposition 9.5 Let (M;M0) be a parallel pair, with localization L. A set X is a
cut inM iff X is a timeslice in L.

Proof Suppose X is a L-timeslice. If process p is not represented, then any A touching p is
mutually concurrent with any element of X . If process p is represented twice, then X cannot
be mutually concurrent. Conversely, no distinct A;B in a cut X can precede each other (by
Proposition 8.6), and no A can be a self-loop (by Corollary 8.7). But any other event in the graph
must touch some process p and hence be ordered with �pX , so X is maximal.

Timeslices in the Global Model This third case is tricky: timeslices in the transitive global
model are at least partial cuts.

Proposition 9.6 Let (M;M0) be a parallel pair. If X is a timeslice inM then X is
a partial cut.

Proof Since precedence in the localization implies precedence in the transitive model, a timeslice
in the latter is at least a partial timeslice in the former. Apply Proposition 9.5.

In general, timeslices from the global model may not be full cuts. We follow the literature in
introducing a term to describe when they are.

Definition 9.7 Let (M;M0) be a parallel pair. A consistent cut is a cut that is also
anM-timeslice.
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Chapter 12 will consider the properties of a parallel pair necessary to ensure that all timeslices are
consistent cuts.

Definition 9.7 differs from the order-theoretic meaning of the term “consistent cut.” In order
theory, a consistent cut is a graph-theoretic cut whose members share a common upper bound (i.e.,
a common descendant).

9.2. Set Precedence and Operations

Precedence The edges in a computation graph specify precedence on events. We can use these
edges to induce a precedence relation on sets of events.

Definition 9.8 Suppose X and Y are sets of events in a graph . We say that X
precedes Y in 

X � Y

when an X event precedes a Y event in , and all A;B 2 X [ Y satisfy

A�!B in  =) A 2 X ^ B 2 Y

To determine the -precedence of two sets X and Y , we build a subgraph of  by taking the
events from these sets and drawing any relevant  edges. Set X precedes set Y when all edges go
from an X event to a Y event, and at least one edge exists.

Relative Minima and Relative Maxima We can also use edges to transform sets of events.

Definition 9.9 Suppose X is a set of events in some graph . Define min(X) to
be the set of relative minima:

min(X) = fA 2 X : B 2 X =) B =�!A in g

Define max(X) to be the set of relative maxima.

We omit the subscript when the graph is understood.

Precedence and Relative Min/Max Clearly, the relative minima ofX [Y can follow neither
X norY ; similarly the relative maxima can precede neitherX nor Y . With some stronger conditions
on X and Y , we can establish that the relative minima and relative maxima are actually the tightest
bounds on X and Y . A lattice structure emerges.
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9.3. Lattices

In this section, we show that the set of timeslices in a transitive graph forms a lattice. The
precedence relation and minima and maxima operations from Section 9.2 give the appropriate
structure.

Section 9.3.1 gives some basic definitions. Section 9.3.2 proves the main result. Section 9.3.3
considers the implications for vectors, cuts, and consistent cuts.

9.3.1. Definitions

First, we recall some standard definitions.

Definition 9.10 Suppose W is a nonempty ordered set, and y; z are two elements
of W . Element x 2 W is an upper bound of y and z if, in the order, x follows both
y and z. Element x is a least upper bound of y and z if x precedes any other upper
bound x0 of y and z. Define lower bound and greatest lower bound symmetrically.

A lattice is a nonempty ordered set such that any two elements in the set have both a
least upper bound and a greatest lower bound in the set.

The standard term for “least upper bound” in a lattice is join; the standard term for “greatest
lower bound” is meet.

9.3.2. Timeslices

Proving that timeslices from a transitive graph form a lattice is tricky. Intuition suggests that
Section 9.2 should provide the tools: � precedence provides the order, min(X [ Y ) should be
XuY and max(X [ Y ) should be XtY .

Intuition fails, because not all timeslices are consistent cuts. While � establishes a partial
order on -timeslices, the relative minima and relative maxima operations may only produce proper
subsets of timeslices. These mutually concurrent sets extend to timeslices—but showing that there
exists unique extrema in the set of these extensions is not trivial.

We prepare for the main result with a series of lemmas.

Comparing Timeslices If two timeslices are different, then some pair of entries must be
ordered:

Lemma 9.11 Let X and Y be timeslices in a graph. If X 6= Y then some A 2 X
and B 2 Y satisfy A�!B or B �!A.
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Proof Since X 6= Y and timeslices are maximal, we can choose A 2 (X n Y ). If A were
concurrent with everyone in Y , then A would be in Y —hence such a B must exist.

Since timeslices are mutually concurrent sets, we can strengthen the � property:

Lemma 9.12 If timeslices X and Y in a graph satisfy X � Y , then for any A and
B from X [ Y ,

A�!B =) A 2 (X n Y ) ^ B 2 (Y nX)

Proof Timeslices cannot contain events that precede each other.

Partial Order In a transitive graph, the � relation forms a partial order on timeslices:

Lemma 9.13 The � relation is a partial order on the set of timeslices in a transitive
graph.

Proof We establish the three properties.

1. The � relation is antisymmetric. Let X and Y be timeslices. If X � Y then there exists
A 2 X and B 2 Y with A�!B. If Y � X as well, then A;B 2 X \ Y . Hence neither
could be timeslices.

2. The � relation is irreflexive. If X � X then some A;B 2 X satisfy A�!B.

3. The � relation is transitive. Let timeslices X;Y;Z satisfy X � Y � Z . Suppose
A;B 2 (X [ Z) satisfy

A �! B

but A 62 X and B 62 Z . Since X and Z are timeslices, the events cannot lie together, so
A 2 Z and B 2 X . IfC �! A for some C 2 Y , then C �! B, contradictingX � Y . But
A �! C for some C 2 Y violates Y � Z . IfA !A then A could not be part of timeslice
Z . Hence fAg [ Y is mutually concurrent, so Y could not be a timeslice. Thus all Z [X
edges go from X to Z .

Suppose no A 2 X and B 2 Z satisfy A�!B. Then every A 2 X either appears in Z or
is mutually concurrent with everyone in Z—in which case it appears in Z . Hence X = Z .
Apply the antisymmetry case.
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The Maxima and Minima Operations For timeslices in a transitive graph, the relative max-
ima and relative minima operations produce mutually concurrent sets:

Lemma 9.14 If X and Y are timeslices in a transitive graph, then min(X [ Y ) and
max(X [ Y ) are partial timeslices.

Proof Let Z = min(X [Y ). IfZ is not a partial timeslice, then someA;B 2 Z satisfyA�!B.
Without loss of generality, assume A 2 X and B 2 Y . However, B 2 Y \Z implies B �! C for
some C 2 X , hence A�! C, so X could not be a timeslice.

The case for max is similar.

These sets characterize the set of timeslice bounds:

Lemma 9.15 Suppose X and Y are timeslices in a transitive graph. Timeslice Z
is a lower bound of X and Y iff no event in min(X [ Y ) precedes any event in Z;
timeslice Z is an upper bound of X and Y iff no event in Z precedes any event in
max(X [ Y ).

Proof Let M = min(X [ Y ). Suppose A 2 M precedes B 2 Z. Without loss of generality,
assume A 2 X . Then Z can neither precede nor equal X . Suppose no A 2 M precedes anyone
in Z . Then no one in X [ Y can precede anyone in Z . If Z 6= X , then Lemma 9.11 implies that
someone in Z must precede someone in X . Hence Z is a lower bound of X and Y . The case for
max is symmetric.

Extremal Extensions Timeslices by definition contain only acyclic events. Hence the set of
timeslices that a given mutually concurrent set extends to has a unique maximum and a unique
minimum—because directed acyclic graphs have maxima and minima.

Lemma 9.16 Suppose X is a partial timeslice in a transitive graph. There exists a
unique minimum timeslice and a unique maximum timeslice containing X .

Proof Let W be the set of all acyclic events that are concurrent with every member of X . Since
these events are acyclic, our transitive graph induces a transitive acyclic subgraph  on W . Define
X 0 = min(W ). DefineW to be the set of timeslices from . We make some assertions:

� X 0 2 W . By definition, the  minima set is maximal and mutually concurrent.

� fX [Z : Z 2 Wg is the set of timeslices containingX . A setX [Z is mutually concurrent
and cannot be extended; the non-X elements of a timeslice containingX must be a timeslice
in .
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� For any Z 2 W , if Z 6= X 0 then (X [X 0) � (X [ Z). Otherwise, X 0 could not have been
the minima.

Thus a unique minimum X [X 0 exists, and similarly a unique maximum exists.

The Timeslice Lattice Hence, timeslices from a transitive graph form a lattice. The � rela-
tion gives a partial order, and max and min give partial timeslices that extend to the appropriate
timeslices.

Theorem 9.17 (Timeslice Lattice) If nonempty, the set of timeslices in a transitive
graph forms a lattice.

Proof By Lemma 9.13, the � relation forms a partial order.

LetX and Y be timeslices. By Lemma 9.14, min(X[Y ) is a partial timeslice. By Lemma 9.16,
there exists a unique maximum timeslice Z containing min(X [Y ). By Lemma 9.15, Z is a lower
bound of X and Y . Suppose timeslice Z 0 is a different lower bound that is not dominated by
Z . Then some A 2 Z precedes some B 2 Z 0. By Lemma 9.15, B cannot follow anyone in
min(X [ Y ). But if B precedes someone in min(X [ Y ), then Z is not a timeslice. Hence B is
concurrent with min(X [ Y ), and by Lemma 9.16 must precede or equal someone in Z .

Thus timeslice Z is the greatest lower bound of X and Y ; similarly max(X [ Y ) extends to a
least upper bound.

9.3.3. Vectors, Cuts, and Consistent Cuts

Vectors A direct consequence of Section 9.3.2 is that vectors form a lattice.

Theorem 9.18 Suppose parallel pair (M;M0) acts on graph �. Let  =M(�) and
� =M0(�). The set of vectors in , if nonempty, forms a lattice.

Proof By the Timeslice Lattice Theorem (Theorem 9.17), the �-timeslices form a lattice; by
Proposition 9.4, the -vectors are a bijective image of the �-timeslices.

In fact, this is easily established without Section 9.3.2—in particular, meet and join coincide
exactly with the relative minima and maxima.

XuY = min�(X [ Y )

XtY = max�(X [ Y )

We will informally identify vectors with their multicomponent images, and will consequently
apply �� , u, and t directly to vectors.
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Cuts The set of cuts does not always form a lattice. Since the localization is not transitive, the
Timeslice Lattice Theorem (Theorem 9.17) does not apply. Figure 9.1 sketches a counterexample.

If the only multiple-process events were extrema, (such as in POT and LINEAR), then the case
of cuts would reduce to that of vectors.

Consistent Cuts However, the set of consistent cuts does form a lattice. When applied to
consistent cuts, the cut operations yield consistent cuts. (Mutual concurrency is easy to establish;
maximality would be easy if events only occurred at single processes.)

Lemma 9.19 Suppose multiprocess pair (M;M0) with localization L acts on graph
�. and L = L(�).

If X;Y are consistent cuts, then both minL(X [Y ) and maxL(X [ Y ) are consistent
cuts.

⊥

A2 A3

B4

C4

⊥

A1

B1

C1

D1 D2 D3

A4

D4

B2 B3

C2 C3

X Y

Figure 9.1 Cuts in a parallel pair may not form a lattice. Suppose that the
process events linked with bold lines are merged in the global model. Then cuts
X = fA2; B3; (C2D1)g and Y = fA3; B2; (C1D2)g have only a partial cut fA3; B3g as
their relative maxima. This partial cut extends to two different dominating cuts—add
(C4D3) or (C3D4). Each of these extensions is concurrent in the set-precedence
order. Hence cuts X and Y have no cut as a least upper bound.
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Proof Let  =M(�).

Suppose �pX �! �p Y in L and �q Y �! �qX in L. Then �pX =�!�q Y in , for oth-
erwise X is not consistent. Similarly �q Y =�!�pX in . Hence minL(X [ Y ) is mutually
concurrent.

Since all events in X and Y are acyclic in , they must be acyclic in L, so any event in X [ Y
follows or equals someone in the relative minima. Suppose some process p were not represented
in minL(X [ Y ). If distinct, the p entries of X and Y are ordered by L; hence without loss of
generality suppose that �pX �! �p Y in L. Since �pX is not a minima, some A from X [ Y
must satisfy A�! �pX in L. But this event A precedes both �pX and �p Y in —hence at least
one of X;Y must not have been a consistent cut.

The case for maxL is similar.

On consistent cuts, the cut operations (minima and maxima in the localization) coincide with
the timeslice operations (minima and maxima in the transitive global graph):

Lemma 9.20 Suppose parallel pair (M;M0) with localization L acts on graph �.
Let  =M(�) and and L = L(�). If X and Y are consistent cuts, then

min(X [ Y ) = minL(X [ Y )

max(X [ Y ) = maxL(X [ Y )

Proof Since L �  and removing edges cannot cause an event to stop being minimal:

min(X [ Y ) � minL(X [ Y )

max(X [ Y ) � maxL(X [ Y )

Suppose A 2 (minL(X [ Y )) but A 62 (min(X [ Y )). Then there exists a B 2 (X [ Y )
such that B �!A in . Without loss of generality, suppose A 2 X and B 2 Y , and Ajp exists. If
�p Y �!A in L, then A could not have been minimal in L. Hence A �! �p Y in L and hence
in —in which case Y could not be mutually concurrent. The case for join is similar.

Hence consistent cuts form a lattice.

Theorem 9.21 Suppose (M;M0) is a parallel pair. If nonempty, the set of consistent
cuts in anM graph forms a lattice.

Proof By the Timeslice Lattice Theorem (Theorem 9.17), the set of timeslices form a lattice.
Consistent cuts are a nonempty subset. By Lemma 9.19 and Lemma 9.20, this subset is closed
under meet and join.
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As with vectors, the minima and maxima operations here are exactly meet and join. This only
makes sense, as on consistent cuts, the operations coincide not only with the timeslice operations,
but also with the vector operations. Precedence coincides as well.

Meets and joins also preserve event membership. Hence the set of consistent cuts containing
some specified event set is a lattice.

Theorem 9.22 Suppose (M;M0) is a parallel pair, and a set of events X from an
M graph is contained in at least one consistent cut. Then the set of all consistent cuts
containing X forms a lattice.

Proof This follows directly from Theorem 9.21, and the above observation.
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(Part III)

Chapter 10

Timestamp Vectors and Rollback
Vectors

As much previous research has noted, vectors play a fundamental role in representing distributed
time structures. This chapter explores this role in terms of our time theory.

For each event from a graph from a parallel model, we introduce two special structures: the
timestamp vector, containing the maximal events at each process that precede or equal the event,
and the rollback vector containing the minimal.

Section 10.1 develops the definitions of these vectors, and Section 10.2 and Section 10.3 explore
some properties of them (including their use as clocks).

10.1. The Definition

10.1.1. The Attempt

First, we present the definitions.

Definition 10.1 Suppose parallel pair (M;M0) acts on graph �. Let  = M(�)
and � = M0(�). For event A in , define its timestamp vector V(;M;M0; A) to be
the vector whose process p entry is the event B such that:

� B �! A in 

� Bjp exists

� If C �! A in  and Cjp exists, then Cjp �! Bjp in �.

Define its rollback vector R(;M;M0; A) symmetrically: the vector whose process p
entry is the event B such that:

� A �! B in 
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� Bjp exists

� If A �! C in  and Cjp exists, then Bjp �! Cjp in �.

Usually the graph and the parallel pair are understood when we deal with these vectors. In
these situations, we will condense the awkward parameter list and write simply V(A) and R(A),
respectively.

An easy consequence of this definition is that an event precedes or equals everything in its
rollback vector, and follows or equals everything in its timestamp vector.

Proposition 10.2 Suppose parallel pair (M;M0) acts on graph �. Let A be an
event from  = M(�) and let p 2 PROC-NAMES. If �p V(A) is defined, then
�p V(A) �! A in . Similarly if �p R(A) is defined, then A �! �p R(A) in .

Proof This assertion follows directly from Definition 10.1.

10.1.2. Unique Entries

Because the process components in a parallel pair are total orders, the process image of a vector
entry is unique. That is, for event A from anM graph and process p 2 PROC-NAMES, not more
than one event from process pmeets the criteria for the process p entry of V(A) and R(A). Because
the process components are indeed components ofM, the vector entry itself—as an event inM—is
also unique.

10.1.3. Missing Entries

However, a problem with Definition 10.1 is that not all entries of these vectors are always defined.
The number of qualifying events is never more than one—but it might be zero.

For parallel pair (M;M0), the process p entry of the V(A) vector is defined iff someB satisfying
B �! A inM represents something at process p. A simple condition guarantees this property:

Proposition 10.3 Let (M;M0) be a parallel pair. If M is transitively bounded,
then all entries in all timestamp and rollback vectors are defined.

Proof From Proposition 8.10, the global extrema represent the local extrema; hence the past of
any event A touches each process component in at least one spot, as does the future.

Conveniently, the POT model is transitively bounded.
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10.2. Properties Despite Missing Entries

We can prove a number of properties about timestamp and rollback vectors, even if we allow for
vectors with undefined entries.

First, timestamp vectors and rollback vectors mark the influence horizons of events:

Theorem 10.4 Suppose parallel pair (M;M0) acts on graph �. Let A and B be
events from  =M(�). Then

A �! B in  () A 2 dV(B)e () B 2 bR(A)c

Proof Let L be the localization of (M;M0); let � =M0(�) and L = L(�). Let V = V(B) and
let R = R(A).

Suppose A �! B 2 . A must represent at least one process, so let that process be p. Then
B has an ancestor representing part of the p component of �. Hence by Definition 10.1, (�p V )jp
exists, and Ajp �! (�p V )jp in �. Hence, by Definition 8.8, A 2 dV e.

A 2 dV e implies there exists some p such that Ajp and (�p V )jp both exist and satisfy
Ajp �! (�p V )jp in�. HenceA �! �p V in , and by Proposition 10.2 and transitivity,A �! B
in .

The case for the rollback vector is symmetric.

The relation of an event at process p to the process p entries of its vectors satisfies a simple
identity—an identity that is trivial for acyclic models.

Lemma 10.5 Suppose parallel pair (M;M0) acts on graph �. Let A be an event
from  = M(�); let � = M0(�) and p 2 PROC-NAMES. If Ajp exists in �, then
the process p entries of R(A) and V(A) exist in , and their images in � bracket the
image of A:

(�p R(A))jp �! Ajp �! (�p V(A))jp

Proof A precedes or equals itself, so it must precede or equal its maximal improper ancestor at
p. Similarly A must follow or equal its minimal improper descendant.

Timestamp and rollback vectors are unique, up toM cycles:

Lemma 10.6 Suppose parallel pair (M;M0) acts on graph�. Let A andB be events
from graph  =M(�), and let � =M0(�). Then

A !B () V(A) = V(B) () R(A) = R(B)
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Proof Clearly if A !B then the other two statements hold.

Suppose V(A) = V(B). If Ajp exists, then the p entry of the A vector exists. Hence so does
the p entry of the B vector, and these entries satisfy:

�p V(A) = �p V(B)

Lemma 10.5 establishes that

Ajp �! (�p V(A))jp

Hence A �! �p V(A). But Proposition 10.2 gives �p V(B) �! B. Hence A �! B, and simi-
larly B �! A.

The case for rollback vectors is symmetric.

10.3. Vector Clocks

Timestamp vectors have a natural use as M-clocks for the transitive global model. If a process
timestamps each event with its timestamp vector, then a simple comparison determines the M
relation of two events.1 (Doing this comparison requires having all entries defined—which we
have from Proposition 10.3.) Further, for well-behaved models like POT, calculating the timestamp
vector for each event is very simple.

Rollback vectors describe the spread of influence of an event in a system. If A were instan-
taneously rolled back, the vector R(A) indicates the frontier of what needs to be undone. (But
rollback vectors also function as clocks, although not necessarily very practical ones.)

The key result is that vector precedence (from Theorem 9.18) follows event precedence.

Theorem 10.7 (Vector Clocks) Suppose transitively bounded parallel pair (M;M0)
acts on graph �. Let  =M(�).

For any two events A;B:

V(A) � V(B) () R(A) � R(B)

() (A�!B in  ^ B =�!A in )

Proof Suppose A�!B but B =�!A. Then Proposition 10.2 and transitivity give each
�p V(A)�!B. The definition of timestamp vector then gives

�p V(A) �! �p V(B)

1The vector clocks in the literature [StYe85, Fi88, Jo89, Ma89, JoZw90, SiKs90, Sm91, PeKe93, ReGo93, SmTy93]
are special cases of this result.
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for each p. Hence V(A) � V(B); B =�!A and Lemma 10.6 make this inequality strict.

Conversely, suppose V(A) � V(B) and Ajp exists. Then Lemma 10.5 gives A �! �p V(A).
By hypothesis �p V(A) �! �p V(B). Proposition 10.2 and transitivity then give A �! B. But
Lemma 10.6 and the inequality of the vectors forces A 6= B and B =�!A.

The case for rollback vectors is symmetric.

Like much of the work here, this theorem applies to more general models than POT. For example,
the theorem does not require thatM be acyclic.
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(Part III)

Chapter 11

Real Simultaneity

A timeslice from a computation graph is a set of logically concurrent events. Does this logical si-
multaneity imply real simultaneity? That is, how do timeslices correspond to the real instantaneous
system states in the underlying physical computation? Clearly, a necessary condition is that the
graph be produced by a concrete, grounding generatorM. This way, the underlying computation
really exists and the components of a timeslice really do correspond to parts of this computation.

In this section we begin exploring this relationship for the parallel models we’ve constructed.

Section 11.1 forrmally defines our usage of the term global state: in physical computations,
the system state at some instant; in computation graphs, the representation of a global state in some
computation mapping to that graph.

Section 11.2 explores the relationship between timeslices and global states for the LINEAR
model. However, Section 11.3 demonstrates how the partial order model POT fails to give the
desired relationships.

11.1. Global States

Global States in Computations The term “global state” admits two interpretations: a static
one (what’s the local state everywhere right now?) and a dynamic one (what’s everyone doing
right now?).

Our work allows both interpretations. “Right now” presumably denotes some instant of real
time—for computation T = ((t0; s0); :::; (tk; sk)), some instant t in the closed interval [t0; tk]. In
terms of computation graphs, the most accurate picture we can obtain of the system at time t is the
set of atoms for time t in the ground-level graph.

Definition 11.1 A global state in a traceT = ((t0; s0); :::; (tk; sk)) is the set of atoms
in the ground-level graph of T representing system activity at some time t 2 [t0; tk].
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For example, in Figure 11.1, the highlighted node and edge in the ground-level computation
graph � constitute a global state, corresponding to real time t.

Global States in Modeled Computations A set G together with a grounding generator
induces a map from atoms in G back to atoms in ground-level graphs. This induced map gives an
easy way to define when sets of G atoms describe a true simultaneous moment in an underlying
trace.

Definition 11.2 LetM be a grounding generator of set G and let � 2 G. A set S of
atoms in � represents a global state when for some � 2M�1(�):

� hM; � i(S) contains a global state in �

� but no proper subset of S does.

For example, in Figure 11.1, the highlighted nodes in the LINEAR graph � minimally represent
the highlighted global state in the ground-level graph �.

Definition 11.2 includes two subtleties deserving special emphasis.

Global states do not necessarily occur A global state in a computation graph corresponds
to a real global state in some physical computation that maps to that graph—not necessarily
the physical computation really in progress.

Global states depend on the model Talking about how an event set in a graph corresponds
to reality requires talking about how the graph corresponds to reality. Thus talking about
global states requires specifying (at least implicitly) a grounding generator for that graph.

Whether we allow static global states or dynamic global states depends on whether our model
allows passive events like idle, and whether we are exploring states as sets of atoms or strictly sets
of events.

A Schema for Examining Models If timeslices are doing their job, then they should describe
exactly the interesting global states in the graphs a model produces. Considering this issue yields
some questions:

� What are the interesting global states?

� Do timeslices minimally represent these states?

� Do any other event sets minimally represent these states?

� Are there any of these states that cannot be minimally represented by event sets?
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Figure 11.1 Global states arise from real simultaneity; event sets that minimally
represent global states arise from the representational aspect of time models. The
space-time region on the bottom describes some computation, whose ground level
computation graph is �. Graph � is the image of � under the model LINEAR. Set Z
is the region of space-time corresponding to the real time t; the edge and event of
Y comprise the global state in � corresponding to Z. We follow the representation
lines (dashed) to obtain X, the event set in � that minimally represents this global
state.
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If the model in question happens to be parallel, we have yet another question:

� Is each timeslice a consistent cut?

A global state is a simultaneous moment in a computation, perceived through the granularity
of a ground-level computation graph. In this paper, we use the crude criteria that a global state is
“interesting” when any part of its action is part of a “thing that happens” in a model. That is, if a
model creates an event that represents part of the global state X , then X is relevant to that model.
So the model should be be able to talk about it.

This criteria answers the first question from the above list. We can easily answer the last
question: if a timeslice is not a consistent cut, then it represents no activity at some process
p—hence it cannot represent a global state.

In Section 11.2 and Section 11.3 we explore whether the timeslices from LINEAR and POT
describe exactly these interesting global states. The remaining questions from the above list form
a schema for this exploration.

11.2. Timeslices and Global States in Linear Time

The case for LINEAR is extremely straightforward.

Theorem 11.3 Suppose LINEAR generates graph . If a set of events X in  is a
timeslice in , then X minimally represents a global state.

Proof Consider a ground-level graph that is a pre-image of . Timeslices exactly represent either
the initial global state, the final global state, or the global state between photos when something
happens. (The definition of trace ensures that when two actions happen between photos, they
happen simultaneously).

Theorem 11.4 Suppose LINEAR generates graph . If a set of events X from 
minimally represents a global state, then X is a timeslice in .

Proof This follows from two facts. First, a strict subset of a timeslice cannot describe all
processes. Second, if A�!B in LINEAR then the space-time regions of A and B have disjoint
time ranges. So, such an X must touch all processes and be mutually concurrent.

Theorem 11.5 Let X be a global state from ground-level graph �. If an event
in LINEAR(�) represents any part of X , then a timeslice in LINEAR(�) minimally
represents X .
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Proof This fact is clear from the construction of LINEAR graphs. We create events in rows, one
for each process, in accordance with the time periods. The timeslices are the rows.

Theorem 11.6 In any graph produced by LINEAR, each timeslice is a consistent
cut.

Proof This follows directly from the proof of Theorem 11.5 above.

11.3. Timeslices and Global States in Partial Order Time

Section 11.1 provides a schema to establish that timeslices express simultaneity in parallel models.
This schema fails for POT.

Failure Consider an execution where process p sends a message to process q. Process q receives
this message and returns a response to process p, who then receives the response. In the POT graph
of this execution (see Figure 11.2), the singleton consisting of process q’s send is a timeslice. But
this timeslice cannot represent a global state because it says nothing about process p; no event set
minimally represents the global state containing process q’s send.

Limited Success We can establish some limited results. Mutually concurrent events in POT
represent part of a global state: in some underlying computation, mutually concurrent events are
simultaneous.

Lemma 11.7 Let  be the POT image of a ground-level graph. If set of events X
is mutually concurrent in  then X minimally represents a subset of a global state.

⊥ ⊥

send
M1

M1

receive

M2

receive

send
M2

q:

p:

Figure 11.2 The shaded event is a timeslice in POT; however, this timeslice does
not represent a global state, as it says nothing about activity at process p.
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Proof Obtain a ground-level graph in POT�1() as follows. First, assign integers to the nodes
in  by setting each element of X to 0, setting each A following X to be one greater than the
maximum values of its ancestors in POT, and each A beforeX to one less than the minimum value
of its successors. Since POT is acyclic, this operation is well-defined. Secondly, add j to the value
of the nodes, where �j is the value on ?. Let k be the resulting value on >. By Axiom 3.1,
a computation exists with ? photos at t = 0, > photos as t = k, and (for remaining nodes foo,
marked with integer v) the appropriate foo actions occurring in the time interval (v; v + 1).

Construct the ground-level graph for this computation. The events in X represent a subset of
the ground-level graph events for (j; j + 1).

Thus, the timeslices that are consistent cuts in fact represent global states:

Theorem 11.8 Consistent cuts in POT minimally represent global states.

Proof Let  be a POT graph, and let X be a consistent cut from . By definition, X describes
activity at every process. By Lemma 11.7, there exists a ground-level graph in POT�1() in which
X minimally represents a set of simultaneous events. Since this set must span all of space, it must
be a global state.
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(Part III)

Chapter 12

View-Completeness

In Section 11.3, we saw that a very simple parallel pair will produce timeslices that neither represent
global states nor derive from consistent cuts.

Consider again the POT graph from Figure 11.2. The graph fails because process p goes
directly from the send event to the receive event. The p-send precedes the receive at process q; the
p-receive follows it. Hence no event at p can be concurrent with the q-receive—even though process
p actually “experienced” a moment of concurrency: the edge from the p-send to the p-receive.

In this section, we explore the deeper issues at work here. We develop the concept of view-
completeness: if an atom at a process affords an external temporal view, then an event at that
process affords the same view. In Section 12.1 we develop tools for dealing with ordering edges;
in Section 12.2 we define view-completeness; and in Section 12.3 we explore the implications of
view-completeness for timeslices.

12.1. Tools for Edges

Isolating Transition Edges We begin by introducing a tool to move from one event to its
successor and to its predecessor:

Definition 12.1 Let A be an event from graph �. Suppose there exists a unique B
in � such that A�!B: we will denote this event by next(A) .

Define prev(A) similarly.

If an event has unique neighbors, then these neighbors must lie on all precedence paths:

Proposition 12.2 Let A be an event from graph �.

1. If next(A) exists, then for any B in the transitive closure �:

A�!B =) next(A) �! B
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2. If prev(A) exists, then for any B in the transitive closure �:

B �!A =) B �! prev(A)

Proof All outgoing paths from A in � must start with the edge A�! next(A) ; similarly all
incoming paths must end with prev(A) �!A.

In a parallel pair, only non-maxima in the multicomponent are guaranteed to have successors,
since the general model may add cross-process edges. Nevertheless, since a non-maxima in the
global model is the image of a nonempty set of non-maxima in the local model, we can still obtain
successors by specifying which process component to consider.

Definition 12.3 Suppose (M;M0) is an parallel pair. Let A be an event from a
graph thatM generates, and let p 2 PROC-NAMES. If Ajp exists, define

nextp(A) = (M=M0)
�
next(Ajp )

�

prevp(A) = (M=M0)
�
prev( (Ajp ))

�

Ordering on Edges We defined precedence only for the events in a computation graph. But
the definition extends to the edges as well, if we pretend that a dummy event lies inside the edge.

Definition 12.4 Suppose E is an edge connecting node E in to node E out in graph
�. For node A:

� Define A�!E when A �! E in.

� Define E �!A when E out
�! A.

12.2. View-Complete Models

We now use the tools of Section 12.1 to develop view-completeness: when every edge has an event
with the same view.

External Equivalence First, we define what it means for two atoms to have the same view.

Definition 12.5 Suppose (M;M0) is a multiprocess pair. Suppose A and B are
atoms in an M graph, such that for some p 2 PROC-NAMES, both Ajp and Bjp
exist. Then A and B are externally equivalent at p, written

A
p

� B

when
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1. InM, A is cyclic iff B is cyclic

2. For any q 6= p and any event C such that Cjq exists:

A�! C inM () B �! C inM

C �!A inM () C �!B inM

Informally, A p
� B when both are cyclic (never part of a timeslice) or acyclic, and both divide

the atoms from other processes into the same “past” and “future” sets.

View-Complete Models View-completeness is simply the property of every edge having an
externally equivalent event:

Definition 12.6 Suppose parallel pair (M;M0) acts on graph �. Graph  =M(�)
is view-complete when for any edge E 2  and p 2 PROC-NAMES, if Ejp exists,
then there exists a node A 2  with A

p

� E.

IfM produces only view-complete graphs, then we say that parallel pair (M;M0) is
view-complete.

Usually an Endpoint It would be convenient if in a view-complete model, the event externally
equivalent to a given edge were always one of the endpoints of the edge. We can establish that for
models meeting a fairly reasonable property, this will be the case.

We start by defining the property: when the model draws no back-edges or self-loops along
process components.

Definition 12.7 A multiprocess pair (M;M0) with localization L is locally acyclic
when for any A;B:

A �! B in L =) B =�!A inM

We call this property “locally acyclic” because cycles in such models must touch more than one
process:

Lemma 12.8 Suppose locally acyclic multiprocess pair (M;M0) acts on graph �.
If event A from  =M(�) satisfies

� A !A in 

� Ajp exists, for some p 2 PROC-NAMES

then there exists event B in  satisfying:

� A !B in 
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� Bjq exists, for some q 6= p

Proof If  provides a path from A to A that does not touch such a B,  must have an edge that
contradicts Definition 12.7.

As promised, if the model is locally acyclic, then the event for an edge must be an endpoint.

Proposition 12.9 Suppose parallel pair (M;M0) is locally acyclic and view-
complete. If edge E connects E in to E out in an M graph and Ejp exists, then
E

p
� E in or E p

� E out.

Proof If E is cyclic inM, then the conclusion easily holds. So, assume E is acyclic.

Since (M;M0) is view-complete, a node A must exist with E
p

� A. Since the transitive p
component is totally ordered, inM0(�) we have either Ajp �! E injp or E outjp �! Ajp .

Consider the case when Ajp �! E injp . Assume atom C occurs at a different process: for
some q 6= p, Cjq exists.

� If C �!E then C �!A and hence C �! E in.

� If C �!E in then C �! E by Definition 12.4.

� If E �! C then easily E in �! C .

� If E in �! C then A�! C and hence E �!C .

� If E in is cyclic, then Lemma 12.8 gives us a B at another process with B ! E in; such
a B precedes E and also follows E (since B follows A, and A

p

� E. This violates our
assumption that E is acyclic, thus E in must be acyclic.

Thus E p
� E in:

Similarly, if E outjp �! Ajp then E
p

� E outjp .

12.3. Timeslices in View-Complete Models

View-completeness suffices to provide a very nice characterization of timeslices.

Preparation First, we establish that edges following an entry in the timestamp vector of an
event cannot precede that event:
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Lemma 12.10 Suppose parallel pair (M;M0) acts on graph �. Let  =M(�) and
� =M0(�).

Let A be an event in , let p 2 PROC-NAMES, and let edge E from  have Ejp
nonempty. If �p V(A) is defined, then

(�p V(A))jp �! Ejp in � =) E =�!A in 

If �p R(A) is defined, then

Ejp �! (�p R(A))jp in � =) A =�!E in 

Proof Let B = �p V(A), let E connect B to C, and let B 0; E0 and C 0 be their process p images
in �. If E �!A then C �! A (by Definition 12.4), but B 0 �! C 0 in the transitive p component.
Hence B could not have been the p entry of the timestamp vector. The rollback case is similar.

The Main Result With view-completeness, timeslices are exactly the consistent cuts.

Theorem 12.11 (View-Completeness) Suppose (M;M0) is a transitively-bounded
view-complete parallel pair. ThenM-timeslices are consistent cuts.

Proof Let (M;M0) act on graph �, with  =M(�) and � =M0(�).

Clearly the bounding singletons are timeslices, and no other timeslice can contain a bounding
node. So let X be a timeslice different from the bounding singletons. Since X is a partial cut, if
X is not a consistent cut then some process p must not be represented.

We will now demonstrate that this can never be the case, by showing that if process p is not
represented, then X could not have been a timeslice.

Assume process p is not represented in X . Define events A and B as follows:

A = �p
�
tC2XV(C)

�

B = �p
�
uC2XR(C)

�

If B �! A, then X cannot be a timeslice. So it must be the case that Ajp properly precedes
Bjp in the transitive p component. Hence A cannot be the maximum, so let E be the edge in 
connecting A to nextp(A) . The edge Ejp exists and satisfies

Ajp �! Ejp �! Bjp

in �. By Lemma 12.10, E can neither precede nor follow any event in X .

Further, if E were cyclic, then nextp(A) �!A (by Definition 12.4), hence nextp(A) would
appear in the relevant timestamp vector rather than A. Thus E is not cyclic.
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Since (M;M0) is view-complete, an acyclic event D must exist in  with D
p
� E, hence

X [ fDg is mutually concurrent. Since D touches p (by definition of external equivalence),
D 62 X . Thus X could not have been a timeslice.

Chapter 13 repairs POT by forcing it to be view-complete. Chapter 14 considers more deeply
the implications of the View-Completeness Theorem (Theorem 12.11).
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(Part III)

Chapter 13

Real Simultaneity and
View-Complete Partial Order Time

This chapter uses the results of Chapter 12 to revise the POT model so that it exhibits the correct
timeslice behavior. We offer two approaches, both of which hinge on forcing POT to be view-
complete. In Section 13.1, we restrict the input graphs so that only well-behaved graphs come out;
in Section 13.2 we explicitly insert place-holder events. In Section 13.3, we demonstrate that these
fixes work.

13.1. One Fix: Restrict the Domain

One approach is simply to restrict the domain of graphs to which POT applies.

Definition 13.1 Define the restricted partial order time model RPOT to be the
model POT, restricted to ground-level graphs whose images are view-complete. That
is, RPOT = POT, on the domain

D = f� : POT(�) is view-completeg

13.2. Another Fix: Insert the Necessary Events

A more general technique to see that any transitively-bounded parallel model is view-complete is
to insert place-holder events into the the edges between consecutive events at a process.

For parallel pair (M;M0), we need to do this insertion both in the M graph and in the M0

graph. But sinceM0; M0 is trivially a parallel pair, we can use the same operator for both.

Definition 13.2 Suppose parallel pair (M;M0) acts on graph �. Let  = M(�)
and � =M0(�).
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Define the place-holding model PH on such  as follows. First, create a copy of ,
with each atom representing itself. Then, for each edge E in  with EjM0 nonempty:

� Delete edge E from the copy.

� Add to the copy a new intermediate node (A k B) representing the deleted edge,
where A and B are the nodes that E connects in .

� Add to the copy two ghost edges: A�! (A k B) and (A k B)�!B

The place-holding model acts exactly as desired:

Theorem 13.3 If (M;M0) is a parallel pair, then

(PH �M); (PH �M0)

is a view-complete parallel pair.

Proof This result follows directly from the definitions. The PH model just adds intermediate
nodes and the appropriate edges, and does the same things both toM and toM0. Any edge from
M

0 now is split into two edges surrounding an intermediate node, and this new node is externally
equivalent to these edges.

Figure 13.1 illustrates this behavior.

(Strictly speaking, to make POT view-complete, we only need to insert intermediate nodes into
TIMELINES edges from send events to receive events. Further, these insertions are sufficient but
still not necessary—consider messages that carry no new ordering information.)

Applying PH also preserves transitive bounding.

Proposition 13.4 PH �M is transitively bounded iffM is transitively bounded.

Proof Inserting intermediate events does not change the extrema.

13.3. These Fixes Work

Once modified to be view-complete, the POT model exhibits the desired timeslice behavior.

Definition 13.5 Define the model PPOT to be the composition PH � POT.

Theorem 13.6 Suppose PPOT or RPOT generate graph . If a set of events X in
 is a timeslice in , then X minimally represents a global state.
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Figure 13.1 We apply PH to a parallel pair (M;M0). This action preserves the
parallelism: PH�M is still parallel, with multicomponent PH�M0. Further, the action
ensures view-completeness—each edge now has a place-holder edge.

Proof This fact follows directly from Theorem 11.8 and the View-Completeness Theorem
(Theorem 12.11).

Theorem 13.7 Suppose PPOT or RPOT generates graph . If a set of events X
from  minimally represents a global state, then X is a timeslice in .

Proof A (nontrivial) global state maps to a full cut X in PPOT (or RPOT, respectively). Since
MSG edges and PH � TIMELINE edges go strictly forward in time, X must be consistent.

Theorem 13.8 Let X be a global state from ground-level graph �. If an event in
PPOT(�) represents any part of X , then a timeslice in PPOT(�) minimally represents
X; similarly for RPOT(�).

Proof This theorem follows directly from the proof for Theorem 13.7.
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(Part III)

Chapter 14

Timeslices and View-Completeness

This chapter explores the structure of timeslices in view-complete parallel pairs.

Section 14.1 introduces terms for two more varieties of multiprocess pairs. Section 14.2
presents a convenient extendibility property that follows from the View-Completeness Theorem
(Theorem 12.11). Section 14.3 introduces an alternate form of timestamp and rollback vectors;
Section 14.4 uses these alternate forms to characterize timeslices.

14.1. Two New Types of Models

Since this chapter will build on the View-Completeness Theorem (Theorem 12.11), we now define
a short term summing up the conditions of that theorem:

Definition 14.1 If two models (M;M0) are a view-complete parallel pair, and M
is transitively bounded, then we say that (M;M0) is a consistent pair.

The View-Completeness Theorem (Theorem 12.11) inspires this term: timeslices are consistent
cuts.

Section 14.4 uses an additional property: that the process components appear independently in
the global model.

Definition 14.2 A multiprocess pair (M;M0) is independent when, in any graph
generated by M, any atom (except a bounding node) represents exactly one atom in
exactly one component model inM0.

14.2. Extendibility

The View-Completeness Theorem (Theorem 12.11) yields the following as an easy consequence.

109

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.



Theorem 14.3 (Extendibility) Suppose consistent parallel pair (M;M0) generates
graph . Any set X of mutually concurrent events from  extends to a consistent cut:
that is, a consistent cut X 0 exists with X � X 0.

Proof Such a set X extends to a maximal concurrent set X 0. From the View-Completeness
Theorem (Theorem 12.11), X 0 must a consistent cut.

Hence any acyclic event is part of a consistent cut, and we can find timeslices using a greedy
algorithm: just keep appending mutually concurrent events.

14.3. Extremal Timeslices

From the Extendibility Theorem (Theorem 14.3), we know that any acyclic event naturally extends
to a timeslice. From the the View-Completeness Theorem (Theorem 12.11) we know that this
timeslice will be a consistent cut. From Theorem 9.21 we know these consistent cuts form a lattice.
Since things are finite, this set has a unique maximum and a unique minimum.

Section 14.3.1 constructs these extremal consistent cuts: they are the timestamp and rollback
vectors, slightly adjusted. Section 14.3.2 proves that the event sets of these adjusted vectors are
indeed the extremal cuts. (Section 14.4 will use these adjusted vectors to characterize arbitrary
timeslices.)

14.3.1. Adjusted Timestamp Vectors and Adjusted Rollback Vectors

The timestamp vector of an event consists of the maximal event from each process that precedes
or equals that event. Suppose acyclic event A occurs at exactly one place: process p. Then the p
entry from V(A) equals A. We obtain the adjusted timestamp vector by, for each q 6= p, replacing
the process q entry of V(A) with the minimal event equivalent to its local successor edge. Barring
local cycles, we just take the �q V(A) entry and adjust it one event forward. In the more general
case that A occurs at multiple processes, then we only slide forward the events at the processes that
A does not touch.

We define adjusted rollback vectors symmetrically by adjusting backward the entries from the
rollback vector. For each q 6= p, we replace the process q entry of R(A) with the maximal event
equivalent to its local predecessor edge.

Definition 14.4 Suppose consistent parallel pair (M;M0) acts on graph �. Let A
be an acyclic non-bounding event from  =M(�); let � =M0(�).

Construct the adjusted timestamp vector V�(;M;M0; A) from V(A) as follows. For
each p 2 PROC-NAMES such that Ajp does not exist:
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� Let E be the edge from �p V(A) to nextp((�p V(A))) .

� Replace �p V(A) by the p-minimum from

fC : C
p

� Eg

Define the adjusted rollback vector R� similarly, using prev(p) (�p R(A)) and the
p-maximum. As with ordinary timestamp vectors, we will truncate the cumbersome
parameter list whenever possible.

Definition 14.4 works: the entries of the adjusted timestamp vectors and adjusted rollback
vectors exist.

Proposition 14.5 Suppose consistent parallel pair (M;M0) acts on graph �. Let
A be an acyclic non-bounding event from  = M(�); let � = M0(�). All entries of
V�(A) and R�(A) are defined.

Proof If V(A) contains the  maximum, then A must be the maximum. From this observation
and from Proposition 8.10, if A is non-bounding, then no (�p V(A))jp is the p-maximum in �.
Hence such an edge E exists, and because (M;M0) is view-complete, the set must be nonempty.
By definition of

p

� , each event in the set must touch the p component. The rollback case is
similar.

Figure 14.1 distinguishes between timestamp vectors and adjusted timestamp vectors.

Adjusting vectors only is complicated when events can occur at multiple processes or the view-
complete event for an edge is not an endpoint. Since neither of these facts apply to PPOT or RPOT,
adjusting vectors in these models is fairly simple.

14.3.2. The Extremal Timeslice Theorem

If event A is acyclic, then at every process where A does not occur, the timestamp vector entry
must precede the rollback vector entry.

Let p be such a process. At p, the first edge after the timestamp entry and the last one before
the rollback entry must both be concurrent with A. We select the V� and R� entries by finding the
minimal and maximal externally equivalent events (respectively)—hence the V� and R� entries are
respectively the minimal and maximal p events concurrent with A.

Consequently, the adjusted vectors give the bounds of the lattice of consistent cuts containing
an event:

Theorem 14.6 (Extremal Timeslices) Suppose consistent parallel pair (M;M0) acts
on graph �. Let  =M(�).
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Figure 14.1 For an event A, the timestamp vector V(A) is its information horizon:
the latest event, at each process, that A may have heard about. The adjusted time-
stamp vector V�(A) is just the timestamp vector, advanced one position everywhere
except global event A.
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If A is an acyclic non-bounding event, then

fB 2 V�(A)g = ufX : X is a consistent cut containing Ag

fB 2 R�(A)g = tfX : X is a consistent cut containing Ag

Proof IfA touches every process, then V�(A) = R�(A) and every entry isA. This set is mutually
concurrent because A is acyclic. Because the process components are totally ordered, this can be
the only timeslice.

So, assume that there exists a process p 2 PROC-NAMES such that Ajp does not exist. Let
B = �p V(A) and C = �p R(A). From Theorem 10.4, no event D touching p and concurrent with
A can have D �! B or C �! D. If C �! B, then A cannot be acyclic. So it must be the case
that Bjp properly precedes Cjp in the transitive p component. Let EB be the edge connecting B
to nextp(B) in , and EC be the edge connecting prevp(C) to C. Edge EB is concurrent with A
and and acyclic:

� Concurrent. If EB precedes A, then the out node of EBjp in � would be the p V(A) entry,
rather than the in node. But EB follows A, then by Definition 12.4 B �! A, which would
give that A !B and hence A is cyclic.

� Acyclic. If EB were cyclic, then nextp(B) �!B and thus B would not be the p entry in
V(A).

Hence f�p V�(A);Ag is a mutually concurrent set in , and so can be expanded to a consistent cut,
but no event preceding �p V�(A) in the p component can be part of a timeslice with A.

The case for �p R�(A) is similar.

Definition 14.4 defined adjusted timestamp vectors and adjusted rollback vectors as vectors:
arrays of events. The Extremal Timeslice Theorem (Theorem 14.6) establishes that these vectors
possess even more structure: their event sets are both cuts and timeslices.

Corollary 14.7 The event sets of V�(A) and R�(A) are consistent cuts.

Proof The u and t operations preserve consistent cuts.

Consequently, we can now regard V�(A) and R�(A) as simply event sets—since projection
will never be ambiguous.

14.4. Characterizing Timeslices

The Extremal Timeslice Theorem (Theorem 14.6) tells us that the adjusted timestamp vector for
an event gives us the minimal timeslice containing that event. One might conjecture that any
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timeslice can be obtained this way, but this conjecture is false. Figure 14.2 sketches a simple
counter-example.

If this conjecture were to hold in general, then every timeslice X would have to possess some
event A that forces of each remaining B 2 X to be part of X—where event A forces an event B
when B 6= A and B 2 V�(A).

The conjecture fails because acyclic events can be mutually concurrent without forcing each
other. However, we can express this forcing relation with a time model. If our consistent parallel
pair is acyclic and independent, then the forcing model will form an acyclic independent parallel
pair.

This insight yields two results:

Unique Signatures Suppose X is a timeslice. It is not true in general that X is the adjusted
timestamp vector of one entry. However, it is trivially true that X equals the join of the
adjusted timestamp vectors, over all elements of X .

X = tfV�(A) : A 2 Y g

If we removed elements from Y one by one, when would this relation stop holding? We can
establish that there is a unique Y � X such that the relation holds for Y , but does not hold
for any proper subset of Y .

Meta-Timeslices A set of events is such a “timeslice” signature iff it is a mutually concurrent set
in the forcing model. Consequently, a timeslice of k events in the forcing model expresses
2k timeslices in the original model.

In Section 14.4.1, we define the FORCE model, to capture when an event forces another. In
Section 14.4.2 we establish a series of lemmas about the FORCE model and the parallel pairs it
induces. We use these lemmas to establish our main result in Section 14.4.3.

A

B

p

q

X V*( )BV*( )A

Figure 14.2 Timeslice X = fA;Bg equals neither V�(A) nor V�(B). This
example disproves the conjecture that the Extremal Timeslice Theorem
(Theorem 14.6) might characterize all timeslices.
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14.4.1. A Model to Express Forcing

We define a model that copies each cross-process edge in the single-step global model and slides
the in-node one event forward.

Definition 14.8 Suppose independent parallel pair (M;M0) acts on graph �. Let
 =M(�) and � =M0(�).

Define the model FORCE on  as follows:

� copy ; let each atom here represent itself.

� for each pair of non-bounding nodes A;B such that:

– A�!B in 

– A occurs at process p but B does not.

add a ghost edge from nextp(A) to B in the copy.

For example, to construct FORCE�POT we copy the POT graph, and then for each send whose
receive is at a different process, we draw an edge from the successor of the send to the receive.

The remainder of Section 14.4 establishes that FORCE captures the forcing discussed earlier.
Figure 14.2 illustrated this fact: the counter-example timeslice X remains a timeslice even if we
apply FORCE—indicating that neither event forces the other.

14.4.2. Preparation

First, we show that applying FORCE preserves independence and parallelism.

Lemma 14.9 Suppose (M;M0) is an independent consistent parallel pair. Then
((FORCE �M);M0) is an independent transitively-bounded parallel pair.

Proof This is clear from the definitions. The only tricky part is showing that FORCE �M is
bounded.

Suppose FORCE adds edge nextp(A) �!B. and nextp(A) was the global maximum. Let
E be the edge from A to nextp(A) . E is concurrent with B, but no node at p is. Hence (M;M0)
could not be view-complete.

The FORCE model does not preserve consistency because the resulting model may not be
view-complete. Consider the PPOT model. If only an intermediate event keeps a send from
immediately preceding a receive, then FORCE will slide the in-node of the message edge up to
the intermediate event. The edge from the intermediate event to the receive will then have no
externally equivalent event.
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We can use view-completeness to show that a path in  can always be extended on the end with
FORCE() edges:

Lemma 14.10 Suppose independent consistent parallel pair (M;M0) acts on graph
�. Let  =M(�) and � =M0(�).

Suppose A�!B in  and B �! C in FORCE(). Then A�! C in .

Proof We establish the result assuming B �!C in FORCE() but not  . The more general
result follows easily—just use this special result to have the  path absorb each edge in the  path.

Let event B occur at process p. Then C must occur somewhere else, and prevp(B) �! C in
. Thus any event D at process p satisfies

D �! C in  _ A�!D in 

If A =�!C in  then A =�! prevp(B) and B =�!C. Let E be the edge connecting prevp(B)
to B. Then A =�!E and E =�!C . Since (M;M0) is view-complete, there exists an event D at
process p with A =�!D and D =�!C. This violates the above condition.

However, a path starting with a new FORCE edge only induces a  path starting from the
immediate predecessor of the path’s first event.

Lemma 14.11 Suppose independent consistent parallel pair (M;M0) acts on graph
�, and  =M(�).

Suppose non-bounding  event A occurs at process p 2 PROC-NAMES. For any
event B:

A�!B in FORCE() =) prevp(A) �!B in 

Proof If B is bounding, the result is trivial. So assume B is not bounding. Let q be the process
of B. Suppose A�!B in FORCE(). Consider the path from A to B in FORCE():

A�!B1 �! ::::�!Bk = B

If A�!B1 in , then we easily have the result:

prevp(A) �!B1 2 

Otherwise, Definition 14.8 gives the fact:

prevp(A) �!B1 in 

In either case, Lemma 14.10 gives the fact:

prevp(A) �!B in 
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Consequently, FORCE preserves the acyclic property.

Lemma 14.12 Suppose consistent parallel pair (M;M0) is independent. If M is
acyclic then FORCE �M is acyclic.

Proof Let  be anM graph. If FORCE() has a cycle, this must have come from a FORCE()
edge, which all cross processes. So there exists A at process p and B at q 6= p with A !B in
FORCE(). Lemma 14.11 gives prevp(A) �!B and prevq(B) �!A in . Hence any event
at p either precedes B or follows prevq(B) in . But the edge from prevp(A) to A does neither,
and the fact that (M;M0) is view-complete gives a contradiction.

For events concurrent in the original model, FORCE precedence is equivalent to V� forcing.

Lemma 14.13 Suppose independent consistent parallel pair (M;M0) acts on graph
�,M is acyclic, and  =M(�).

If A and B satisfy A = !B in , then

A 2 V�(B) () A�!B in FORCE()

Proof Let B occur at process p.

From Proposition 12.9 and Definition 14.4, we know that the p entry of V�(B) is B, but for
every q 6= p, the q entry is nextq((�q V(B))) .

Let A occur at q 6= p. If A 2 V�(B), then A =�!B in  but prevq(A) �!B in , hence
A�!B in FORCE().

If A�!B in FORCE(), Lemma 14.11 give prevq(A) �!B in . Since A =�!B in , we
have prevq(A) = �q V(B). Hence A 2 V�(B).

14.4.3. The Main Result

We now establish the main result: the FORCE maxima of a timeslice form the unique forcing
subset of that timeslice.

Theorem 14.14 Suppose independent consistent parallel pair (M;M0) acts on
graph �, andM is acyclic. Let  =M(�) and � =M0(�).

Any -timeslice X has a unique minimal subset Y such that

X = tfV�(A) : A 2 Y g

Further, event set Y is a such a minimal subset iff it is a mutually concurrent set in
graph FORCE().
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Proof Let X be a timeslice from . Since FORCE() is acyclic (from Lemma 14.12), let Y be
the set of FORCE sinks in X .

Y = minFORCE()
(X)

For some p 2 PROC-NAMES, let B = �pX and

B0 = �p
�
tfV�(A) : A 2 Y g

�

Consider the two cases:

1. If B 2 Y , then for any other C 2 Y , we have B = !C in FORCE(). Lemma 14.13 and
the fact that B = !C in  also gives that B 62 dV�(C)e. Hence B0 = B.

2. If B 62 Y , then by construction of Y there exists a C 2 Y with B �! C in FORCE(). By
Lemma 14.13, B 2 V�(C). If D 6= C from Y has �p V�(D) dominating B, then B �!D
in  and X could not be a timeslice. Hence B 0 = B.

Thus we establish the first part of theorem.

One direction of the second part is easy: by construction of Y , no two events can precede
each other in FORCE(). For the other direction, observe that Y will be the set of sinks in the 
timeslice tfV�(A) : A 2 Y g.

This theorem has another interesting aspect: it gives us our first example of a useful time model
different from the standard LINEAR, POT collection.

Useful Applying FORCE to a view-complete version of POT yields a model whose timeslices
represent large sets of timeslices in POT.

Different The LINEAR model follows real time. The POT model departs from real time, but
still expresses a chronologically “reasonable” temporal order. However, the FORCE model
explicitly expresses orderings not found in real time.
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Chapter 15

Conclusion

Chapter 1 asserted that distributed systems with distributed information require a distributed notion
of time. Chapter 2 through Chapter 14 then develop mechanisms for a theory of distributed time.

This paper concludes by returning focus to the original assertions. Section 15.1 summarizes
the mechanisms we developed and the motivations behind them. Section 15.2 outlines future
research directions: to demonstrate the power of this theory by using it as a framework for secure
applications.

15.1. Summary

Distributed Time for Distributed Systems Natural intuition suggests that time is linear, and
thus that we should organize experience into a nicely behaved linear sequence of moments. Recent
thought suggests that this intuition fails for asynchronous distributed systems, where information
is distributed but perception is delayed. Such distributed environments require a more distributed
theory of time.

� Distributed time provides the best perceivable approximation of the underlying linear de-
scription, which asynchrony renders unknowable.

� Distributed time provides a more appropriate language for distributed systems concepts not
expressible in the language of real time.

Abstracting away irrelevant physical details to some convenient notion of discrete event is a
common tool. Distributed time formalizes the notion of abstracting away irrelevant temporal details
as well. The tools extend further: to abstracting away irrelevant or inconvenient computational
detail.

� Distributed time expresses the conceit that the computation that “really happens” differs from
the computation that physically occurred.
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Laying the Groundwork Our ultimate claim is that distributed time clarifies problems and
solutions in distributed environments. This paper lays the groundwork for establishing that claim
by building the formal mechanisms for a theory of distributed time.

� We built a standard computation graph format to talk about events and temporal precedence,
and translated physical descriptions of computation into ground-level computation graphs.

� We developed a time model formalism to express abstraction: a time model transforms a
computation graph to a more abstract one whose individual events and edges may represent
events and edges in the original graph.

� We explored some properties of time models, and in particular how their functional nature
allows us to compose them to build hierarchies of abstraction, and multiple routes to the
same graph.

� We developed parallel pairs of time models, to provide two levels of description of parallel
computation.

� We explored the structure of timeslices—event sets representing points of logical simultane-
ity. In particular, we showed how timeslices relate to global states in real computations,
how timeslices form a lattice, and how to construct time models to provide certain timeslice
properties.

15.2. Future Work

Establishing that distributed time is the appropriate framework for distributed systems requires
formalizing distributed time; this paper provides that foundation. This section discusses how
future work will round out the claim: Section 15.2.1 discusses the benefits of using distributed
time, Section 15.2.2 quickly sketches some examples, and Section 15.2.3 outlines further research.

15.2.1. Using Distributed Time

Distributed time provides a general framework to think about problems (and solutions) relating to
time in distributed systems. We highlight some of the advantages:

Orthogonality Distributed time introduces orthogonality between the clocks tracking temporal
relations and the protocols using these relations. We can change clock implementations,
perhaps due to security or efficiency requirements, without changing protocols.

Flexibility Framing protocols explicitly in terms of distributed time allows insight and extensions
to the protocols.
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Expressiveness Freed from realistically describing computation, distributed time models can
express more convenient abstractions. The orthogonality between clocks and protocols
extends to an orthogonality between clocks and temporal relations—we can change models
without changing the way clocks are called and used.

Abstraction Hierarchies By providing for hierarchies of related time models, distributed time
allows for using protocols with multiple models even within a single computation.

Encapsulation and Unification The orthogonality between clocks and protocols gains some
additional advantages: we can solve once and for all the clock issues we otherwise need to
solve separately for each protocol, and we can unify in a single framework protocols that
separately affect distributed time.

15.2.2. Quick Sketches

As a preview of future publications, we quickly sketch some examples supporting how distributed
time might achieve the benefits we catalog above.

For these sketches, we consider two application problems that lend themselves to distributed
time.

Snapshots As Chandy and Lamport [ChLa85] point out, the problem of one process assembling
a distributed snapshot of the global state at one instant is difficult when asynchrony prevents
identifying an instant, but a consistent global state suffices. Consistent global states are just
the timeslices from a view-complete version of POT.

Rollback If a process wants to undo an event A and execute A0 instead, all events that depend on
A need to be undone. Distributed time is relevant on two levels: determining what needs to
be undone reduces to detecting temporal precedence in a partial order model; establishing a
computation whereA0 happened instead ofA requires abstracting from a POT graph showing
the rollback to one showing the “correct” computation.

Considering the problems of snapshots and rollback provides some simple examples of the
advantages of distributed time.

Orthogonality If we obtain snapshots by using POT-clock primitives to determine concurrency,
then we can change from vector clocks to logging sites (to avoid the n entries in each vector)
or to signed vectors (to gain some degree of security) without changing the protocol.

Flexibility Almost without exception, current snapshot protocols use marker-pushing and thus
are limited to taking a single, roughly current snapshot. Phrasing the problem in terms of
POT relations allows a protocol using POT-clocks, which immediately gives variations for
more general versions of the problem, such as off-line snapshots, multiple snapshots, and
using snapshots to detect unstable properties.

121

Carnegie Mellon Computer Science Technical Report CMU-CS-93-231.



Expressiveness Suppose we wanted to pretend that the only instantaneous global states were
those where no messages were in transit. A simple extension of POT expresses this conceit:
timeslices here are exactly the desired global states. A process can capture such a global
state simply by using its favorite snapshot protocol with the new clock primitives.

Abstraction Hierarchies Processes might want to use multiple clock suites even within the
same computation. A snapshot with POT clocks provides a global state; a snapshot with
FORCE � POT clocks provides an exponential number of global states.

Encapsulation and Unification Rollback with modified replay changes history. The orthog-
onality of clocks and protocols along with the single time framework allows us to still take
off-line snapshots using the same snapshot protocols. The hierarchy of models give further
flexibility: a snapshot from the original graph traps for potential global states in the real
physical computation; a snapshot from the revised graph traps for global states in the virtual
physical computation.

15.2.3. Research Plan

Current research consists of formalizing the points raised in the quick sketches. This work explores
three principal topics:

Distributed Time as a Framework for Applications We need to formally express applica-
tion problems (such as snapshots and rollback) in terms of the distributed time framework.

Clocks for General Time Models Specifying clock behavior brings up some additional issues,
such as what a process can know about the underlying computation (knowability) and how
querying about temporal relations should affect the temporal relations (observation effects).

Security in Clocks and Protocols By departing from real time, we sacrifice the potential for
easy hardware verification of clock values. Encapsulation and orthogonality arguments apply
here too: distributed time raises security risks, and protocols that depend on distributed time
(even tacitly) are liable to these risks.

Accuracy Do distributed time clocks accurately report temporal precedence? What hap-
pens if networks or processes fail—or act maliciously?

Confinement Distributed time involves distributing private information. Can malicious
agents exploit this information?

This research project started with the first identification of these security issues [Sm91], and
will culminate in a thorough exploration of security and distributed time. [Sm94]
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Index of Notation

Notation Description Page

� the precedence relation on event sets induced
by the graph 

78

�! precedes 27

�! precedes or equals 27

=�! does not precede 27

 ! mutually precedes 27

 ! mutually precedes or equals 27

= ! concurrent 27
p

� externally equivalent at p 100

> maximum or final event 32

? minimal or initial event 32

u meet: the greatest lower bound, usually used
as a binary operation

79

t join: the least upper bound, usually used as a
binary operation

79

[P union of graphs relative to pairing P 39

[ union of models 41

[Ø disjoint union 39, 42

� graph identity 23

�P graph identity, enumerated by pairing P 23

�= graph isomorphism 23

�=P graph isomorphism, enumerated by pairing
P

23

� graph containment 22
�� model containment 48
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� direct model containment: �� , except the
graphs are identical

49

�
� strong model containment: �� , except the

constituencies are equal
49

� strong and direct model containment:
�
� and

� simultaneously.
49

> refinement 54
�
< model component: �� and >

simultaneously
56

< direct model component: �
< with � 56

�
v strong model component: �

< with
�
� 56

v strong and direct model component: �
< with

� and
�
�

56

xjM0 what x represents in the multicomponentM0 68

xjp what x represents in the nontransitive
process p component

68

xj
M0

what x represents in the transitive closure
M0 of the multicomponent

68

xjp what x represents in the transitive process p
component

68

dSe local past closure: the events that precede or
equal these guys in the multicomponent

71

bSc local future closure: the events that follow or
equal these guys in the multicomponent

71

next(A) the event following A 99

prev(A) the event preceding A 99

nextp(A) the following event at process p 100

prev
p
(A) the preceding event at process p 100

(A k B) the intermediate event between A and B 105

hM; � i representation map fromM(�) to � 29

hhM; M0; � ii the containment map fromM(�) onto
M

0(�), whenM0 ��M
49

M=M0 the factoring model fromM0 graphs toM
graphs

61
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W � strings of items from W 11

�; �;  generic symbols for computation graphs;
usually � transforms to � and � transforms
to 

22

� transitive closure of graph � 35

� transition function 11

� finite binary strings 11

�pW the p element of set W 66

acyclic when a node is not on a cycle, or a graph has
no cycles, or a model produces only graphs
with no cycles

37

adjusted rollback vector the rollback vector for an event, with with
the entries for the other processes replaced
by the last acyclic concurrent event—usually
the predecessor

110

adjusted timestamp vector the timestamp vector for an event, with with
the entries for the other processes replaced
by the first acyclic concurrent
event—usually the successor

110

arrive event type: message arrives at receive queue 24

atoms the nodes and edges of a graph 22

bounded possessing a unique minimum event and a
unique maximum event

36

component a model that produces a well-defined
subgraph of another model

56

computation graph a labeled directed graph, describing some
given computation

21

compute event type: change state; leave message
queues untouched

12

CONFIGS process configurations 11

concrete generator a generator that produces no ghost events 38

concurrent when two events are incomparable in a
temporal relation; also, when a multiprocess
pair has the property that extrema from
different processes are concurrent

27, 71
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DEV-CONFIGS device configurations 14

consistent cut a cut that is also a timeslice 77

consistent parallel pair a parallel pair that is transitively bounded
and view-complete

109

constituency the atoms in � that some atom inM(�)
represents

29, 29

contain a relation between models, indicating
containment of graphs via isomorphism, and
containment of constituencies

48

containment map the bijection between a subgraph and its
isomorphic image

49

cut a set of events such that each process is
touched exactly once

75

cyclic when a node lies on a cycle or when a graph
contains cycles

37

D generic symbol for domain of a model 29

decomposition a model consisting of a disjoint union of
components of another model, with some
additional properties

59

decomposition set the set of components that comprises a
decomposition

59

direct containment model containment, when the isomorphic
graphs are actually identical

49

direct component the component relation, when model
containment is actually direct containment

56

domain of a model the computation graphs on which a model is
defined

29

depart event type: message departs send queue 24

DEV-NAMES I/O device names 11

event a discrete “thing that happens,” signified by a
node in a computation graph

21, 27

externally equivalent when two atoms at the same process appear
the same to a different process

100

EXTREMA a model to collapse extrema 37

factoring model the new model taking graphs generated by a
decomposition to graphs generation by a
model

61
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FORCE model to slide in-nodes of cross-process
edges forward one position, thus expressing
when one event in a timeslices forces the
membership of another

115

G generic symbol for set of computation graphs 22

generator of G a model taking a set of graphs to G 38

ghost an atom that represents nothing 28

global state the part of the ground-level computation
graph representing system activity at some
instant in real time

93

ground-level computation graph the computation graph version of a system
trace

25

grounding generator a generator that generates a set of graphs
from a set of ground-level graphs

38

identical two computation graphs that completely
match: edges, nodes, labels

23

idle event type: nothing happens 32

independent when, in a multiprocess model, each
non-bounding atom represents a single atom
at a single process component

109

isomorphism two computation graphs that match, when
we ignore labels

23

L generic symbol for localization 69

LINEAR the linear order model 32

linear time order a “total” order that allows simultaneous
events

28

LINLINE local timeline model from LINEAR 43

LINLINES disjoint union of process LINLINE models 45

localization model obtained by retaining only the edges
coming from the transitive multicomponent

69

locally acyclic when any cycle must leave involve at least
two processes

101

M generic symbol for time model 29

M transitive closure of modelM 36

M
0 generic symbol for a decomposition of a

modelM
59

M(�) the graph produced byM given � 29
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M(G) applyM to each guy in G 30

max operation on an event set from  that retains
only the relative maxima

78

MESSAGES possible messages 11

MSG model that makes receives follow sends 45

min operation on an event set from  that retains
only the relative minima

78

model time model: a representational
transformation on computation graphs

29

multicomponent the set of process component models for a
multiprocess model

65

multilinear model a multiprocess model where each process
component is linear

72

multiprocess model a model consisting of a set of process models
glued together

65

multiprocess pair a multiprocess model together with a
transitive reduction of its multicomponent

65

NAMES process and I/O device names 11

NONIDLE model that removes idle events 43

pairing between �1 and �2 a subset of �1 � �2, pairing a subgraph of the
one with a subgraph of the other

23

parallel model a concurrent multiprocess model with
straight-line process graphs

72

parallel pair a parallel model together with its
multicomponent

72

PH model inserting place-holder events 105

photo event type: photo event in ground-level
computation graph

25

POT model for partial order time 46

P(W ) set of all subsets of W 14

PPOT POT with intermediate events 106

PROC-NAMES process names 11

Q state set for processes 11

QDEV state set for I/O devices 14

q0 initial state 11
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R receive queue 11

R(;M;M0;A) the rollback vector of event A in graph 
from parallel pair (M;M0)

87

R(A) the rollback vector for event A, when the
graph and models are understood

87

R�(;M;M0; A) the adjusted rollback vector of event A in
graph  from parallel pair (M;M0)

110

R�(A) the adjusted rollback vector for event A,
when the graph and models are understood

110

receive event type: receive a message 12

representative the atom inM(�) that represents an atom in
�

29, 29

representation map function taking atoms in one graph to what
they represent in another

29, 29

rollback vector cut containing the minimal event from each
process that follows or equal a given event

87

RPOT restricted POT: restrict the domain so that all
graphs produced are view-complete

105

S send queue 11

send event type: send a message 12

strong containment model containment, when the constituencies
are actually equal

49

strong component the component relation, when model
containment is actually strong containment

56

strong direct containment strong containment and direct containment
simultaneously

49

strong direct component strong component and direct component
simultaneously

56

SYNC model synchronizing equal length total
orders

46

system trace exhaustive physical description of a
computation

18

TIMELINE local timeline with no idle events 45

TIMELINES disjoint union of process TIMELINE models 45

time model a representational transformation on
computation graphs

29

timeslice maximal set of mutually concurrent events 76
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timestamp vector cut containing the maximal event from each
process that precedes or equals a given event

87

TRANS transitive closure model 36

transitively bounded when the transitive closure is bounded 36

V(;M;M0;A) the timestamp vector of event A in graph 
from parallel pair (M;M0)

87

V(A) the timestamp vector for event A, when the
graph and models are understood

87

V�(;M;M0; A) the adjusted timestamp vector of event A in
graph  from parallel pair (M;M0)

110

V�(A) the adjusted timestamp vector for event A,
when the graph and models are understood

110

vector an indexed set of events, one from each
process

75

view-complete when for every transition edge at a process,
an event has the same external view

101
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