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Abstract. We propose a solution that provides secure storage for cryp-
tographic precomputation using only insecure memory that is suscep-
tible to eavesdropping and tampering. Specifically, we design a small
tamper-resistant hardware module, the Queue Security Proxy (QSP),
that situates transparently on the data-path between the processor and
the insecure memory. Our analysis shows that our design is secure and
flexible, and yet efficient and inexpensive. In particular, both the timing
overhead and the hardware cost of our solution are independent of the
storage size.

1 Introduction

1.1 Precomputation

Precomputation is an optimization technique that reduces an algorithm’s exe-
cution latency by performing some of its operations before knowing the input
to the algorithm. The intermediate result produced by precomputation is stored
and later used, when the input arrives, to compute the final output of the algo-
rithm. As only the post-computation, i.e., the remaining computation that has
not been precomputed, needs to be done to produce the output upon the input’s
arrival, execution latency is reduced.

Cryptographic precomputation In cryptography, precomputation is an old
and well-known technique. For example, fixed-base modular exponentiation,
which is an operation fundamental to almost all public-key cryptographic al-
gorithms, can be sped up by precomputing a set of related exponentiations [6].
As another example, it has been widely observed that DSA signatures, as well
as ElGamal and Schnorr signatures, can be precomputed [6]. More generally, all
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signature schemes converted from Σ-protocols [15] using the Fiat-Shamir trans-
formation [4], which include many group signatures and anonymous credential
systems such as [5,7,29], can benefit from precomputation quite significantly, as
most of the heavyweight operations, namely group exponentiation, can be pre-
computed in these schemes. Finally, precomputing homomorphic encryption can
speed up mix-nets [8], as recently suggested in [1].

Reusable and consumable precomputation Precomputation can be reusable,
i.e., a single precomputation can be reused in multiple algorithm executions, or
consumable, i.e., a new precomputation is needed per execution. Speeding up
modular exponentiation using the sliding window method [31] is an example of
reusable precomputation: any modular exponentiation with the same base can
be sped up by one-time precomputing a set of values for that base. On the other
hand, the precomputation of DSA signatures is consumable: the group generator
must be exponentiated with a new exponent for every signature to be signed.

Consumable precomputation poses a bigger challenge than reusable pre-
computation does when it comes to efficiently securing it against hardware
attacks. Precomputation, in general, requires integrity of the precomputation
results. Consumable precomputation usually requires confidentiality and protec-
tion against replay as well. Finally, the storage space necessary for consumable
precomputation grows with the rate and burstiness of the execution of an algo-
rithm, while it is a constant in reusable precomputation.

In this paper, we are interested in overcoming the bigger challenge, i.e., how
to efficiently secure consumable precomputation. In what follows, we refer to
consumable precomputation as precomputation, for simplicity’s sake.

1.2 The Challenge

Precomputation is capable of reducing the execution latency of an algorithm only
if a precomputed result is available upon an input’s arrival. In situations where
an algorithm is routinely being executed over time, computing and storing only
a single precomputation result would not sustain a low latency throughout the
executions; to sustain a low latency, one must therefore buffer up precomputation
results, i.e., precompute those results in advance and store them in such a way
that they are readily available when needed.

The need for secure storage It is therefore of paramount importance to
ensure that no security breach is introduced to a cryptographic algorithm by
precomputing it. The safest approach when handling the precomputation re-
sults is to treat them as internal states of the entity executing the algorithm,
thereby effectively assuming them to be unobservable and unmodifiable by any-
one else. Consequences could be devastating should such an assumption cease to
hold. For example, when precomputing DSA signatures, allowing an adversary
to eavesdrop, overwrite, or replay even only one precomputation result would
leak the private signing key.

As storing multiple precomputation results requires significantly larger mem-
ory than storing only the internal states needed for a single execution, it is unre-
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Fig. 1. (a) Keeping the storage inside the hardware TCB is unrealistic; (b)
putting the storage outside the hardware TCB exposes us to attacks.
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Fig. 2. In our model, we keep the hardware TCB small by leaving the storage
outside, but adding a small Memory Security Proxy.

alistic to assume that the whole storage would fit in a tamper-resistant module
such as a hardened CPU (see Figure 1(a)). Leaving the memory outside (see Fig-
ure 1(b)) exposes us to the attacks discussed above. In this paper, we design a
small tamper-resistant hardware module that effectively turns insecure memory
into one that is secure for storing precomputation results—see Figure 2.

1.3 Our Contributions

We make the following contributions in this paper:

– We motivate that, to sustain the reduced execution latency of cryptographic
algorithms made possible by precomputation, one needs to store a pool of
readily available precomputation results; and that the security of such stor-
age is critical to the security of the cryptographic algorithms.

– We design an architecture that transparently turns untrusted memory into
one that is secure for storing precomputation results. The design is very
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efficient and has hardware and timing costs independent of the size of the
memory. Our analysis shows that the architecture we propose is secure.

The rest of this paper is organized as follows. In Section 2, we provide some
background on hardware-based security and review the necessary cryptography.
In Section 3, we describe our approach to overcome the posed challenge. We
present our solution in detail in Section 4, and analyze its security and efficiency
in Section 5. We discuss several research directions that are worth exploring in
Section 6, and conclude the paper in Section 7.

2 Background

2.1 Hardware-Based Security

Designing hardware-based security mechanisms into the computing architecture
is important as software security solutions are incapable of defending against
hardware attacks and many software attacks. There are mechanisms that provide
security against physical tampering through means such as tamper resistance,
tamper evidence, and tamper detection and response. Deploying a hardware-
based security mechanism could be very expensive; different trade-offs between
security and cost can lead to radically different solution paradigms.

The IBM 4756 approach The IBM 4758/4764 cryptographic coprocessors [25,12]
are secure crypto processors implemented on a programmable PCI board, on
which components such as a microprocessor, memory, and a random number gen-
erator are housed within a tamper-responding environment. They are general-
purpose x86 computers with a very high security assurance against physical
attacks. While they find applications in the commerce sector such as securing
bank ATMs, their high costs prevent most end-users from benefiting from them.

The hardened-CPU approach A more realistic approach to secure general-
purpose computers such as today’s PCs against software and even certain hard-
ware attacks is by assuming that only CPUs are hardened. In their Oblivi-
ous RAM (ORAM) work, Goldreich and Ostrovsky [14] formalized a general
approach to protecting the contents of exposed memory, including hiding ac-
cess patterns. However, ORAM is too inefficient to use in practice. Lie et al.’s
eXecute-Only Memory (XOM) [18] architecture built hardened-CPU prototypes
but is vulnerable to replay attacks. Suh et al. later proposed AEGIS [26], which
is immune to replay attacks and uses techniques such as Merkle-trees [20] for bet-
ter efficiency. Other advances include using AES in the Counter mode to reduce
memory-write latencies [27,30], prediction techniques to hide the memory-read
latencies in [22,24], and on-chip caches [13] and incremental multi-set hashes [9]
to reduce latency incurred by memory integrity checking.

The architecture we are going to propose in this paper falls under the hardened-
CPU approach. Rather than arbitrary software, however, our architecture deals
only with precomputation. We note that although architectures like AEGIS can
provide the same functionality as ours, ours is simpler and more efficient due to
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the exploitation of properties of precomputation. In fact, while AEGIS aims to
provide a secure execution environment for general-purpose computers such as
x86 PCs, we gear our architecture towards a coprocessor for embedded devices.

The TCG’s TPM approach The Trusted Computing Group (TCG) is a con-
sortium that works towards increasing the security of standard commodity plat-
forms. The group proposed a specification of an inexpensive micro-controller chip
called the Trusted Platform Module (TPM) [28] to be mounted on the mother-
board of commodity computing devices such as PCs. In the last few years, major
vendors of computer systems have been shipping machines that have included
TPMs, with associated BIOS support.

A TPM provides cryptographic functions, e.g., encryption, digital signature
and hardware-based random number generation, and internal storage space for
storing, e.g., cryptographic keys. TPMs act as a hardware-based root of trust
and can be used to attest the initial configuration of the underlying computing
platform (attestation), as well as to seal and bind data to a specific platform
configuration (unsealing or unwrapping). The aspiration is that if the adversary
compromises neither the TPM nor the BIOS, then the TPM’s promises of trusted
computing will be achieved. The reality is murkier: attacks on the OS can still
subvert protections; recent work (e.g., [17]) is starting to demonstrate some
external hardware integration flaws; and the long history of low-cost physical
attacks on low-cost devices (e.g., [2]) hasn’t caught up with the TPM yet.

2.2 Cryptographic Tools

Various symmetric and asymmetric cryptographic techniques provide security
guarantees such as confidentiality, authentication and integrity. For example,
AES is a block cipher that provides confidentiality of data, whereas HMAC
is a message authentication scheme that provides both message authentication
and integrity. Here we review a relatively recent cryptographic tool called au-
thenticated encryption, which effectively combines the functionality of AES and
HMAC. Our solution makes use of it.

Modes of operation A block cipher is a function that operates on block-length
bit strings based on a key; each key determines some way of mapping block-length
strings to block-length strings. Since using a block cipher on its own leads to
many problems—for example, what to do with messages that are longer than
a single block—modes of operation have been developed that describe how to
extend a cipher to a secure encryption scheme.

Standard modes of operation include Electronic Code Book (ECB), Cipher-
Block Chaining (CBC), and the Counter (CTR) mode. Different modes have
different properties. For instance, decryption is faster than encryption under the
CBC mode, which is preferable when decryption is on the critical path. The CTR
mode can potentially further reduce both encryption and decryption latency by
taking the AES operations away from the critical path.
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Authenticated encryption Encryption constructed from block ciphers such
as AES operating under any of the modes aforementioned provides data confi-
dentiality but no data authenticity or integrity. The past decade has seen the
emergence of modes of operation that efficiently provide both. When operating
under these modes, a block cipher effectively becomes authenticated encryp-
tion [3], rather than just encryption alone. Among these modes, the Counter
with CBC-MAC (CCM) mode and the Galois/Counter (GC) mode are partic-
ularly attractive because authentication is done without any feedback of data-
blocks. This means that both authentication and encryption can be parallelized
to achieve extremely high throughput. We use AES under GC mode (AES-GCM)
in our solution.

AES-GCM has two operations, authenticated encryption AEnc and authenti-
cated decryption ADec. AEnc takes four inputs: (i) a secret key K appropriate for
the underlying AES, (ii) an initialization vector IV , (iii) a plaintext P , and (iv)
an additional authenticated data (AAD) A. Both the plaintext and the AAD will
be authenticated; however, only the plaintext will be encrypted as well. AEnc
outputs (i) a ciphertext C whose length is the same as that of P and (ii) an
authentication tag T . The authentication tag is essentially the cryptographic
checksum of the message. ADec takes five inputs: K, IV , C, A and T . It out-
puts either P or a special symbol that indicates failure, i.e., the inputs are not
authentic. We refer the readers to [19,11] for details regarding the specification,
performance and security of AES-GCM.

3 Our Approach

We now return to the challenge we discussed in Section 1: how to cost-effectively
provide a secure storage for cryptographic precomputation so that it can provide
a sustainable benefit without breaking the security. We introduce in this section
our approach to overcome such a challenge.

3.1 Memory Security Proxy

Since putting memory within the hardware TCB would not meet our design goal
of being cost-effective, in our solution insecure memory will be used. To account
for the fact that insecure memory can be eavesdropped and tampered with,
we augment its use with security measures enforced by a small tamper-proof
hardware module through cryptographic techniques. We call such a module the
Memory Security Proxy (MSP). The MSP must be efficient in both space and
computation: its size (e.g., in terms of gate-count) and the timing overhead it
incurs should grow as slowly as possible with—or even better, be independent
of—the size of the insecure memory it is securing.

In our solution, the MSP situates between the insecure memory and the
processor, the latter of which executes (the pre- and post-computation of) the
cryptographic algorithm. The MSP effectively turns the insecure memory into a
secure one by instrumenting the processor’s read and write accesses. This means
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that the MSP will incur timing overhead on these accesses, but should otherwise
be transparent to the processor: the processor is oblivious to whether it is access-
ing insecure memory without protection whatsoever, memory secured through
hardware tamper-proof mechanisms, or our MSP. This is an attractive property,
as it simplifies designs and allows better interoperability and upgradability.

In a threat model where adversary is physically present and capable of launch-
ing hardware attacks against the computing devices, the processor that executes
the cryptographic operations must be trusted to behave securely regardless of
those attacks. Similarly, we rely on the MSP to be as trustworthy as the main
processor. This is a realistic assumption because any satisfactory MSP design is
going to have a very small physical size, most likely just a small fraction of the
size of the processor. Figure 2 depicts our architectural model.

We point out that the above model is not a new one; rather, all architec-
tures we reviewed in Section 2 that take the hardened-CPU approach follow this
model. However, all those architectures focus on securing general-purpose com-
puters such as PCs, in which the insecure memory being protected is randomly-
accessible. It has been proven in these works that it is very difficult to efficiently
secure insecure RAM. However, we only need to protect a storage of precom-
puted results. As we will show next, we can exploit the properties of crypto-
graphic precomputation to avoid some of the difficulties and thus achieve better
performance results.

3.2 Data Structure for Precomputation Storage

Applying precomputation to a cryptographic algorithm turns the algorithm’s
execution into a process that follows the producer-consumer model. Under such
a model, the producer produces, through precomputation, the goods (i.e., the
precomputation results) that are later consumed by the consumer, through post-
computation, upon the arrival of algorithmic inputs. The asynchronous commu-
nication channel between the producer and the consumer may be implemented
using data structures such as stacks, First-In-First-Out (FIFO) queues, regis-
ter arrays (a.k.a. RAM), depending on the desired order of the goods being
consumed (relative to them being produced).

We make the observation that using precomputation results in the same or-
der as they were produced always yields a correct execution of the cryptographic
algorithms. In fact, in many cases precomputation results are statistically un-
correlated to one another, and one may thus even use them in arbitrary or-
der. The precomputation of DSA signatures is one example. Consequently, data
structures such as RAM and FIFO queues are legitimate candidates for storing
cryptographic precomputation results. In our design to be presented in the next
section, we use FIFO queues rather than RAM because of the following reasons:

– Securing insecure RAM efficiently has been proven to be difficult. On the
contrary, as we will see, our securing insecure FIFO queues is very efficient.

– Insecure FIFO queues can be efficiently implemented using insecure RAM
(in both software and hardware) but not the other way round. Hence, our
solution requires only the “weaker” data structure.
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From now on, we abbreviate FIFO queues as queues. Also, we call the Mem-
ory Security Proxy we are going to build the Queue Security Proxy (QSP), as it
is specialized for protecting queues. Next, we provide some formalism of queues,
which is necessary to reason about the correctness and security of our design.

Queues A queue is a data structure that implements a First-In, First-Out
(FIFO) policy by supporting two operations, namely Enqueue and Dequeue,
which inserts and deletes elements from the data structure respectively. Such a
policy can be more rigorously specified using the axiomatic approach of Larch [16],
in which an object’s sequential history is summarized by a value that reflects the
object’s state at the end of the history. A queue implementation is said to be
correct if the policy is satisfied. For simplicity’s sake, we also use the following
verbal definition of correctness: A queue is correct if the i-th item dequeued has
the same value as the i-th item enqueued for all i ∈ N. Note that correctness is
defined assuming the absence of an adversary.

3.3 Threat Model

We now define the security requirements of the QSP and the threat model under
which these requirements must be met. To attack the security of the QSP, a
computationally bounded but physically present adversary may launch physical
attacks on the untrusted zone of the architecture, as illustrated in Figure 2.
Such an adversary may also probe the input-output relationship of the QSP
as follows. She may arbitrarily and adaptively ask the processor to produce
a precomputation result and enqueue it to the QSP, as well as to dequeue a
precomputation result from the QSP and reveal it to her. Note that in reality
a precomputation result is never directly revealed to anybody. We give such a
capability to the adversary so that the security of the QSP can be agnostic to
the cryptographic algorithm being precomputed. Such a modeling provides a
confidentiality guarantee at least as strong as needed.

We regard a QSP design as secure if it has correctness, confidentiality and
integrity, defined as follows.

Correctness If the underlying queue that a QSP is protecting is correct, then
the QSP behaves correctly as a queue in the absence of an adversary.

Confidentiality We hinted earlier that the safest strategy to take when securing
precomputation storage is to assume the entire precomputation result to be as
private as any algorithmic internal states. In certain scenarios, however, part of
the precomputation result can be made public. One such scenario is when that
part will eventually appear in the final algorithmic output, and its release prior
to the arrival of the input does not lead to security breaches. Not having to
encrypt the whole result improves efficiency.

As an example, the precomputation result of DSA signing is of the form
(r, k−1) (as defined in [21]). The knowledge of r alone, which will eventually be
a part of the output signature, does not give any extra information to any compu-
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tationally bounded adversary, whereas knowing k−1 would allow the extraction
of the secret key and thus lead to universal compromise.

If we denote a precomputation result to be enqueued as a data object D =
(A,P ), where confidentiality is necessary for P , but not A, then a QSP design
has confidentiality if no adversary, whose capabilities are as described above,
can learn, with non-negligible probability, any information about the P in any
D that the adversary did not ask the processor to reveal.

Integrity Roughly speaking, a QSP with integrity is one that either responds
to accesses correctly as a queue, or signals an error when having been tam-
pered with. Note that this definition of integrity implies both authenticity and
freshness of precomputation results. Specifically, if an adversary can modify a
precomputation result, say the i-th one enqueued, without the QSP being able
to detect it no latter than it is being dequeued, then the QSP would not be
correct as what is dequeued at the i-th time is different from what was enqueued
at the i-th time. Similarly, the ability to replay an old result leads to the same
violation of integrity.

More formally, an adversary is successful in attacking the integrity of a QSP
when there exists an i ∈ N such that the precomputation results enqueued at
the i-th time differs from what is dequeued at the i-th time. A QSP design
has integrity if no adversary with capabilities described above can succeed with
non-negligible probability.

4 Our QSP Design

We first give the solution idea behind our QSP design. We then present the actual
design, first in the form of software pseudo-code to facilitate understanding of
the design and reasoning about its correctness and security, then in the form of
a hardware architectural design.

4.1 Solution Idea

The use of authenticated encryption makes our QSP design very simple. Pre-
computation results (Data in) generated by the processor are fed to the QSP.
The QSP encrypts these results with AES-GCM, incrementing the initialization
vector (IV out) per encryption. Incrementing the IV serves two purposes. First,
for AES-GCM to be secure, the IV should never be reused under the same key.
Second, the IV serves as a counter that gives a sequential and consecutive order-
ing to the precomputation results being operated on, and hence helps defending
against replay attacks. The output of the AES-GCM encryption (SecData out)
can then be enqueued into an insecure queue.

When the processor asks for a precomputation result from storage, the QSP
dequeues an entry from the insecure queue and decrypts that entry using AES-
GCM. Again, the initialization vector (IV in) increments per decryption. As long
as IV in and IV out are set to the same value (e.g. zero) during start-up before
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any enqueue or dequeue operations, the precomputation result encrypted with
an IV value will eventually be decrypted with the same IV value.

4.2 The Construction

System parameters Keys in the QSP may remain constant throughout the
lifetime of the QSP, or be randomly generated during boot-time. Using a new
set of keys effectively means all the old precomputation results are flushed. The
two IVs are set to zero during start-up. We chose AES-128 for AES-GCM. This
means a key size of 128-bit. The size of the IVs has to be such that the IVs never
overflow. We used 80-bit IVs. Finally we selected 96-bit as the size of the Tag.

Software Construction Without loss of generality, we assume that the under-
lying insecure queue, denoted by Q, provides an interface for querying whether
it is full or not, and empty or not. Algorithms below show the software imple-
mentation of the enqueue and dequeue operations performed by the QSP.

Algorithm QSP.Enqueue(Datain)

private input: K, IVout, Q

1:if Q.isFull() then

2: return error

3:〈Pin, Ain〉 ← Datain

4:〈Cout, Tout〉 ← AEnc(K, IVout, Pin, Ain)

5:IVout ← IVout + 1

6:SecDataout ← 〈Ain, Cout, Tout〉
7:Q.enqueue(SecDataout)

Algorithm QSP.Dequeue()

private input: K, IVin, Q

1: if Q.isEmpty() then

2: return error

3: SecDatain ← Q.dequeue()

4: 〈Aout, Cin, Tin〉 ← SecDatain

5: res← ADec(K, IVin, Cin, Aout, Tin)

6: if res = failure then

7: return error

8: else

9: IVin ← IVin + 1

10: Pout ← res

11: return Dataout ← 〈Pout, Aout〉

Hardware Construction Figure 3 shows the architectural design of our QSP.
Data in and Data out are connected to the processor, while SecData in and
SecData out are connected to the insecure queue. We assume that the insecure
queue is asynchronous, i.e., it supports asynchronous enqueuing and dequeuing.
It is straightforward to modify the design if a synchronous queue is used instead.

Notice that the authenticated encryption of a precomputation result is bigger
in size than the result itself. One may replace the data-bus for SecData (both
in and out) with a wider one. Another possibility is to change the software that
implements the cryptographic algorithm so that precomputation results do not
use up the whole bus-width and that they still fit in the bus after the expansion.
However, both approaches require modification to the existing hardware and/or
software and thus lack transparency and interoperability.

Our recommended approach is to have the QSP split up every incoming
precomputation result into two halves and enqueue each half as if it was a single
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Fig. 3. The architectural design of our QSP. The upper region contributes to
the QSP.Enqueue logic; the lower region contributes to the QSP.Dequeue logic.
Control signals are omitted for clarity.

precomputation result. Splitting into two halves works as long as precomputation
results are greater than tags in size, which is practical always the case (recall
that tags are 96-bit long). Similarly, when being dequeued, the QSP dequeues the
insecure queue twice and combine the two items into a single precomputation
result. It is easy to see that a secure QSP remains secure with this splitting
mechanism in place.

5 Solution Analysis

5.1 Security

Correctness of our QSP design is a straightforward consequence of AES-GCM’s
correctness. It is also trivial to see that the confidentiality of AES-GCM implies
that our QSP design has confidentiality.

Our QSP design has integrity as well. We argue why below. Assume the
contrary that our QSP has no integrity, then there exists an adversary whose
capabilities are as described in Section 3.3 such that he, during an attack, was
successful in causing the QSP to return a precomputation result D′ at the i-
th dequeue for some i, where D′ is different from the precomputation result
D given to the QSP during the i-th enqueue. If i is not unique, let i be the
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minimum value. Now since AES-GCM decryption did not return failure during
that particular dequeue of QSP, the security of AES-GCM implies that D = D′,
which contradicts to D 6= D′. Therefore our QSP has integrity.

5.2 Efficiency

Let n be the maximum number of precomputation results the insecure memory
will store. Let the bit-lengths of the key K, the IVs IVin and IVout, the plaintext
P , the AAD A and the tag T be `K , `IV , `P , `A and `T respectively. The bit-
length of a precomputation result `D is thus `A + `P .

Space Complexity Our QSP requires a trusted storage of constant size inde-
pendent of the size of the storage for precomputation results; it has a untrusted
storage overhead of `T

`D
. In case of DSA precomputation, `D = 320 and the over-

head is thus 30% (recall that we picked `T = 96). Space overhead is generally
not a problem as insecure memory is inexpensive. Moreover, the figure would be
a lot smaller for many group signatures, as they can easily have precomputation
results comprised of 10 or more 160-bit elements.

Time Complexity The latency incurred by our QSP during an enqueue op-
eration is the time it takes to do one—or two, if precomputation results are
split into halves as previously discussed—AES-GCM encryption. As discussed,
we chose AES-GCM to implement the authenticated encryption because of its
extremely low latency independent of `D, which is made possible by paralleliza-
tion. The actual throughput and latency of AES-GCM operations depend on the
hardware implementation. Some performance figures can be found in [19,23].
In [23], AES-GCM achieves 102 Gbps throughout with 979 Kgates using 0.13-µm
CMOS standard cell library.

The latency incurred by our QSP during a dequeue operation can be argued
similarly. However, we would like to highlight that enqueue latency is usually
not a concern as this operation, like precomputation itself, is not on the critical
path of the algorithmic execution. Therefore, one might not even care about
speeding up the QSP’s enqueue operation. For example, in case of a hardware
implementation, one could save cost by using less or even no parallelization, at
the expense of slower enqueuing.

On the other hand, since QSP dequeuing is usually on the critical path,
dequeuing latency is a concern. To dequeue more quickly, we suggest slightly
changing the QSP design to pre-fetch and pre-decrypt the next precomputation
result stored in the insecure queue. (If splitting is employed, the next two results
are pre-fetched and pre-decrypted instead.) This way, precomputation results
become readily available to be dequeued at the QSP when the processor wants
them. Hence, our QSP provides all its security guarantees with virtually zero
timing overhead during dequeuing.

Table 1 compares the efficiency of our QSP with other approaches.
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Trusted Storage Size Write Latency Read Latency

Hardened RAM O(n) O(1) O(1)

Oblivious RAM [14] O(log n)
O(
√

n log n), O(
√

n log n),
O(log4 n) O(log4 n)

AEGIS [26] O(1) O(log n) O(log n)

AEGIS with prediction
O(1) O(log n)

O(log n) total,
and caching [24,22,13] O(1) non-hideable

Our QSP O(1) O(1) O(1)

Table 1. Many existing approaches can be used to secure insecure memory for
storing precomputation results, but their complexities grow with n, the number
of precomputation results to be stored; our QSP requires constant trusted storage
size, and incurs constant total latency when reading or writing precomputation
results. (The log4 nORAM algorithm only becomes more efficient when n > 220.)

6 Discussion

A DSA signing coprocessor One can build a cost-effective low-latency DSA
signature signing secure coprocessor by using our QSP to securely store DSA
precomputation. Such a coprocessor can be used to secure the communications
in critical infrastructures, especially those that impose stringent timing require-
ments on tolerable latency of message delivery such as some Supervisory Control
And Data Acquisition (SCADA) systems in the power grid.

Generalizing the producer-consumer model We have assumed that the
producer and the consumer of precomputation results are the same entity, namely
the processor. Alternatively, they can be two separated entities such that the
insecure queue through which precomputation results are piped is the only com-
munication channel between them. This allows dynamic pairing between the
producers and the consumers.

More interestingly, the number of producers and that of consumers can differ.
For example, multiple consumers may be coupled with only a single producer
trusted by the consumers. Consider a scenario where people carry electronic
devices. For security reasons, each device signs DSA signatures on its outgo-
ing messages when communicating with devices carried by other people and
therefore requires a DSA signing engine. However, if a person has a single DSA
precomputation module shared and trusted by all devices he carries, then those
devices need only to do the post-computation. The hardware saving is huge since
the circuitry for DSA postcomputation is a lot simpler than that for precomputa-
tion. Similar scenarios include communications among sensors installed in cars,
among household electrical appliances, as well as among sensors and actuators
in power substations.

MSPs for other data structures In this paper, we have focused on building a
Memory Security Proxy for FIFO queues as they fit naturally for cryptographic
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precomputation. Some other works have looked at ways to secure RAM for
general-purpose computing. MSPs for other data structures, e.g., stacks, sets
and dictionaries, may also be useful. For instance, resource-limited devices such
as smart cards and set-top boxes may offload implementations of data structures
on to hostile platforms. As an example, Devanbu et al. [10] have proposed how
to protect the integrity (but not confidentiality) of stacks and queues.

7 Conclusions

In this paper, we have motivated the need for a secure storage for cryptographic
precomputation to provide sustainable benefits securely. Our solution to the
challenge of how to construct such a storage is a small tamper-resistant module
called the Queue Security Proxy (QSP). We have demonstrated how our design
can guarantee the necessary security despite hardware attacks. As our analysis
has shown, our proposed design is very efficient.

In the future, we plan to prototype our QSP solution using FPGA to gain
empirical figures on its performance (in terms of throughput and latency) and
hardware costs (in terms of gate counts), and compare these figures with other
approaches.
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