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Abstract The security-mediated approach to PKI offers
several advantages, such as instant revocation and compat-
ibility with standard RSA tools. In this paper, we present a
design and prototype that addresses its trust and scalability
problems. We use trusted computing platforms linked with
peer-to-peer networks to create a network of trustworthy me-
diators and improve availability. We use threshold cryptog-
raphy to build a back-up and migration technique which al-
lows recovery from a mediator crashing while also avoiding
having all mediators share all secrets. We then use strong
forward secrecy with this migration, to mitigate the damage
should a crashed mediator actually be compromised.

Keywords SEM · Peer-to-peer · Trusted computing

1 Introduction

The security-mediated approach to PKI (by Boneh et al.
[3, 4]) offers many advantages. However, it has some dis-
advantages with regard to trust and scalability: each user de-
pends on a mediator that may go down or become compro-
mised. In this paper, we apply tools including peer-to-peer
computing and trusted computing platforms to distribute
the security-mediated approach to PKI, and thus preserve
its advantages while overcoming its scalability, reliability,
and trust problems. Section 2 reviews the security-mediated
approach, and discusses its advantages and disadvantages.
Section 3 discusses the tools we apply to this problem.
Section 4 discusses the design we build with these
tools. Section 5 discusses our prototype. Section 6 discusses
some related approaches. Section 7 discusses some conclu-
sions and future work.
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2 SEM

2.1 Motivation

Because it does not require sharing secrets a priori, public
key cryptography can enable a variety of secure commu-
nications among parties that have never met. For example,
in the case of digital signatures, a keyholder takes an action
with his private key, and the relying party verifies this
action against the corresponding public key. However, the
correctness of the trust decisions a relying party makes,
based on this verification, depends on the assumption that
the entity knowing the matching private key possesses
certain properties (e.g., “is student Alice at Dartmouth
College”). In practice, a certificate is a signed assertion
binding a public key to such properties.

Public key infrastructure (PKI) refers to the surrounding
technology and operations necessary for making public key
cryptography work in practical applications. A primary role
of PKI is creating certificates to indicate such bindings and
distributing the certificates to relying parties. When the bind-
ing that a certificate expresses ceases to hold, this certificate
needs to be revoked, and this revocation information needs
to propagate to relying parties, lest they make incorrect trust
judgments regarding that public key.

Consequently, fast and scalable certificate revocation has
been area of active research in recent years (e.g., [24, 25]).
In their Security Mediator1 (SEM) approach, Boneh et al. [4]
proposed a system that revokes the ability of the keyholder
to use a private key, instead of (or in addition to) revoking
the certificate attesting to the corresponding public key. If a
private key operation cannot take place after the binding has
been revoked, then a relying party does not need to check
the revocation status.

2.2 Architecture

The SEM approach is based on mediated RSA (mRSA), a
variant of RSA which splits the private key of a user into

1 Also referred to as “semi-trusted mediator.”
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Fig. 1 In security-mediated RSA, the user has a key pair (as in ordinary RSA). However, the user u’s private exponent is divided into two pieces:
one piece, duser,u , is held by the user, and th other, dsem,u , is held by the security mediator. To carry out an operation with the user’s private key,
both parties must participate

two parts. As in standard RSA, each user has a public key
(nu, eu) and a private key du , where n is the product of
two large primes, gcd(eu, φ(nu)) = 1, and du ∗ eu = 1
(mod φ(nu)). The public key of a user u is the same as
in standard RSA, as is the public-key operation. However,
in mediated RSA, we divide the private key du into two
“halves” dsem,u and duser,u , where du = dsem,u + duser,u
(mod φ(nu)).

In the SEM approach, the half duser,u is held by the user
and the half dsem,u is held by the mediator (We note that
dsem,u and duser,u are each statistically unique for each user
u.) This division of the private key requires changes to the
standard RSA key setup because a SEM must not know
duser,u and a user must not know dsem,u . So, a trusted party
(e.g., a CA) performs key setup by generating a statistically
unique {pu, qu, eu, du, dsem,u} for a user u. The private key
du is generated in the standard manner, but is communicated
to neither the SEM nor the user. Instead, dsem,u is chosen as
a random integer in [0, nu − 1], and duser,u is then calculated
as duser,u = du − dsem,u (mod φ(nu)).

Because the private key du is split into two pieces, private
key operations require the participation of both the user and
the SEM: e.g., each party raises the message to its share of
the exponent, modulo n, and the results are then multiplied,
also modulo n (see Fig. 1.) Thus the full private key never
needs to be reconstructed; also, since the user initiates these
operations, the SEM does not learn exactly what the user is
signing or decrypting.

2.3 Advantages

The SEM approach provides several advantages. Since these
essentially are standard RSA operations, a SEM PKI is
compatible with most legacy public-key cryptography tools.
Since the mediator is not involved in the public key oper-
ations (encryption and signature verification), those users
who do not hold SEM-protected private keys do not even
need to know about these mediators. Because of this, the
SEM network can be seamlessly integrated with legacy in-
frastructure. Since a full private-key operation can occur
only if the SEM believes the user’s key pair is valid, then
the system can revoke a key pair by having the SEM refuse
to carry out its half of the operation. This approach can re-
duce or even eliminate (in the case of revocation due to ad-
ministrative action, such as a user ceasing employment) the

need for certificate revocation lists—since, as noted earlier, a
private-key operation (such as signature or decryption) can-
not occur after revocation.

Furthermore, the SEM itself gains no useful information
in servicing users. When decrypting, the SEM receives the
ciphertext but is only able to partially decrypt it, so no useful
information could be gained by a malicious SEM. For signa-
ture generation, a user sends the SEM a hash of the message
which the SEM uses to generate the signature. This also con-
tains no information about the cleartext of the message itself,
so a user’s data is kept confidential.

Additionally, the compromise of a single SEM does not
compromise the secret keys of any users. Instead, the at-
tacker is able to revoke the security capabilities for users
connected to the SEM. Although Boneh et al. state that at-
tackers could unrevoke revoked certificates, this can be pre-
vented by having honest SEMs permanently delete dsem,u
upon revocation.

2.4 Disadvantages

However, the initial SEM approach has scalability disad-
vantages. In a large-scale distributed system, we must al-
low for problems such as mobile users, network partition-
ing, crashing of machines, and occasional compromise of
servers. To accommodate a large population, we could add
multiple SEMs. However, if, for a user u, the half dsem,u
lives on exactly one SEM, then we have many potential
problems:

– temporary denial of service if the network is partitioned;
– permanent denial of service if the SEM suffers a serious

failure;
– inability to revoke the key pair if an adversary compro-

mises a SEM and learns its secrets.

In their original paper [4], Boneh et al. did propose one
way to distribute the SEM architecture by using a stateless
model in which a user can connect to any node in a dis-
tributed SEM network. However, this approach required that
the entire network have a single RSA key pair, so that any
node can access a user u’s encrypted dsem,u bundled with
each request. This network-wide key pair could either be
stored on each node through replication or shared securely
among islands using threshold cryptography.
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– In the first case, compromise of a single node is poten-
tially easier (due to replication) and causes damage to
the entire network.

– In the latter case, each user request requires distributed
computation among nodes, which hurts performance.

In either case, the user is at risk if she connects to a compro-
mised SEM.

More recently, in [3], Boneh et al. introduced Multi-
SEM support as another way to increase the robustness of
the SEM network. In this approach, a single user is allowed
to be served by multiple SEMs. One way to do this is to
completely replicate SEM servers; however, such replica-
tion does not protect against hostile attacks since an attacker
can gain access to all of the secret data from a single server.
The other approach described by Boneh et al. is modify the
mRSA algorithm slightly to generate k different mRSA key-
half pairs so that the user can contact one of k mediators in
order to complete a decryption or signature generation op-
eration. This second approach allows the user to have only
a single public key and certificate while mitigating the risk
of single SEM failure. Additionally, the SEM servers can-
not collude to learn the user’s half of the private key. How-
ever, Boneh et al. do not discuss a revocation scheme for
safely distributing revocation status to all the SEM’s for a
single user. Without a clear scheme, it is unclear whether a
compromised SEM could distribute a fake revocation status
to the other SEM’s that the user can access, thereby deny-
ing service to the user. Additionally, this scheme protects
only against k compromises (where k is less than or equal to
the number of SEM’s), after which the CA must become in-
volved again to create another set of uncompromised k key-
half pairs. Finally, no protection against collusion between a
compromised SEM and a user is given.

3 Tools

To address the problem of distributing SEM, we use several
tools.

3.1 Trusted computing platforms

In some sense, PKI is all about trust. Relying parties want to
know whether they can trust that the party carrying out some
private key operation possesses certain properties. From the
cryptography, relying parties only know that the operations
can only be carried out by parties who know the certain pri-
vate key; the rest of the components necessary for the trust
judgment comes from the technology and operations sup-
porting the keys and the cryptography.

Adding security mediators to PKI adds some new com-
ponents: relying parties need to be able to trust that a media-
tor will use and delete each user u’s dsem,u when appropriate,
and not transmit it further. Given the permeability of current
commodity machines (and the fallibility of humans), these
assumptions may already be questionable. However, when

we add distribution to the picture, these assumptions become
even weaker. The more we distribute the SEMs throughout
a network, the less foundation relying parties have for trust.

Consequently, the question naturally arises of whether
we can augment the technology that comprises the PKI to
increase the trust the relying parties might have. In this case,
remote machines subject to compromise threaten trust. In
recent years, various trusted computing platform technolo-
gies have been proposed to increase the assurance a stake-
holder might have that computation on a remote platform
satisfies certain correctness and security properties [34].
Some of these technologies have actually made it out of
the laboratory and into commercial production (such as the
IBM 4758 secure coprocessor [35], and the 1.1b Trusted
Platform Module (TPM) from the Trusted Computing Group
(TCG)). Others are looming.

In our design, we consider the potential of such a trusted
computing platform. Our basic requirements are a general-
purpose computing environment and cryptographic protec-
tions, coupled with protection against physical attacks, and
an outbound authentication (or attestation) scheme which
lets software applications running on the coprocessor au-
thenticate themselves to remote parties [33]. This platform
thus gives us a safe and confidential environment in remote
environments. If a user trusts our software is not flawed, then
the user can also trust that software executed cannot be al-
tered by adversaries and the user may also remotely authen-
ticate instances of this software.

3.2 Peer-to-peer

We would like to make it easy for users to find SEMs (and
for SEMs to find each other), and we would like this func-
tionality to persist despite failures and (potentially) mali-
cious attacks. Peer-to-peer networking (P2P) (embodied by
technology such as Gnutella) is an attractive choice here.
With P2P, communication does not rely on a central entity
to forward requests or messages. Rather, each entity either
tries to satisfy a request itself, or forwards it to its neigh-
bors, in the spirit of the older distributed concept of diffusing
computation [2].

This decentralization is a key benefit of the peer-to-peer
network, as it removes any central entity necessary for the
system to function. Without a central controlling server, the
network’s survivability increases by causing denial of ser-
vice attacks to be much more difficult (as the RIAA has
found to its dismay). Additionally, the damaging effects of
network partitions are potentially alleviated by standard P2P
communication algorithms, as a new path to a destination
may be found.

3.3 Threshold cryptography

We will also need to distribute critical secrets across multi-
ple SEMs, for resilience against attack. Here, we can use the
standard technique of threshold cryptography [31]. Given
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a secret y and parameters t < k, we construct a degree t
polynomial that goes through the point (0, y), and choose k
points on this polynomial as shares of y. Any t shares suf-
fices to reconstruct the polynomial and hence y, but fewer
than t shares give no information.

3.4 Strong forward security

We need to accommodate the fact that machines (even
“trusted computing platforms”) may be compromised, and
the secrets they store may become exposed to the adversary.
To mitigate the damage of such potential exposure, we can
use the technique of strong forward security (SFS) [5]. We
divide time into a sequence of clock periods, and use a cryp-
tographic system such that even if the private key for a given
period is exposed, use of the private key in previous or future
sessions is still secure. Burmester et al. give two examples
of strong forward secure schemes, one for any public key
cryptosystem and another for use in an El Gamal key escrow
system.

4 Design

4.1 Architecture

Our Distributed SEM architecture consists of the network of
server nodes along with software to allow for the distribution
of the SEM approach.

4.1.1 Network

In our basic architecture, we envision SEMs as trustworthy
islands distributed throughout the network. We use a trusted
computing platform coprocessor to house each SEM and
thus give it a foundation for this trustworthiness. As noted
earlier, this technology also lets each island have a key pair
and certificate chain that establishes the entity who knows
the private key is an instantiation of our island software on
an untampered device. Thus, users can authenticate islands,
and islands can authenticate each other.

Each island will house resources that enable it carry out
services. When a user requests such a service, we use P2P
techniques to carry the request to the proper island, and carry
the response back to the user. (As we discuss below, individ-
ual islands will also house resources other islands need; we
can use P2P there as well.)

Our combination of trusted computing and peer-to-
peer networking comes from the concept of the Marianas
network developed at Dartmouth College. Both of those
technologies have recently been gaining recognition in both
academic and commercial settings and their combination al-
lows us to create a new type of distributed, trustable third
party with various benefits. Additionally, it is designed to
be scalable and online, ensuring that it fulfills the demands
of emerging global infrastructure. Although a “trusted third

party” can be regarded as an “Orwellian Big Brother,” we
aim to alleviate any concerns from the simple fact that an
entire Marianas network does not need to be under the con-
trol of a single individual or entity. Instead, as long as a node
is configured properly, it may be under the control of any-
one. With the use of trusted computing at each node and
the proper configuration, each node even offers resistance
against insider attack.

However, both the network itself and applications built
on top of it should allow for occasional compromise of in-
dividual nodes. In the future, the Marianas network will
also attempt to allow for heterogeneous trusted hardware,
although this paper will not deal with issues relating to that.
Since a Marianas network is distributed, it will be closer
to all clients, ensuring reliable access to its services. Dis-
tributing Security-Mediated PKI is just one application that
can be implemented on our peer-to-peer network of trusted
hardware and is intended to demonstrate the feasibility and
benefits of such a network.

4.1.2 Migration

Despite physical protections, an individual island may still
become compromised and reveal its data to the adversary.
An individual island may also become unavailable, due to
crash or partition. To handle these scenarios, we build a mi-
gration scheme based on threshold cryptography and strong
forward security.

Migration aims to be a secure way to avoid replication
in any distributed network (and may have applications out-
side of the scope of this paper). In our extension of the SEM
architecture, we use migration to update the secret held by
an island and migrate it to another one. The general steps
required to set up and execute migration are discussed be-
low. We have designed migration for use in any distributed
application and not necessarily on our peer-to-peer network
of trusted hardware nodes, although we experiment only on
our network and discuss its setup and execution in terms of
that.

When we initially create a secret x and transmit it to an
island L , we also split it into k shares using threshold cryp-
tography. We securely transmit each share of x to a different
island. (Additionally, the shares may be proactively updated
using techniques described in the literature [10, 11, 13, 14]
so that an attacker may not slowly acquire enough shares
to reconstruct x .) The k islands that receive shares of x can
be chosen pseudorandomly so that they are most likely dis-
tributed evenly in the SEM network, mitigating denial of ser-
vice risks like network partition. Alternatively, a pseudoran-
dom algorithm could be replaced with a smarter one, such
as a load-balancing scheme or other scheme (e.g. based on
network proximity to the user). After those steps are com-
plete, the secret is stored both on the primary island L and
on k other islands, so an attacker must either compromise L
or compromise t of the k islands in order to get x .

When the island L is unavailable to fulfill a request that
requires x , then the requester will have to be redirected to
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another island M , and the shareholders will need to partic-
ipate in reconstructing x there. However, since the original
island L may have been compromised, x must be updated
using strong forward security so that the old version on L is
rendered useless.

The general migration scheme is executed as follows:

– The user tries to connect to the assigned island L , but
fails.

– The user then connects to another island M instead. This
M may be chosen using one of the algorithms available
for distributing the shares of x as described above (e.g.
pseudorandom, load-balancing, etc). Note that M should
be chosen by the network in a distributed way such that
the user u and L cannot choose M . This is important
because we do not want a single compromised node or
user to select M .

– The islands that hold shares of x are contacted and this
x is updated using strong forward security. As discussed
below, this update may or may not involve reconstruction
of x , depending on the method chosen. Generally, the
strong forward security scheme will vary depending on
the how the secret x is generated.

– Strong forward security results in M storing the updated
secret.

– Migration is complete and M can then fulfill the user’s
request.

We summarize the benefits provided by our general mi-
gration scheme as follows:

– Uninterrupted Service: The use of threshold cryptogra-
phy to distribute the secret x across the network allows a
user to get service even when their node is not available.

– Secure Service after Node Compromise: The combi-
nation of strong forward security with threshold cryp-
tography allows users to update their secret on another
uncompromised node and get secure service even when
their assigned node has been compromised.

– Rare Use of Distributed Computation: Migration is in-
tended to be used rarely and, in the common case, the
user must only interact with a single island L in order
to access their full secret x . This facilitates easy and fast
access to services provided by our network.

The migration process is aimed at improving the secu-
rity of any application that uses it, so we now discuss its
strengths and weaknesses in various situations. This analysis
applies only to the general concept of migration as defined
by the combination of strong forward security and thresh-
old cryptography. In specific applications of migration, there
may be other caveats involved with the migration of the se-
cret x . Such cases are present in the application introduced
in this paper and are examined in Sect. 4.4.

During a migration, there are a few cases that we must
consider. Although migration of a secret x can be performed
directly from one island L to another island M , let us assume
that the secret x must be reconstructed from shares stored on
t of the k other islands to cover the case where L has been
removed from the Marianas network. Then, to analyze the

security of migration we must examine the status of L , M
and the other islands that hold shares of x . Depending on
which parties have been compromised, the secret x may be
compromised before or after the migration. We assume here
that forward security can be achieved, as it differs between
applications.

If L is compromised, then, before migration, the secret x
is known to the attacker that compromised the island. How-
ever, forward security updates the secret x in a way such
that the new secret y replaces x . Additionally, y is not sent
back to L , which may still be compromised, so the attacker’s
stolen secret becomes useless. Clearly, there is a period be-
tween the exposure (or compromise) time of x and the time
when that compromise is discovered. However, as discussed
in Sect. 3, the use of trusted computing platforms in the
Marianas network causes any physical attacks to be detected
and stopped by the shutdown of the platform, within some
window of time.

If M is compromised, then the secret x is migrated to M
so the attacker that compromised M gains access to it. How-
ever, as stated above, with trusted computing platforms, the
window of time before this compromise is discovered should
be small, so another migration from M can be performed,
rendering x useless.

If islands holding shares of x are compromised, then, be-
cause of the properties of threshold cryptography, as long
as less than t of the k islands holding shares of x are not
compromised, then the attacker cannot reconstruct x . Since
proactive updating of shares limits the time in which at least
t of the islands must be compromised, it would be very diffi-
cult to reveal x using this method. However, if x is revealed
to an attacker in this way, then this situation is the same as
the first where L is compromised.

4.2 SEM operations

To use our architecture for SEM, each island acts as a SEM
mediator, holding dsem,u for a number of clients. We dis-
tribute load across the islands by, at key generation, assign-
ing users to different SEMs. (We could also distribute load
via migration.) As with the original SEM architecture, a
user’s dsem,u is stored in full only on one island.

Key generation

In the original SEM scheme [4], a CA generates key pairs
for users and splits d into two halves. In our variant, the CA
must additionally share dsem,u to k islands in the network
using threshold cryptography (see Fig. 2.) If we’re using an
online CA during migration, we can get extra protection by
encrypting these shares for the CA only.

Also stored with those shares is the user’s identity and
the revocation status of the user’s key pair (initialized to
“false,” not revoked). For key generation, the CA must be
able to prove its identity to the islands; otherwise, the islands
will ignore its request. If we desired an escrow service to al-
low authorized decryption of data after revocation (or if we
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Fig. 2 To distribute the SEM approach to PKI, we establish a network of security mediators. For each user u in addition to assigning the key
portion dsem,u to a designated mediator node, we also use Shamir’s secret sharing to divide dsem,u into k pieces and distribute each piece to
another mediator

do not decide to use the CA during migration, as discussed
below), we also distribute shares of the full secret key du .

Revocation

If the island that holds dsem,u and revocation information for
a user u goes down, then the other islands must be able to
determine whether the user’s key pair has been revoked. We
accomplish this by, during revocation, having the sharehold-
ers as well as original island update the revocation status for
that key pair. In our initial vision, we delete the shares of
dsem,u that are stored on k other islands.

Assume that a user’s dsem,u is stored on island L . The
network is notified that a user’s key pair is to be revoked,
and a P2P request is generated to L to revoke the user’s key
pair. If L is operational, then L notifies all of the other is-
lands that hold shares of dsem,u to delete them and store the
fact that dsem,u has been revoked; L also deletes dsem,u and
adds the user’s serial number to its CRL. Else if L is not
operational, then the k islands holding the shares of dsem,u
are notified and told to delete their shares. (Note that in this
case, migration—see below—has not yet occurred for this
user or else an island would have been contacted.)

4.3 SEM migration

If a user u issues a request but the island L holding dsem,u is
not available, then the user contacts the SEM network and
another island M is selected for migration. As described be-
fore, M can be chosen by the network in a pseudorandom
or load-balancing way. The best method may differ based
on the size of the network and its topology. It is important
in some scenarios that the attacker of L and the user cannot
predict or choose M . However, even if they can and M turns
out to be compromised, migration can always be performed
from M to another node.

After that initial step is performed, we have two differ-
ent approaches, depending on whether a CA exists that can
know the full private key du . Any communication between
the islands is authenticated using the outbound authentica-
tion of the secure coprocessors and it is assumed that the
online CA also has some mode of outbound authentication
to prove the source of its messages.

For added resilience, we can have shareholder islands
not participate in migration if they can still ping the original
island L .

Using a CA

If we have an online CA, the new island M contacts it and
tells it that migration is to occur. (If we constrain the choice
of the next M , then the CA must verify that M is a satis-
factory candidate.) M sends a request for at least t of the
islands in the network that have shares of dsem,u to send
those securely to the CA using standard RSA encryption.
The CA can then reconstruct dsem,u . If the CA stores the
full private key for du , then it can use that, or obtain it from
the user. Otherwise, the shareholders for du must also send
those, so the CA can reconstruct it as well. The CA gener-
ates a random number x in the interval [0, nu − 1] such that
x �= dsem,u , and calculates y = du − x (mod φ(nu)). The
CA securely distributes shares of x to the k shareholder is-
lands using threshold cryptography; the shareholder islands
delete the old shares for dsem,u . The CA securely sends y to
the user by encrypting it with the user’s public key and then
partially decrypting with the old dsem,u . The user deletes the
old duser,u and sets duser,u = y. The CA securely sends the
x to M , who deletes the old dsem,u and sets dsem,u = x (see
Fig. 3.)

Once the user receives y, it reconnects to the network
and performs the operation again, using its new value duser,u .
At this point, M can complete the request and the migration
is complete.

No CA

If no CA exists, then we need to generate a new dsem,u, duser,u
pair without reconstructing du or φ(nu), since we do not
have a safe place to store them.

Instead, we use a different technique (adapted from idea
by the second author with student Z. Le). We have M gener-
ate a δ in a range [−r, r ], and changing dsem,u to dsem,u − δ,
where r is big enough to keep the key halves changing un-
predictably, but small enough to be smaller than dsem,u and
duser,u for a practically indefinite number of rounds. M sends
δ to the user (encrypted with u’s public key and then partially
decrypted with the old dsem,u); the user replaces duser,u with
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Fig. 3 This diagram shows migration, if the CA is available. If a user u’s current mediator L is down, then a new mediator M is selected
pseudorandomly. M collects the shares for the old dsem,u , the CA reconstructs duser,u and generates new halves for the user and M

duser,u + δ. (We could also have M and u together pick r , to
reduce risk from a compromised M .)

This way, neither M nor u need to know φ(nu), but the
new duser,u and dsem,u remain positive and still sum to du .
M splits r into k shares and sends each to a dsem,u share-
holder; each shareholder uses its piece to update its share
(see Fig. 4).

It is tempting to have M pick a new dsem,u directly and
distribute shares to the shareholders of du , who then cal-
culate the new duser,u in a nicely distributed fashion. How-
ever, as of this writing, we can cannot see how to reduce
du −dsem,u to du −dsem,u (mod φ(nu)) without reconstruct-
ing φ(nu).

Once the user receives the new duser,u , it can compute
its half of the normal computation using the new duser,u . At
this point, M can also complete its half of the computation
because it has generated a new dsem,u and the migration is
complete.

Renewing user key pairs

As an area of future work, we are also considering incorpo-
rating strong forward secrecy into regeneration of the user’s
private key during regeneration of dsem,u . We already have
trusted hardware, which is one of the components of some
SFS schemes in the literature (e.g., [9, 43]). Furthermore,
this would protect against compromise of L by the user u, in
order to obtain dsem,u and reconstructing du .

Recovery

When an island goes down (or is compromised and subse-
quently shut down and restarted from a clean state), it has a
few options upon reboot.

The island could delete all of the key halves it has stored,
and thereby force users to migrate back to it. New users
would also be assigned to it. It also deletes all of the shares
of x that it stored and requests new shares of those to be
generated.

Alternatively, the island could poll the other islands to
determine which dsem,u halves have migrated away from it.
It then deletes the information for the users that migrated
away and continues serving the other users. The island can

continue using the shares it has stored, but it must determine
whether any of them are out of date. Since the dsem,u shares
must be updated during migration, the dsem,u shares could be
invalid and the network must be polled to determine whether
this is the case. If so, then the outdated shares must be up-
dated.

4.4 Analysis

The migration process is aimed at improving the security of
any application that uses it, so we now discuss its strengths
and weaknesses in various situations.

Machines

First, we consider compromise of specific entities.
If the CA has been compromised, then we have a serious

problem, since the CA generates the users’ initial key pairs,
and in the CA-migration case, learns the new key pairs as
well.

Alternatively, suppose L has been compromised. The is-
land L holds dsem,u for some number of users. Additionally,
L stores shares for some other users in the distributed SEM
network. We must assume that the attacker has access to
all of these values, so now we analyze what privileges are
granted by illicit access to them.
– If the attacker acquires dsem,u for another user u, then mi-

gration effectively disables this dsem,u because it causes
a new duser,u to be issued to the user. (Also, note that the
new duser,u is not sent back to L .) Since the new duser,u
does not mesh with the old dsem,u due to the mRSA pro-
tocols, the old dsem,u is rendered useless.

– If the attacker acquires dsem,u and colludes with that user,
then the attacker will be able to compute du from duser,u
and dsem,u , so migration fails to achieve full security in
this case (unless, as discussed earlier, we try implement-
ing SFS here as well).

– If the attacker colludes with a user whose key-half is not
on that island, then the user and attacker might trick the
SEM network to migrating that user’s data to L , and thus
reconstruct dsem,u . The user will then be able to recon-
struct du , the full private key. This problem can be mit-
igated by using pings (as stated in Sect. 4.3) to ensure
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that the user’s main island is unavailable, and also us-
ing a non-predictable way to generate the next island for
migration (to reduce the chance that M is a valid can-
didate). However, such problems may be the inevitable
cost of higher availability in the distributed SEM net-
work.

– If the attacker acquires shares of a dsem,u , the attacker
effectively acquires no valuable information, unless the
attacker also gains access to enough other shares of ei-
ther in order to reconstruct them. However, this can be
made extremely difficult using proactive share updating.

Clearly, there is a period between the time of compro-
mise time when that compromise is discovered. However,
the use of trusted computing platforms will, with some as-
surance, cause physical attacks to be detected and mitigated
by zeroizing sensitive data (or otherwise rendering it inac-
cessible).

If M is compromised, then the attacker gets access to
the new dsem,u , so the migration is unsuccessful. However,
as long as another migration to an uncompromised island
can be performed, the dsem,u acquired by the attacker can
be rendered useless as described above. Additionally, in this
case the attacker could send the user fake data for the new
duser,u , but any resulting inconsistencies with decryption or
signature generation would just flag M as compromised. As
noted above, the stronger the trusted computing platform,
the smaller the window of time before this compromise is
discovered.

Communications

Since migration involves communication and data transfer
between islands in the network, we will now analyze each
interaction and discuss its security as it relates to requests
by a server that has been compromised but not discovered
yet.

If an island N is compromised, then the attacker might
attempt to request the shares of dsem,u for any users. If the
compromised island succeeds in collecting at least t shares
of any dsem,u , then the attacker can reconstruct dsem,u . How-
ever, in order to receive shares, each island that holds a share
of must not be able to successfully ping the island that holds
the full dsem,u—and N must be a valid next candidate. There-
fore, in order to receive shares of dsem,u , the island that holds
the full dsem,u must be unavailable, making the full dsem,u as-
sumed to have been compromised. Therefore, an imminent
migration will invalidate the dsem,u and the attacker will gain
no useful information.

4.5 Network trust model

The primary parties that require use of the network are the
islands that comprise the network itself. Each island must
have exclusive access to certain services in order to pro-
vide fast revocation of security capabilities. However, the
CA (and users and islands) must also be able to gain access

to the network services in a restricted way. Clearly, the re-
quests of each party will differ and there must be a clear
delineation of capabilities between them. For example, dur-
ing migration, islands will have to search the network to find
other islands that hold the shares of a user’s dsem,u . Although
this operation can be executed by the CA as well (when CAs
can perform migration), users should not be able to (easily)
determine the location of or acquire shares.

Islands join the network normally and become full mem-
bers of it. Since each island in the network has a trusted
computing platform with outbound authentication or attes-
tation, each member in the peer-to-peer network can prove
that it is a trusted island with certain privileges. This creates
a trust network in which each island is known to be exe-
cuting unmolested as long as our software is not flawed (and
the platform’s security protection works). Once an island has
authenticated itself to the system, it can search the network,
advertise services, and perform any other command allowed
by the peer-to-peer software.

Certificate Authorities can interact with the network in
one of two ways: (1) they can connect to an island server that
provides an interface to the rest of the network; or (2) they
can connect directly to the P2P network, but with limited
capabilities (registration and, if implemented using a CA,
then migration). For example, the CA must be able to some-
how query the network during key generation to determine
to which island to assign the user.

Users do not connect directly to the P2P network, but
instead communicate with an island that provides indirect
access to the services available on the network. For exam-
ple, during normal operation, users connect directly to their
assigned island, but if that fails, then the user must notify
the P2P network that migration is necessary. Users do so by
connecting to another island (available in a public list) and
requesting the migration service. The user is then assigned
to an island and further communication occurs directly be-
tween that island and the user.

4.6 Legal issues

With the proliferation of PKI mechanisms comes a variety of
legal issues associated with the services provided by PKIs,
including liability for timely certificate status information.
In the common case, our Distributed SEM approach pro-
vides instant verification of the validity of a digital signa-
ture since the signature could not have been generated if the
user’s privileges had been revoked. So, liability for timely
certificate status information is not usually an issue in our
architecture. For something to go wrong an attacker or an
administrator must be involved. If an attacker is at fault, then
legal action can potentially be brought against the attacker.
If a negligent (or malicious) administrator causes a prob-
lem on an island, then there must be a legal entity that takes
responsibility for the incident. For each Distributed SEM
network there must exist a central legal entity covering all
nodes that join and that central entity will handle legal issues
for the entire network. This will provide incentive for new
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Fig. 4 This diagram shows migration, if no CA is available. If a user u’s current mediator L is down, then a new mediator M is selected
pseudorandomly. M collects the shares for the old dsem,u , and generates a δ with which the user u and mediator M adjust their key halves

nodes to join the network because they are not individually
liable.

However, definitive consideration of such law and public
policy questions lies outside the scope of this paper.

5 Prototype

5.1 Initial prototype

Initially, we prototyped our distributed SEM approach as a
simulation. The current code (2000 lines of Java) deals with
the peer-to-peer aspects of key generation and execution of
migration (see Fig. 5.)

The Island Server Code performs migration and the is-
land’s part of decryption and key and signature generation
using dsem,u . This part also introduces the networking sup-
port for the islands. It is a combination of both the original
SEM server code, along with our server-related migration
code.

The code on each island is divided into two parts. The
P2P network code consists of the peer-to-peer access layer
and the protocols necessary for island communication. We
use the Project JXTA open source framework [38] to accom-
plish this. Each island runs a server that accepts connections
from only the SEM server on the same machine. The server
application is built on top of JXTA and uses the peer-to-peer
protocols, such as searching and pinging, available. It exe-
cutes the distributed aspects of key generation (distribution
of shares of dsem,u) and migration.

Specifically, during the distributed SEM operations we
use JXTA’s discovery service to find islands with the infor-
mation needed (e.g. shares of dsem,u). We plan to leverage
the security features of the JXTA framework to secure the
P2P activities of the distributed SEM network. These in-
clude secure P2P groups to restrict access to the network
and secure pipes to allow safe distribution of shares to an
island during migration. Furthermore, we envisioned that an
underlying trusted computing platform would provide out-

bound authentication/attestation, that we could use in JXTA
XML messages to validate the source of messages generated
in the migration and revocation algorithms. We can expose
these capabilities in the Java code using the Java Native In-
terface (JNI) [36].

The SEM server code accepts requests from users and
handles most of those without using the P2P layer. When a
migration or key registration request is received, however,
the server code forwards the request to the internal server
running JXTA and the internal server completes the request.

This is a modular approach that allows us to change the
peer-to-peer implementation in the future. In the current pro-
totype, we have implemented our network code in a simpli-
fied version. (Integration with the SEM server code, utiliza-
tion of security features in the P2P layer, and porting on to
the 4758 remain to be done.)

The Certificate Authority Code participates in key gen-
eration, as in the original SEM architecture. With our ad-
ditions it is necessary for the CA to connect to an island
and initiate a P2P registration request. We have implemented
the code to perform registration in the network. (However, it
is not yet integrated with the original SEM key generation
code.)

The Client User Code (still under construction) com-
bines the functionality of the original SEM architecture,
which consisted of the user’s half of signature generation
and decryption, along with with the additional steps required
to request migration and process the migration response.

Boneh et al. [3, 4] describe the use of an email client
plug-in and an email proxy to easily integrate the client user
code on a client’s machine. Both provide a high degree of
transparency to the user, but the email proxy is favorable
because it can be used with all email clients. After instal-
lation and configuration, the email proxy can transparently
sign and decrypt using Distributed SEM. We envision our
additions, such as migration, as transparent operations to the
user. This transparency allows less security conscious users
to benefit from our Distributed SEM architecture, an impor-
tant feature in any approach to PKI.
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Fig. 5 In our basic software architecture, the distributed SEM network contains a set of islands. Each island consists of a trusted computing
platform running the SEM server code and the P2P network code. The islands interact using P2P and the JXTA framework

5.2 Trusted computing platforms

The next step in building a prototype was to choose a trusted
computing platform for the code. We saw several primary
options.

The IBM 4758 secure coprocessor [35] offered a weak
computational environment (486-class CPU) guarded by
high assurance protections (the world’s first FIPS 140-
1 Level 4 validation). Interlocking software and hardware
controls assure that only authorized code is loaded—and
has access to a statistically unique key pair with a certifi-
cate chain identifying that code in that configuration on that
device. With high assurance, tamper causes these secrets to
be destroyed. However, this assurance comes at a price: the
4758 has retailed for $3K in quantities of one. (A follow-on
device with more power—the IBM 4764—is on the market,
at a significantly higher price. As of this writing, no software
development kit is available.)

As discussed earlier, the TCG (successor to the Trusted
Computing Platform Alliance, TCPA) designed a TPM: a
small chip, added to a commodity motherboard, that wit-
nesses platform configuration via a set of platform config-
uration registers (PCRs) and releases or uses credentials
(such as RSA private keys) only when the PCRs have ap-
propriate values [39–41]. The TPM can thus enable sealed
storage—data available only to trusted software in a trusted
configuration on this platform—as well as attestation, ob-
tained initially through use of a TPM-held private key quot-
ing the PCRs.

Compared to the 4758, the TPM approach offers sub-
stantially weaker physical security—a TPM platform can
be attacked with Xacto knives and logic analyzers, and is
also susceptible to time-of-check/time-of-use issues. On the
other hand, the TPM approach is substantially cheaper and
more ubiquitous—the 1.1b TPM has been shipping for years
with IBM Netvistas and ThinkPads.

We stress, however, that the TPM is not itself a secure
computing platform, but merely an add-on chip that pro-
vides weakly-secure storage of credentials, keyed to plat-
form hashes.

Another approach to is to add physical security enhance-
ments to the CPU itself, and additional modes of operation
to essentially turn a portion of the CPU itself into its own
secure coprocessor.

In the academic space, the AEGIS project from MIT
uses silicon physical unknown functions to hide secrets from
physical adversaries, and offers hardware support so trusted
data can be confined to trusted code [37]. Prototypes built
on the OpenRISC core will soon be available.

In the commercial space, Intel’s LaGrande and ARM’s
Trustzone both offer similar designs, but with fewer claims
about physical security (and no firm commitment about
availability to researchers).

In our work, we initially leaned toward programmable
secure coprocessors such as the IBM 4758, because they
provide a separate (and much stronger) security domain
from their host. However, while such an environment
is good from a security viewpoint, a number of factors
which make it suboptimal from a practical standpoint. First,
there is often little codespace for applications in such de-
vices. Our lab has experimented writing applications with
the IBM 4758 [16, 17, 19, 29, 32], and have repeatedly
been hindered by the device’s internal codespace limit.
Second, the high cost of such devices hinders client-side
deployment.

Recognizing these shortcomings of highly secure de-
vices, our lab set out to make a low-cost, less-secure, open-
source alternative based on the TCPA/TCG hardware. De-
tails of our platform (called Bear/Enforcer)can be found in
previous work [21, 22], but the basic idea is to utilize the
TCPA/TCG’s TPM to ensure the integrity of the core ker-
nel and the Enforcer, a Tripwire-like Linux Security Module
that measures the integrity of the rest of the system against
a signed configuration file, and also protects a key which is
used for an encrypted loopback filesystem. When the sys-
tem is booted, the Enforcer uses the TPM to check if critical
system components have changed (e.g., the hardware, boot-
loader, kernel, etc.). If not, then the Enforcer retrieves its key
from the TPM and mounts the encrypted loopback filesys-
tem. As files are opened, the Enforcer performs a run-time
integrity check on the file against its security policy. If a mis-
match occurs—indicating that someone has tampered with a
file—the Enforcer will unmount the loopback filesystem and
panic the kernel.

To summarize, in distributing SEM, we form a network
of trusted islands. Each island is a computing platform pro-
tected by trusted hardware. For our prototype, we used,
for each platform, a standard destkop armed with a 1.1b
TPM and our Bear/Enforcer code. The Bear/Enforcer code
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Fig. 6 An architectural view of Distributed SEM prototype running on our Bear/Enforcer platform. During the system’s boot sequence, the
Enforcer LSM will attempt to retrieve the key for the encrypted loopback filesystem. If the platform’s integrity measurement allows, the TPM
will release the key and the Enforcer will then mount the loopback filesystem. If the Enforcer ever detects a violation of its security policy (i.e.,
via run-time integrity checking), it will unmount the loopback filesystem, disallowing the Distributed SEM prototype to access its key (shares)

integrates the 1.1b TPM into the broader system architecture
in a way that provides a secure execution environment that is
more powerful than something like the 4758, but much less
secure: in particular, physical attacks, such as using a logic
analyzer, will defeat the system. In the future, we plan to
explore enhanced-CPU approaches, such as AEGIS, which
may provide a better tradeoff of power versus security ver-
sus cost. Our monograph [34] provides more details about
this emerging space.

5.3 Porting to trusted hardware

Once our Distributed SEM prototype reached a stable state,
we placed in on a Bear/Enforcer platform in order to experi-
ment with Distributed SEM and secure hardware. We added
to the Enforcer’s security policy so that it ensures no Dis-
tributed SEM binaries (i.e., SEM server and JXTA .class
files) are modified. We then placed the key material in the
encrypted loopback filesystem. With this configuration, En-
forcer ensures that the Distributed SEM code (along with
other critical system components and software) adheres to
the Enforcer’s integrity policy. Should the Enforcer’s pol-
icy be violated (e.g., by someone tampering with a file

in the policy), the the Enforcer will make the Distributed
SEM key material unavailable, thus disallowing an attacker
to use the portion of Alice’s private key held by the SEM
(see Fig. 6.)

5.4 Performance

Once we ported our initial prototype to our Bear/Enforcer
trusted computing platform, we measured the performance
of the migration operation in order to quantify the overhead
of running the Distributed SEM code in secure hardware.

Our setup consisted of three nodes: one primary island L ,
and two islands which received shares of dsem,u . We placed
L on a Bear/Enforcer platform. The server was an IBM
Netvista 8310 server (which includes the TPM hardware)
running the Debian/unstable Linux distribution with our En-
forcer LSM compiled into a 2.6.5 kernel.

As a baseline, we ran the migration operation on an in-
stance of L not protected by Bear/Enforcer. We executed the
operation a total of five times from L , and averaged the run-
ning times to get a result of 3.656 seconds. We then placed
L on a Bear/Enforcer platform, and executed the migration
operation five times, yielding an average running time of
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Table 1 Performance results for the migration operation

Run Without Secure HW With Bear/Enforcer

1 4.396 4.234
2 3.284 3.219
3 3.803 3.580
4 3.648 3.353
5 3.150 5.402
Average 3.656 3.957

3.957 seconds. The normalized slowdown is given by:

3.957 − 3.656

3.656
= .082

Thus, using the Bear/Enforcer platform for security yields
an 8.2% slowdown. The results are summarized in Table 1.

5.5 Download

Our code will be available for public download. Since the
original SEM code is covered under the GPL, our changes—
for migration and support of distributed functionality—are
as well. (The Bear/Enforcer source code is already available
on Sourceforge.)

6 Related work

6.1 Trusted hardware and P2P

Marchesini and Smith [19] built a hardened Gnutella P2P
communication system within secure coprocessors; Boneh
et al. [12] also considered the potential of combining trusted
computing with P2P.

6.2 Strong forward secrecy

Tzeng and Tzeng [43] considered strong forward security
with threshold cryptography for El Gamal signatures.

6.3 Standard revocation techniques

Certificate Revocation Lists and variations on this method
(e.g., �-CRLs) are one of the most common methods of cer-
tificate revocation. To revoke a certificate, the CA adds the
serial number of the revoked certificate to the CRL and then
publishes that CRL to a directory. Since this is only done
periodically, CRLs are not a guarantee that a certificate is
still valid. Also, since CRLs may be very large, users will
generally not want to have to download them very often. In
order to check whether a certificate is revoked, a user must
potentially download a long CRL. To mitigate this problem,
�-CRLs only distribute a list of the certificates revoked

since the last CRL was distributed. Additionally, Cooper
notes that when a new CRL is issued there will be a peak
time in which many requests are made to download the CRL
from the directory (because everyone wants to make sure
that certificates aren’t revoked and a CRL expires at the same
time for everyone). He suggests spreading out the requests
for CRLs over time by “over-issuing” CRLs such that a new
CRL is published before the old one expires [7].

Another similar technique is Windowed Key Revoca-
tion, which uses CRLs but with a twist that certificates are
assumed to be valid for a certain “window” of time and
that CRLs have a reduced size due to the revocation win-
dow [23]. Additionally, in this scheme verifiers can control
the allowed “window” time and to check if a certificate is
revoked, the verifier checks the windowed CRL issued or
grabs a new certificate from the CA.

The Online Certificate Status Protocol (OCSP) provides
online verification that a certificate is still valid. This re-
quires a CA to generate a digital signature for each request
because the response from the CA must be signed [24]. The
CA stores an internal log of the status of all certificates or
possibly just a CRL that it doesn’t publish. So, addition of
revoked certificates is quick and the certificate status is up-
dated instantly. A user must be online and must connect to
the CA and check the status of a certificate.

Certificate status verification is a computationally expen-
sive operation, as the response from the CA must be dig-
itally signed. If a single validation server performs OCSP,
then all requests must be routed to it, potentially overload-
ing the server. Security may be weakened by a distributed
environment because if any keys of any OCSP servers are
compromised, then the entire system is compromised.

With Certificate Revocation Trees, instead of keeping an
entire list of revoked serial numbers, we keep a list of ranges
of serial numbers that are good or bad. This saves space (bet-
ter than standard CRLs), but adding a serial can involve a
good amount of computation as it can require the entire tree
to be recomputed. Still, revocation status can be quickly de-
termined by a fast search through the tree.

6.4 Newer revocation techniques

In [4], Boneh et al. give a discussion of the benefits of
the original SEM architecture with regards to other current
solutions. Since the publication of that paper, a few other
techniques for certificate revocation have been developed.
Micali’s NOVOMODO approach [25] uses one-way hashing
and hash chains to show the validity or revocation status of
certificates. Centralized NOVOMODO—in which the cen-
tral secure server responds to all validity requests—is prone
to performance issues and denial of service attacks as it is
the central source for certificate validity proofs. Micali also
presented a distributed version: having one central trusted
server send out an array of the current validity proofs for
all users to each server in the network. Micali does not dis-
cuss solutions to many potential problems that could occur
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during a distribution, such as bandwidth problems, network
partition or untrusted server corruption. Micali states that it
should be very difficult to attack the central server, as it does
not accept incoming requests, but an attacker could instead
attack the network surrounding the server, preventing it from
distributing the array. In other words, distributed NOVO-
MODO still has a central “head” that can be severed (albeit
in a more difficult way) in order to shutdown the system.

Ding et al. introduce Server-Aided Signatures (SAS), [8]
a technique based on mediated cryptography similar to the
SEM architecture with the focus on minimizing client com-
putation load. While Distributed SEM works with both sig-
nature generation and decryption, SAS only deals with sig-
nature generation. It achieves a performance boost for the
user by only requiring the user to compute a hash chain dur-
ing setup, in a similar fashion to NOVOMODO, but differ-
ing in that the user keeps the chain secret. In SAS, the server
must be stateful and, for each user, must save their certifi-
cate, i , and all of the signatures already generated for that
user. This amount of state makes migration infeasible as ev-
ery signature would have to be distributed on other islands
using threshold cryptography. Additionally, in SAS the cor-
ruption of a server allows the attacker to produce user sig-
natures because all of the prior signatures are saved on the
server.

6.5 SEM

Tsudik [42] and Boneh et al. [3] have also followed up on
their original SEM work. Since the multiple-halfpair ap-
proach of [3] is essentially orthogonal to our distributed ap-
proach, it would be interesting to try them together.

6.6 Trusted computing and PKI

The SEM approach to PKI requires trusting a third party, the
mediator. Our distributed SEM approach requires trusting
even more of them, and uses trusted computing platforms to
help.

In addition to that mentioned above, other work also ex-
plores these directions. Perrin et al. propose housing a user’s
private key on an online trusted third party and doing cryp-
tography there [30]. An IETF working group is examining
Securely Available Credentials (SACRED), ways for a user
to migrate private keys from one platform (which might be
a central repository) to another. The Grid community has
produced a MyProxy key repository; a user’s real private key
lives there, but certifies a temporary key used on a less secure
machine [26]. Follow-on work moved the cryptographic op-
erations onto an IBM 4758 [18].

In our own lab, we are working on Secure Hardware En-
hanced MyProxy (SHEMP) [20]. Our Bear/Enforcer trusted
computing work provides a way to increase assurance of or-
dinary desktops; the Grid community’s MyProxy provides
a foundation for authentication using temporary key pairs,
and OASIS’ XACML provides a standard way of expressing

policies. SHEMP combines these tools to produce a way for
users to employ proxy key pairs for signatures and encryp-
tion as well, limited by predefined policies geared toward the
trustworthiness of the client platform

6.7 Evaluation of certificate status information mechanisms

With the recent advancement and proliferation of PKI tech-
niques, the need for a framework to evaluate the many cer-
tificate revocation mechanisms has arisen. Consequently,
researchers have developed frameworks, such as [15], to de-
termine the strengths and weaknesses of each. In their pa-
per, Iliadis et al. compare current certificate revocation tech-
niques according to the guidelines of their framework and
suggest areas for improvement. The framework described
is split into three major categories of criteria that together
allow for evaluation of an entire mechanism: management,
performance and security. As an area of future work, we
could provide further comparison of our Distributed SEM
approach with other certificate revocation mechanisms by
fitting our solution into the framework and comparing its
fulfillment of criteria with the evaluation of other techniques
(e.g. CRLs and OCSP) provided in [15]. This would allow an
unbiased comparison of our technique with others and pro-
vide insight into both weaknesses that need to be addressed
in our approach and advantages that our solution uniquely
possesses. Recent literature also offers other potential frame-
works [6, 27, 28].

7 Conclusions and future work

In this paper we have introduced a method to distribute SEM
by using a network that combines the benefits of trusted
computing platforms and peer-to-peer networking, and pro-
vides efficient and uninterrupted access to private data stored
on a trusted third party, even in the event of occasional server
compromise. This approach avoids replication of data across
the network while also avoiding the common use of dis-
tributed computation in order to access the secrets stored.

One of our next areas of interest here will be further
performance testing and tuning. The performance of both
migration itself and the entire application running on the
full P2P network will be reveal much information about
our approach to distributed SEM—and the feasibility of this
P2P and trusted hardware network. We also hope to extend
our basic network to include heterogeneous types of trusted
hardware (e.g., 4758s, Bear/Enforcer, and maybe even
AEGIS platforms) and build an underlying PKI for these
nodes themselves that lets them distinguish and tune for the
security levels provided. We also plan to use our framework
of P2P on trusted hardware to explore other applications as
well. General Byzantine attacks must be considered in the
Distributed SEM network and extra steps (e.g., [1]) must be
taken to ensure the correct completion of all operations. As
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our implementation progresses, we anticipate further techni-
cal hurdles in combining disparate features of our Distribute
SEM network. This could include runtime interactions be-
tween proactive share updating and migration and perhaps
other unanticipated technical difficulties.

However, at the end of the day, PKI exists to embody hu-
man and organizational trust relations in electronic settings.
An important part of future work for distributed SEM would
be trying the technique in increasingly large pilots with real
users, in order to learn where scalability and other problems
show up in practice.

PKI is essentially a technology to express trust across or-
ganizational boundaries. Trusted computing platforms tech-
nology helps enhance trustworthiness of computation across
organization boundaries. Looking at the two together has a
natural synergy, and we offer our research as a step in that
direction.
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