
Faerieplay on Tiny Trusted Third Parties (Work in Progress)∗

Alexander Iliev and Sean W. Smith

Department of Computer Science, Dartmouth College, Hanover, NH, USA
{sasho, sws}@cs.dartmouth.edu

Oct 31, 2006

Abstract
Many security protocols refer to a trusted third party (TTP) as
an ideal way of handling computation and data with conflicting
stakeholders. Subsequent discussion usually dismisses a TTP
as hypothetical or impractical. However, the last decade has
seen the emergence of hardware-based devices like the IBM
4758 that, to high assurance, can carry out computation un-
molested; TPM-based systems like Intel’s Lagrande also pro-
vide secure platforms; emerging research in trusted computing
promises more.

In theory, such devices can perform the role of a TTP
in real-world problems. In practice, all existing devices have
problems. TPM-based systems are not secure against physi-
cal attack. The 4758 aspires to be general-purpose but is too
small to accommodate real-world problem sizes. The small
size forces programmers to hand-tune each algorithm anew, to
fit inside the small space without losing security. This tuning
heavily uses operations that general-purpose processors do not
perform well. Furthermore, current devices are too expensive
to deploy widely.

Our current research attempts to overcome these barri-
ers, by focusing on the effective use of tiny TTPs (T3Ps). To
eliminate the programming obstacle, we designed and proto-
typed an efficient system, called Faerieplay, to execute arbi-
trary programs on T3Ps while preserving critical trust proper-
ties. To eliminate the performance and cost obstacles, we are
currently examining the potential hardware design for a T3P
optimized for bottleneck operations. We estimate that such a
T3P could outperform the 4758 by several orders of magni-
tude, while also having a gate-count of only 30K-60K, one to
three orders of magnitude smaller than the 4758 or hardened
CPU systems like AEGIS. We are currently proceeding with a
proof-of-concept prototype on a Xilinx FPGA.

1 Introduction
Many distributed protocols consist of computation on private,
sensitive data belonging to two or more players, who are po-
tentially adversarial and with different interests and motiva-
tions. To ensure that this computation possesses the desired
security and privacy properties satisfying the interests of these
participants, designers often posit the existence of a trusted
third party (TTP). If the participants trust this TTP not to cheat,
then the desired security properties can be obtained simply by
moving sensitive computation to the TTP.

∗Please see our preliminary design report for more complete details, defi-
nitions and proofs [10].

However, many regard the use of TTPs in protocols as
cheating, on the part of the designer. What organization or
humans are sufficiently trustworthy? Even if an organization
might be sufficiently trustworthy right now, what about the fu-
ture? Consequently, although the addition of a TTP may make
a design feasible from a computational perspective, it is con-
sidered akin to using magic or fairies [17]: not particularly
appropriate for the real world.

Hardware On the other hand, computing devices designed
to be trustworthy for relying parties at remote locations have
been designed and built. Such devices do actually offer a
possible incarnation of a TTP which does not rely on or-
ganizational trust, but only on technological provisions, like
strong physical security and self-authentication mechanisms.
Such devices, often called secure coprocessors in the litera-
ture, eg. [23], provide secrecy and integrity for computation
and data, against a wide variety of adversaries—even those
with physical access.

Unfortunately, these trustworthy devices tend to be small
in computational power and in memory. These limitations may
be inevitable: a TTP armored against an adversary with phys-
ical access might not have a large memory because of the dif-
ficulty of armoring a large device, nor run at high speed due
to the difficulty of dissipating heat. Although limited in size
and power, these devices tend to be expensive; for example,
the IBM 4758 housed an Intel 486-class processor and retailed
for approximately $2,500.

These limitations make it hard to actually use hardware-
based TTPs in the real world: how does one execute a large
program with large data in a small box, in a way that does not
reveal information about the execution to the adversary?

We have previously developed and implemented algorithms
for solving some specific large problems on hardware-based
TTPs despite these size limitations. More recently, we have
generalized this, producing a compiler and runtime (which
uses these algorithms) to run arbitrary programs securely in-
side small TTPs.

Throughout our prototyping work, we used the IBM 4758
TTP, and noticed that its hardware optimizations did not align
with the algorithms we needed; this experience suggests that
building what we call a tiny TTP optimized for these opera-
tions might both improve performance and lower cost.

This paper develops our vision for building tiny TTPs and
using them to build practical solutions to real security prob-
lems.

1

Contributions Currently, one has several options for a
hardware-based TTP, each with substantial problems. Our tiny
TTP design provides substantive improvements to each such
option. In particular:

• If one is using an IBM 4758 or 4764 as a TTP, and us-
ing a scheme like Faerieplay [8] or Oblivious RAM [4]
to allow secure computation on larger data sets than the
TTP’s RAM, our design provides a lower-cost and higher-
performance approach.

• If one is using a TPM-based system like Intel Lagrande1

for sensitive computation, a tiny TTP can provide a higher
assurance environment, with comprehensive protection
against physical tampering.

Paper Outline In Section 2 we present some background on
current hardware-based TTPs, particularly the IBM 4758. In
Section 3 we review our experience using TTPs for private in-
formation retrieval (PIR) and also general secure multi-party
computation (SMC), allowing for constrained resources in the
TTP, such as limited internal memory. In Section 4 we dis-
cuss the shortcomings of the 4758 for running these systems,
and we introduce the basic hardware elements we envision for
an optimized tiny TTP. In Section 5 we discuss how these el-
ements might be assembled into a private execution engine.
In Section 6 we estimate how the performance and size (gate-
count) for this T3P compares to prior hardware-based TTPs.
Here we also present some results from a full-fledged SMC
prototype running on the 4758. In Section 8 we outline our
current progress on a proof-of-concept tiny TTP on an FPGA,
and our plans for completing this initial implementation.

2 Current Hardware
The current incarnation of a hardware-based TTP is the secure
coprocessor—a small general purpose computer armored to be
secure against physical attack, such that code running on it has
strong assurance of running unmolested and unobserved [23].
It also includes mechanisms, called outbound authentication
(OA)2 to prove that some given output came from a genuine
instance of some given code running in an untampered copro-
cessor [16]. The coprocessor is attached to a host computer,
which provides storage, network and fast (but untrusted) CPU
services to the HW TTP. The TTP is assumed to be trusted by
clients (by virtue of all the above provisions), but the host is
not trusted (not even its root user). Thus, whenever we write
“the host”, it should be understood that from a security per-
spective this is equivalent to “the adversary”.

IBM 4758 and 4764 The 4758 is a commercially available
device, validated to the highest level of software and physi-
cal security scrutiny then (around 1999) offered—FIPS 140-1
level 4 [19]3. It has an Intel 486 processor at 99 MHz, 4MB of

1Lagrande and similar client-side systems are not claimed to be secure
against physical attack.

2OA is more recently referred to as attestation in the context of the Trusted
Computing Group.

3FIPS 140-1 has been superseded by 140-2 since 2002, but the new stan-
dard does not provide any higher assurance levels.

RAM and 4MB of FLASH memory. It connects to its host via
the PCI bus.

The 4758 also has cryptographic acceleration hardware,
and notably a “fast path” DES and TDES mode of operation,
where data can be streamed from the host through the device’s
DES engine and back out without touching the internal RAM.
The only operation possible in this mode however, is a single
encrypt, decrypt or MAC computation. If anything more needs
to be done, like encrypt-and-MAC, or any data processing, the
data needs to be read into the device’s RAM, and can be pro-
cessed only much more slowly than in the fast-path mode.

The successor to the 4758 is the 4764, or PCIXCC [1]. It
has 64MB of RAM, and a 266MHz PowerPC processor, and
costs around $8,500. We believe it also cannot serve as an
efficient TTP, as it is very costly, and does not provide hard-
ware acceleration needed for oblivious computing. It may be
adequate if the user can afford it, and the problem fits in the
64MB, but if not, and untrusted external RAM has to be used,
the overhead will be large as with the 4758, and the device’s
hardware will be underutilized.

3 TTP Experience
We have designed and built several applications making essen-
tial use of a trustworthy TTP. The solutions we have studied
and implemented share some structure, which can be used to
design more efficient hardware-based TTP architectures, much
like graphics processing benefits from optimized hardware to
deal with a small set of computationally intensive primitives.
In this section we describe the problems and outline the struc-
ture of these solutions.

3.1 Private Information Retrieval

As an example, let’s consider the problem of private infor-
mation retrieval (PIR). Boris has a database of items X =
〈x1, x2, . . . , xN 〉 and Agnes selects an index i ∈ [1..N].
We want Agnes to learn xi without Boris learning i. Many
schemes were devised to solve this problem without any
trusted parties (but usually assuming other settings like mul-
tiple non-colluding servers), but their performance and some-
what unrealistic settings appeared to limit their practical po-
tential. Smith and Safford suggested the practical PIR (PPIR)
variant of PIR: Agnes should need to do no more work than set
up an SSL tunnel, ask for a record, and receive the response; no
other parties should be involved; and the solution should pro-
vide reasonable performance on real-world dataset sizes [18].

The PPIR problem nicely embodies the challenge of a
limited-size hardware TTP: if the TTP is big enough to store
the entire database X , then the problem is easy; however, what
if the TTP is too small? Our work focuses on providing practi-
cal solutions to this problem. We assume that the TTP is very
small, eg. for PPIR with N records of size M each, the TTP
can only fit O(M + log N) bits—the minimum required to fit
a constant number of records and indices. The whole database,
and any additional working storage, resides on the TTP’s host
and is fully accessible to the adversary.

The basic algorithm we use was initially developed by
Goldreich and Ostrovsky in their oblivious RAM work [4],

2

and later also used by Asonov [2]. First, the TTP generates
a randomly permuted (and of course encrypted) version of
the database. The TTP has to do this in a way that the host
cannot learn anything about the permutation, as elaborated in
Section 3.3. Then, the TTP can answer queries by just read-
ing records from the permuted database, having applied π to
the requested index to get the permuted index. The TTP also
needs to hide relationships among queries, and the easiest way
to achieve this is to re-read previously read records every time
a new query arrives. This makes queries increase in cost each
time, so after some number, the TTP generates a new randomly
permuted database, and begins afresh. This is a very brief ex-
position, and we refer the reader to [7, 9] for the full details,
and some extensions from the original prototype. A variation
on our last PIR/W design (which allows private update of the
database) is found in [21]—it gives a faster algorithm for tran-
sitioning between PIR sessions, at the expense of requiring
more space in the TTP.

3.2 Arbitrary Multi-Party Problems

The general problem of securely computing a function with
multiple adversarial stakeholders is known as Secure Multi-
party Computation (SMC). With just two parties, the name Se-
cure Function Evaluation (SFE) is also used. The SFE problem
asks how Agnes and Boris can evaluate a function f , with 2
inputs and 2 outputs, on their respective private inputs xA and
xB , such that each only learns their own partial result. This
problem largely captures the notion of a “TTP application”—
one which needs a TTP (or a complex special-purpose scheme
to provide the same properties) to satisfy its security proper-
ties. We elaborate on extended models of a TTP app, like
long-lived servers, in our Faerieplay report [8].

Current solutions to the SMC problem do not employ a
TTP, but instead use a protocol on a combinatorial circuit form
of the function f , eg. [22].

One unsolved problem with this approach to SMC is that
the use of indirectly addressed arrays is very expensive in a
combinatorial circuit—each access is linear time in the array
size. Thus, in order to provide efficient indirect array handling
to SMC, we combined the circuit-based solution to SMC with
using a TTP to evaluate array gates efficiently and securely,
calling the system Faerieplay4[8]. The TTP uses a form of
PIR to access the array stored on the host, without leaking in-
formation to the host.

Faerieplay provides a more efficient solution to the
general SMC problem than current implementations like
Fairplay[13]. Seen another way, it provides a general frame-
work for deploying TTP applications, taking care of code and
data too large to fit in the TTP.

3.3 Oblivious Networks with Encrypted Switches

A common theme in our work was the need for the TTP to per-
form operations obliviously on a sequence of N items residing
on the host. Operations include permuting with a given per-
mutation π, sorting with a given sorting key k(xi), and merg-

4The name Faerieplay refers to the perceived equivalence between TTPs in
protocols and fairies, and is also in recognition of the inspiration we got from
the Fairplay project

0

1

2

3 0

1

2

3

Figure 1: A Beneš permutation network with 4 inputs, performing the permu-
tation 〈2, 3, 1, 0〉. The dashed lines represent switch settings, which depend on
the permutation. The rest of the network only depends on the number of inputs.

ing two sorted subsequences; such operations were the major
bottleneck in our PPIR system. In all cases our obliviousness
requirement is that the adversary (bounded by feasible com-
putations) does not learn anything about the parameters of the
operation from observing the IO that the TTP performs, and
the memory restriction allows the TTP to read in and operate
on only a few items at a time.

From other fields of computer science (eg. communica-
tion routing) comes the construct of oblivious networks which
can perform any of these tasks. These networks consists of
small operators whose settings are operation-dependent (eg.
depend on the permutation π), wired together in a fixed man-
ner, independent of the operation.

Example: Permutation network A Beneš permutation
network can perform any permutation π of N input items by
passing them through O(N log N) crossbar switches (the op-
erators), each of which operates on two items, either crossing
them or passing them straight. The crossbar settings differ for
different π, but the connections between the switches is fixed
for a given input size N . In Figure 1 we illustrate a small
Beneš network.

A bitonic sorting network is similar to the Beneš network,
but it sorts its input, and consists of N

4 log2 N comparators,
each of which sorts two items. The comparators are arranged
in log2 N

2 stages.
These networks are useful for our problem because (1)

the TTP can use cryptography to make each operator look the
same (ie. independent of its setting) to the host, and (2) the
network wiring is intrinsically independent of the inputs. Thus
the TTP can emulate the whole network on any dataset while
keeping the host’s view independent of the dataset and the se-
cret parameters (like π). For example, in the Beneš network
case, to execute a switch the TTP reads in the two items in-
volved, internally crosses them or not, and writes them out
re-encrypted (eg. using a new pseudorandom IV) so the host
cannot tell if it was a cross or not. We call this implementation
of a switch an encrypted switch.

4 Optimizing Hardware Bottlenecks
As we have discussed in the previous sections, the bottlenecks
of our TTP-based PPIR and Faerieplay schemes are the per-
mutation and sorting and merging networks, and their essen-
tial component is the encrypted switch. However, what we
needed for a fast encrypted switch did not match the hardware
provisions of the 4758—we could not make full use of its I/O
channels and fast-path TDES capability, the CPU was not fully

3

Symm.
engine

(in)

Symm.
engine

(in)

Symm.
engine

(out)

Symm.
engine

(out)

public key:

RSA, etc.

RAM

Controller

Switch

C
ip

h
er

te
x

ts

C
ip

h
er

te
x

ts

Physical security boundary

Figure 2: The outline of fast streaming through an encrypted switch in a tiny
TTP. Block by block, it brings in two records, decrypts them, swaps them depend-
ing on the switch setting, then encrypts them again and sends them out.

used as no CPU-bound processing is involved, and we did not
use all the RAM. We think that the slow performance, on an
expensive device, suggests designing a new type of hardware,
optimized for our purposes.

We note that while the designs presented here target only
the bottleneck operation of a tiny TTP—oblivious networks—
the full device is general purpose, ie. it can be programmed
to compute any computable function. If it implements
Faerieplay, the tiny TTP will be programmed with a circuit
(compiled from standard source code), and if it implements
Oblivious RAM it will be programmed with a standard RAM
program.

In Figure 2 we show the main hardware optimization idea—
a fast streaming capability to switch and re-encrypt two
streams of data. We do not need to store the complete records
inside the switch, but instead stream the two records through
the switch, crossing the streams if needed. Thus we reduce the
internal memory requirement from O(M) (the record size) to
O(B) (where B is the block size of the cipher).

4.1 The Symmetric Engine

A basic building block of this hardware is an engine for fast
symmetric cryptography. Our 4758 prototype work used the
TDES cipher; new-generation hardware should probably use
AES. We define the symmetric engine to include MAC compu-
tation, so it performs authenticated encryption. For efficiency
reasons this may mean that each engine will contain two AES
cores, one for cipher and one for MAC. We are also consid-
ering the use of newer symmetric modes like Galois/Counter
Mode (GCM) [14].

4.2 A g-in, g-out Switch

In previous 4758 work, the limiting factor in streaming data
from the host, through the TDES engine, and back out again
was the speed of I/O, not the crypto hardware itself [12]
This observation suggests that, at first approximation, the time
complexity associated with executing a network of encrypted
switches depends more on the number of switches, and less on
the size of each switch, ie. a smaller number of larger switches

Figure 3: This sketch shows an example reverse butterfly network for N = 16
inputs. The vertical lines denote switches on the two endpoint lines. On the
left, we show the original network of 32 2-input switches, arranged in 4 stages.
On the right, we show it as eight 4-switches, each performing the action of four
2-switches.

can yield a performance benefit.
Thus the question naturally arises: can we decompose a

network into a smaller number of larger switches? It turns out
that this is possible in all oblivious networks which we need
to use. In particular, we use bitonic merging and sorting net-
works, and Beneš permutation networks; all of these are con-
structed with one or more butterfly networks and their reverses.
In Figure 3 we illustrate how a reverse butterfly network on
N lines, which has (N/2) log N switches, can be constructed
with N log N

g log g g-switches, each with g inputs and outputs (in the
limit, if g = N , we get just one “N -switch”—the whole net-
work.) In our longer report[10] we formally state and prove
this property of the butterfly network. Using g > 2 has the
benefit, in addition to reducing the number of I/O rounds, of
reducing the total amount of I/O by a factor of log g too.

5 Building a Whole Privacy Engine
Coordination of the switches within a run of a network requires
considering how to set up the encryption keys, IVs, and record
headers to ensure that the switches can detect if the host is
feeding them the wrong ciphertexts, and the host cannot de-
termine which ciphertext output of a switch matches which
ciphertext input.

Switch execution The switch module will execute all the
switches in a network in some topological order (eg. stage
by stage). While keeping a small constant amount of state, the
switch can keep track of which records it needs to work on
next, and thus can check if the host is providing the correct
records.

Physical Security for the Switches One physical design for
a complete TTP is to have a single physically shielded com-
partment containing one or more switches and their controller.
This is the easiest option to work with in designing how the
controller and switches communicate.

Alternatively, the switches and controller could be pro-
tected separately, with untrusted interconnects. In this case,
the components will need to set up secure channels between
each other, as well as with the outside. This suggests the
need for public-key cryptography (PKC) capability for all the
components, but could also be handled with shared symmetric
keys.

Sharing Symmetric Cores In order to ensure that the speed
with which the TTP’s I/O bus streams data is similar to the

4

speed of the AES cores, so all major components work at max-
imum capacity, it may be necessary to share the AES cores.
We can facilitate this by using an AES core which just does
block-AES, without any chaining mode. Then the chaining
hardware (which is simple) can be replicated, but the large
AES core shared across several AES chains.

A whole Faerieplay scenario walk-through We have so far
focused on the most performance-critical component in a tiny
TTP, the encrypted switch, and how it is used to perform an
oblivious network. However there are many things that the
TTP needs to do around the switch too. Here we outline a more
holistic view of a whole SMC of some function f , using the
Faerieplay scheme. We assume the TTP is on a third computer,
but it could also be co-located with one of the players.

• One player generates the circuit, and both players sign it
after they agree it’s correct.

• Both players establish secure sessions with the TTP. Dur-
ing this, the TTP gets their public keys too.

• Each player sends its input to the TTP, which writes
scalars into the appropriate circuit value slots, and writes
arrays encrypted with an initial key onto the host.

• The TTP permutes the arrays.
• The TTP starts the circuit evaluation. It computes a hash

of the circuit gates during the process, and checks the
players’ signatures on the circuit at the end.

• It stores each output value encrypted on the host and dis-
tributes outputs at the end.

Each of those steps can be initiated by the host, or the TTP
could run through all of them, blocking while waiting for in-
put.

6 Performance Evaluation
Time To evaluate the performance of our proposed T3P, let’s
consider using it to obliviously merge two sorted lists of total
length N . For purposes of this back-of-the-envelope calcula-
tion, we will assume that the PCI bus is an original generation
PCI version, transferring 32 bits at 33MHz, for a bandwidth
of 132MB/sec. The AES cores in the device will be sufficient
to process the data at that rate. Note that the host will have to
use its RAM to store all or some of the database, as no current
hard disks transfer data at 132MB/sec.

As described before, merging N items takes N log N
g log g g-

switches. Executing one g-switch requires reading and writ-
ing gM bytes over the PCI bus. At 132 MB/sec, this cor-
responds to gM

132,000,000 seconds per switch, which gives us
MN log N

log g·132,000,000 seconds for the whole merge.
In our previous work with the 4758, we measured the per-

formance to do a TDES-based reshuffle when M = 850 bytes,
for various N [7]. Reshuffling time is dominated by a merge
of two sorted lists. Table 1 compares these figures to what our
new approach should yield, for g = 32.

Current 4758 Prototype Our current Faerieplay prototype
uses the 4758 as a (slow) tiny TTP. The example program we
have been working with is a graph search using Dijkstra’s al-
gorithm. If Alice owns a graph, and Bob has a source and

N Minutes on the 4758 Minutes using a T3P
512 1.7 0.000099

1024 3.8 0.00022
2048 8.3 0.00048
4096 19 0.0011
8192 44 0.0023

Table 1: Comparing the measured PIR re-shuffle time on the 4758 to the
projected re-shuffle using our T3P approach, for M = 850 and g = 32.

V 7 15 63
Time in mins. 4.1 8.9 53

Table 2: Running times for Dijkstra graph search, on a random graph of V
vertices and average out-degree 5, running on Faerieplay with a 4758 acting as
a tiny TTP (limited to O(M + log N) space).

destination, the program allows Bob to learn a path and/or dis-
tance between his two points, without revealing the graph to
him, and without Alice learning the two points. We show
some performance results in Table 2. If we can get the ex-
pected speedup on a Tiny TTP over the 4758, it should make
this program practical on graphs of tens of thousands of nodes.

We have also developed an oblivious RAM prototype, to
compare its performance with Faerieplay. As we expected,
Faerieplay is faster, because it focuses the high-overhead
oblivious access to just where it is needed—indirect arrays.
We stress that both techniques for TTP-assisted secure com-
putation can benefit similarly from our new tiny TTP design.

These threads of work will be presented together in [6].

Size (gates) There are a variety of AES hardware options,
eg. a commercial Helion AES core with 6K gates and yielding
500Mb/s or 62MB/s5. To saturate the PCI bus speed of 132
MB/s, we would need four sets of two cores, for 48K gates.
There will also be some gates for the control and actual switch,
but the AES cores would dominate.

OpenCores (www.opencores.org) lists an AES core
(aes_core), freely available, of 38K gates attaining about
1 Gb/s, thus requiring 4 instances in our design for a total of
150K gates.

Smart-card scale FPGA implementations of RSA exists
using less than 3K gates. Our T3P will use RSA infrequently,
so a relatively slow implementation should be adequate.

For comparison, the current AEGIS [20] design uses
300K gates.

The largest components on the IBM 4758 are the 486
CPU (about 1.5 million transistors, or 400K gates) and the
16KB SRAM (about 260K gates). If we (conservatively)
equate one gate to 4 bits of DRAM, the 4MB DRAM is about
8M gates. The crypto hardware adds even more.

5See http://heliontech.com/aes_std.htm. This is the variant
without key-expansion, but since in our design we minimize key changes, it
should be feasible to use one key-expansion module for several AES modules.

5

www.opencores.org
http://heliontech.com/aes_std.htm

7 Related Work
Secure hardware Hardware modules like the TPM are in-
tended to protect data—keys and software measurements—as
opposed to computation. Also, they do not protect against
physical tampering attacks, which are an important part of our
threat model.

Current research (e.g., [11, 20]) and product efforts (e.g.,
[5]) explore the notion of a secure computing environment
built around a security-enhanced CPU, with security provi-
sions extending to the whole system by means of partitioning,
and memory encryption and checking. These systems (if im-
plemented) offer varying degrees of protection against a phys-
ically present and dedicated adversary with a drill and bus and
RAM probes, but none of them address this threat directly.

The XOM project [11] investigated how to design a se-
cure desktop-oriented processor architecture and operating
system such that only the processor needs to be trusted, and
not the OS and the RAM. The adversary’s goal is to copy soft-
ware which is run on the machine. They leave open the impli-
cations of the adversary observing a program’s memory access
pattern.

The AEGIS project [20] investigates the use of an inno-
vative way for a processor to wield a secret key, by using a
Physical Random Function based on random delays in silicon
gates. It also assumes an untrusted RAM, but leaves open the
consequences of exposing the RAM access pattern.

Cryptographically weak devices Remotely keyed encryp-
tion schemes seek to enable high-bandwidth encryption (on
a host machine) using long-term keys held in low-bandwidth
devices like smart cards [3]. This work shares the theme of
enabling large computations using a small trusted space, but
is otherwise quite different as it has no obliviousness require-
ments, and an adversary controlling the host can decrypt ci-
phertext until he is removed.

In a similar space, Modadugu et al. have developed a
prototype using an untrusted host to help a Palm Pilot with
generating RSA keys [15].

8 Continuing Work and Conclusions
In order to confirm the performance gains we hope the T3P
design will achieve, we are currently proceeding to implement
some of it on an FPGA. We are working with a Xilinx Virtex
2 Pro FPGA, with 18.5K 4-input Lookup Tables (LUTs), on
a PCI board made by Avnet. The initial proof-of-concept im-
plementation will be a simple switch with AES decryption and
encryption around it, and communicating to the host via PCI.
This should demonstrate the speedup attainable in the bottle-
neck process of the whole Faerieplay system.

We are confident that this project will enable practical so-
lutions to secure multiparty computation problems which are
beyond the scope of current approaches. This will directly in-
crease the range of tractable SMC problems, for example en-
abling PIR on databases of millions of records. Also it should
enable more complex problems, which incur a high cost even
without privacy properties, to be solved with strong privacy
guarantees.

Acknowledgements This research was supported in part by
NSF grant CNS-0524695, and the Bureau of Justice Assis-
tance grant 2005-DD-BX-1091. The views and conclusions
do not necessarily reflect those of the sponsors.

References
[1] T. Arnold and L. van Doorn. The IBM PCIXCC: A new

cryptographic coprocessor for the IBM eServer. IBM Journal
of Research and Development, 48:475–487, May 2004.

[2] Dmitri Asnonov. Querying Databases Privately: A New
Approach to Private Information Retrieval. Springer-Verlag
LNCS 3128, 2004.

[3] Matt Blaze, Joan Feigenbaum, and Moni Naor. A formal
treatment of remotely keyed encryption (extended abstract). In
EUROCRYPT ’98, volume 1403 of LNCS, pages 251–265,
Espoo, Finland, May 1998. Springer-Verlag.

[4] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious RAMs. Journal of the ACM,
43(3):431–473, 1996.

[5] David Grawrock. LaGrande architecture.
http://www.intel.com/technology/security/
downloads/scms18-LT_arch.htm, September 2003.
IDF Fall 2003 presentation.

[6] Alexander Iliev. Using Tiny Trusted Third Parties to Enhance
Secure Two-Party Computations. PhD thesis, Dartmouth
College, Hanover, NH, USA, November 2006. to appear.

[7] Alexander Iliev and Sean Smith. Private information storage
with logarithmic-space secure hardware. In I-NetSec ’04: 3rd
Working Conference on Privacy and Anonymity in Networked
and Distributed Systems, pages 201–216, Toulouse, France,
August 2004. IFIP, Kluwer.

[8] Alexander Iliev and Sean Smith. More efficient secure function
evaluation using tiny trusted third parties. Technical Report
TR2005-551, Dartmouth College, Computer Science, Hanover,
NH, USA, July 2005. http://www.cs.dartmouth.
edu/reports/abstracts/TR2005-551/.

[9] Alexander Iliev and Sean Smith. Protecting client privacy with
trusted computing at the server: Two case studies. IEEE
Security and Privacy, 3(2):20–28, March 2005.

[10] Alexander Iliev and Sean Smith. Towards tiny trusted third
parties. Technical Report TR2005-547, Dartmouth College,
NH, USA, July 2005. http://www.cs.dartmouth.
edu/reports/abstracts/TR2005-547/.

[11] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support for Copy
and Tamper Resistant Software. In ASPLOS 2000, pages
168–177, November 2000.

[12] Mark Lindemann and Sean W. Smith. Improving DES
coprocessor throughput for short operations. In 10th USENIX
Security Symposium, Washington, D.C, August 2001.

[13] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella.
Fairplay—a secure two-party computation system. In Matt
Blaze, editor, 13th USENIX Security Symposium, pages
287–302. USENIX, August 2004.

[14] David A. McGrew and John Viega. The security and
performance of the Galois/counter mode (GCM) of operation.
In INDOCRYPT, volume 3348 of LNCS, pages 343–355.
Springer, 2004.

6

http://www.intel.com/technology/security/downloads/scms18-LT_arch.htm
http://www.intel.com/technology/security/downloads/scms18-LT_arch.htm
http://www.cs.dartmouth.edu/reports/abstracts/TR2005-551/
http://www.cs.dartmouth.edu/reports/abstracts/TR2005-551/
http://www.cs.dartmouth.edu/reports/abstracts/TR2005-547/
http://www.cs.dartmouth.edu/reports/abstracts/TR2005-547/

[15] N. Modadugu, D. Boneh, and M. Kim. Generating RSA keys
on the PalmPilot with the help of an untrusted server. In RSA
Data Security Conference and Expo, 2000.

[16] Sean Smith. Outbound authentication for programmable secure
coprocessors. In 7th European Symposium on Research in
Computer Science, October 2002.

[17] S.W. Smith. Fairy Dust, Secrets and the Real World. IEEE
Security and Privacy, 1:89–93, January/February 2003.

[18] S.W. Smith and D. Safford. Practical Server Privacy Using
Secure Coprocessors. IBM Systems Journal, 40:683–695,
2001.

[19] National Institute Of Standards and Technology. Security
requirements for cryptographic modules.
http://csrc.nist.gov/publications/fips/
fips140-1/fips1401.pdf, Jan 1994. FIPS PUB 140-1;
URL current in June 2005.

[20] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and
Srinivas Devadas. Design and implementation of the aegis
single-chip secure processor using physical random functions.
In ISCA 2005, Madison, WI, USA, June 2005.

[21] S. Wang, X. Ding, R. Deng, and F. Bao. Private information
retrieval using trusted hardware. In ESORICS 2006, September
2006. LNCS 4189.

[22] A. C. Yao. How to generate and exchange secrets. In FOCS
1986, pages 162–167. IEEE, 1986.

[23] Bennet S. Yee. Using Secure Coprocessors. PhD thesis,
Carnegie Mellon University, 1994.

7

http://csrc.nist.gov/publications/fips/fips140-1/fips1401.pdf
http://csrc.nist.gov/publications/fips/fips140-1/fips1401.pdf

	Introduction
	Current Hardware
	TTP Experience
	Private Information Retrieval
	Arbitrary Multi-Party Problems
	Oblivious Networks with Encrypted Switches

	Optimizing Hardware Bottlenecks
	The Symmetric Engine
	A g-in, g-out Switch

	Building a Whole Privacy Engine
	Performance Evaluation
	Related Work
	Continuing Work and Conclusions

