Using Hierarchal Change Mining
to Manage Network Security Policy Evolution

Gabriel A. Weaver, Nick Foti, Sergey Bratus, Dan Rockmore, Sean W. Smith
Deparment of Computer Science Dartmouth College, Hanover, New Hampshire USA

Abstract Managing the security of complex cloud
and networked computing environments requires craft-
ing security policy—ranging from natural-language text
to highly-structured configuration rules, sometimes
multi-layered—specifying correct system behavior in an
adversarial environment. Since environments change
and evolve, managing security requires managing evo-
lution of policies, which adds another layer, the change
log. However, evolution increases complexity, and the
more complex a policy, the harder it is to manage and
update, and the more prone it is to be incorrect.

This paper proposes hierarchical change mining,
drawing upon the tools of software engineering and
data mining, to help practitioners introduce fewer errors
when they update policy. We discuss our approach and
initial findings based on two longitudinal real-world
datasets: low-level router configurations from Dart-
mouth College and high-level Public Key Infrastructure
(PKI) certificate policies from the International Grid
Trust Federation (IGTF).

1 Introduction

The paper considers the security-policy evolution prob-
lem. Security policies must evolve to be useful: if
practitioners don’t update their policy, their networks
are vulnerable to new threats. However, updating pol-
icy creates management challenges: due to complexity,
practitioners may introduce error or make insufficient
changes, Additional dependencies due to the multilay-
ered nature of policy make maintenance even more
complex. The more complex a policy, the harder it
is to manage and the more prone it is to be incorrect.
Indeed, recent research provides quantitative evidence
that evolution actually increases the complexity of
Layer 3 network configuration [1].

However, security policies, even low-level, are forms
of text, and the fields of software engineering and data
mining give us building blocks for automated tools to
deal with multiple levels of evolving text.

We believe that change detection will help practition-
ers to update policy in a way that reduces errors. We
propose hierarchical change mining to detect changes
and patterns of change across multiple layers of policies—
whether low-level router configurations or high-level
natural-language policies, perhaps with change logs.

Our problem is important to both real-world prac-
titioners and security researchers. In our fieldwork, we
have seen firsthand that practitioners struggle to un-
derstand how changes that must be made to policy will

affect the enterprise mission. Often improper or incom-
plete changes increase as a result of policy complexity.
Both low-level and high-level policy changes have major
consequences if they are done properly or improperly.

Security policies are axiomatic to the discipline of
security. In the literature, the phrase “security policy”
may include mechanisms to ensure quality-of-service, to
configure a network, or to authenticate and authorize
users to a system. Traditional Orange-Book security
methods formalize Discretionary Access Control (DAC)
and Mandatory Access Control (MAC) policies with
access-control matrices and lattices respectively [17].
However, these Orange Book policy formalizations of-
ten play less of a role in security in actual practice:
according to a leading European industrial security con-
sultant, well-structured security policies are becoming
less important and ‘risk assessments’ are becoming more
important [13]; according to a study in our lab, when
users think deeply about a Facebook-like privacy policy,
they actually leak more personal information than when
they don’t think so carefully [33]; according to Benson
et al [1], configuration errors cause a large number of
network outages and the misconfiguration risk is a func-
tion of complexity. Managing real-world security policy
for large real-world systems is a pressing problem.

Furthermore, real-world security policies must be
defined iteratively since policy correctness evolves over
time. Software engineering denotes such systems as
E-type: systems embedded in the real-world and whose
correctness depends upon the “usability and relevance
of its output in a changing world” [18]. Consequentially,
network security policies must be continually re-defined
and re-evaluated to accommodate their changing en-
vironment. This sentiment is echoed by other network
security researchers who have noted that “top down se-
curity policy models are too rigid to cope with changes
in dynamic operational environments” [20].

This Paper Section 2 discusses two real-world in-
stances of the security policy evolution problem and how
practitioners currently address it. Section 3 proposes
hierarchical change mining and Section 4 evaluates our
results against our use cases. Section 5 orients our
research within the fields of software engineering, data
mining, and network management. Section 6 concludes.

2 Real-World Use Cases

The security-policy evolution problem emerged from our
collaborations with practitioners in network adminis-



tration and identity management and recent findings in
software engineering. Properly done, changing a router
configuration allows emergency operators to resolve
calls from VOIP phones at Dartmouth to a physical lo-
cation. Improperly done, changing the policy can crash
the router that provides phone service when that router
reboots. If the change is not made, emergency workers
may not know how to get to the scene of an incident.
Properly done, changing a security policy allows a uni-
versity to access massive datasets and computational
power via the grid. Improperly done, the university
increases the vulnerability of the entire grid. If not
done, the university is denied research opportunities.
We now discuss some observed limitations of the
currently-practiced state-of-the-art.

Router Configuration in Enterprise Networks
Collaborating with real-world practitioners from Dart-
mouth Computing Service, we analyzed four years
(2005-2009) of Cisco router configuration files, which
specify access lists and VLANs may be used to group
users into a single logical subnet with uniform routing
rules.

One example of requirements evolution these prac-
titioners faced during this period was the change of
college telephony to Voice Over IP (VOIP), and the
resulting directive that every VOIP phone be resolvable
to a physical location for 911 emergencies. Network
administrators had no choice but to evolve policy;
specifically, they had to set the MAC address of every
VOIP phone on the network with a switchport com-
mand. However, if they didn’t also update the router’s
flash, then the router would be in a bad state upon
reboot. Therefore, we see that due to dependency
rules, a change to a configuration file may be necessary
but not sufficient to keep the router in a good state;
the literature attests to the relation between router
misconfiguration and network service failures [23].

To aid with this evolution, the current practice is to
use the Really Awesome New Cisco configuration Differ
(RANCID) tool [27]. However, practitioners told us
of several limitations. First, RANCID does not report
changes with respect to dependencies; practitioners
must manually check to make sure that if a MAC ad-
dress is changed then the flash on that router is updated.

Second, RANCID may report meaningless changes
that add noise to the change results. For example, if
one permutes five lines in a block of the configuration
file, then RANCID will report it as 5 deletions and 5
insertions even though the behavior of the configuration
is unchanged.

Identity Management in Federations Collabo-
rating with real-world practitioners from the Interna-
tional Grid Trust Federation (IGTF) [14], we analyzed

their member organization’s certificate policies and
certification practices statements (CP/CPSs). In this
context, a grid is a distributed computing system
that provides researchers access to massive amounts
of computing power, storage, and data. The IGTF
accredits organizations against a common set of stan-
dards for grid authentication. An organization that is
IGTF-accredited can authenticate to several large-scale
computational grids via a PKI certificate. Anyone not
accredited cannot authenticate. Natural-language texts,
these CP/CPSs ensure that “certificate generation,
publication, renewal, re-key, usage, and revocation is
done in a secure manner” [10]. The IGTF base policy
determines accreditation guidelines.

As an example of policy evolution, when the IGTF
changes their base accreditation guidlines, member
organizations have 6 months to comply. If members
don’t comply, they lose accreditation. If member orga-
nizations comply poorly and still get accredited, then
they expose themselves to legal risk. Moreover, they
risk losing institutional access to grid services. Either
way, changes to policy may result in increased exposure
to risk.

Current practice for the IGTF to manage compliance
relies on manual inspection of CP/CPSs combined
with changelogs, where member organizations have
recorded changes that affect their level of assurance [28].
Analysts will look at the previous and current versions
of the CP/CPS to try to detect changes; analysts
may also use change detection software such as Adobe
redlining tools or Microsoft Word’s Track Changes.

However, real-world data from the current, manual
practice of documenting and reviewing changes revealed
limitations. For example, when we compared the num-
ber of changes reported in the changelogs to the number
of actual changes, we found changes reported between
two versions of policy whose corresponding passages
were identical—and other places where the polices had
far more changes made than reported. Current practice
does not suffice for effective management.

Software Engineering Recent findings from soft-
ware engineering validate our concerns about this
insufficiency. In 2010, Israeli and Feitelson [15] looked
at the evolution of the Linux kernel and argued for
code-based measurements for software versus surveys
and logs. They cite a study by Chen et al. that
compares change logs for three software products and
their corresponding changed source code; this study
showed that 80% of the changes were not logged [8].
Another example comes from a 2007 study by Fluri
et al. which looked at three open-source systems and
described how comments and code co-evolved. They
found that newly-added code barely gets considered
despite its considerable growth rate.



3 Hierarchical Change Mining

Our proposed approach models security policies as
hierarchically-structured texts and mines changes
within these structures over time. We use the Cisco
router and IGTF polices discussed above as longitu-
dinal' datasets. When practitioners modify a security
policy, they create a new version of that policy. This
sequence of policies, ordered by time, is a rich stream
of historical data.

Policy as Hierarchically-Structured Text Se-
curity policy languages are typically hierarchically
structured, and practitioners often group these policies
hierarchically. Our approach accommodates both these
senses. Commands within Cisco I0S are hierarchi-
cally structured and the show command for a router’s
start configuration or running configuration serializes
this hierarchy. Furthermore, network-administrators
group router configurations hierarchically; admins
may decompose a network into edge and core routers.
IGTF security policies are written as hierarchically-
structured documents with sections, subsections, and
subsubsections. IGTF policy analysts group member
organization’s policies into sub-federations such as
The Americas Grid Policy Managment Policy Author-
ity (TAGPMA), The European Union Grid Policy
Management Authority (EuGridPMA), and the The
Asia-Pacific Policy Management Authority (APGRID).

We model the hierarchical structure of a policy as
a tree. Vertices within a policy tree represent syntactic
blocks of text; children correspond to blocks nested
within that block. Each vertex has a unique reference
string, persisting across policy versions, that allows us
to compare change based upon policy structure rather
than line numbers (which vary). Tables 1 and 2 list
sample reference strings.

Quantifying Hierarchical Evolution We quan-
tify change in two steps: we parse policy trees into
change tables, then we mine these change tables. A row
of a change table associates two versions of a syntactic
block with a set of change features like word or tree
edit-distance. Tables 1 and 2 list rows from change
tables for IGTF PKI and Cisco IOS policies respectively.
Currently, we compute word and tree edit-distance
with a postorder traversal of the policy tree, summing
features as we move up the tree. If desired, we can
also sum features across multiple versions of a single
policy or groupings of multiple policies. For example,
we analyzed all VOIP routers in Dartmouth’s Nugget
Theater. In ongoing work, we are mining these change
tables in order to detect changing and frozen policy
structures, association rules, and trends.

Reference Description wordED | treeED
SDG. In Sec 6.1.1, added more 12 0
1.5_16.1.1 description
AIST.1_1:1.4.3 ]Added Section 1.4.3 21 1
IUCC.1_5:4.6.1 |Changed 4.6.1 to add logging |0 0

of login, logout, and reboots

Table 1: Our PKI-policy change table associates change
features with paths to syntactic blocks for sections,
subsections, and sub-subsections mentioned in changelogs.
A path takes the form of organization.edition:section. These
rows illustrate a content change, an added section, and
a change that never occurred respectively.

4 Evaluation

We now discuss how hierarchical change mining im-
proves on existing research and addresses the problems
we introduced in Section 2.

Router Configuration in Enterprise Networks
Our methods to quantify policy evolution build upon
and improve state-of-the-art in studies of router configu-
rations using longitudinal data [9, 25, 29, 30]. Previous
studies have not considered hierarchical change, nor
have they looked at considered commonly-used variable
names as opposed to commonly-used tokens. Sung et
al. [30] define blocks and superblocks to study correlated
changes across router configurations. While superblocks
allow one to see commonly occurring tokens, they do not
allow one to see how these tokens change with respect
to the hierarchical structure of the configuration.

Plonka et al studied the evolution of router configura-
tions using the stanza [25]. Their approach, like Sung’s,
does not allow one to count how often a particular
interface such as FastEthernet0/8 is used, only the
total number of times the command interface occurs.
In addition, our hierarchical model of Cisco IOS is more
general than stanza-type analysis, which only counts
revisions for level-0 syntactic blocks such as global and
level-1 syntactic blocks such as interface, vlan, logging,
ip, and bridge [25]. In contrast, our approach considers
paths to syntactic blocks at any level in the Cisco
IO0S command hierarchy. This rich syntactic structure
allows practitioners to drill-down within change reports
for more detail than previously provided.

In Table 2, we count level-1 change hits and level-2
change hits separately to avoid double counting a single
change. For example, if we add 5 switchport commands
to an interface, then the level-2 change count would
be 5, but the level-1 change count would be 1. If we
summed change counts across levels of the tree, then
we would double-count one of the level-2 changes. Also,
the total tree edit-distance for the /root/interface*
category at level-1 (1542) is greater than the total tree
edit-distance for the same category at level-2 (628). A
possible explanation that contributes to this is the set
of edits required to insert and delete changed, level-2

LA longitudinal dataset is a sequence of versions of a policy that change over time [30].



Reference Total treeED Hits | Reference Total treeED Hits |Reference Total treeED Hits
/root/interface* 1542 80 | /root/logging® 0 0 |/root/interface_FastEthernet0_8/switchport* 17 17
global 304 278 | /root/bridge* 0 0 |/root/interface_FastEthernet0_8/switchport_port-security* 13 13
/root/vlan* 28 25 | /root/interface* (1542/628) (80/628) |/root/interface_FastEthernet0_8/switchport_voice* 2 2
/root/ip* 18 18 | /root/interface*/switchport* 247 247 |/root/interface_FastEthernet0_8/switchport_mode* 2 2

Table 2: Our change table for all VOIP routers in the Nugget Theater allows for an analysis of level-1 commands that
resembles Plonka and Tack’s stanza-type analysis. We differ, however, in that our change feature is tree edit-distance,
and our global category refers to all unindented lines that are not any of the others in the list. More importantly, our
hierarchical model allows us to navigate the Cisco IOS command hierarchy and get increasingly more specific change
information. Where appropriate, total tree edit-distances and total hits are reported in terms of level-1 and level-2

structures using the format (level-1 score/level-2 score).

components as children of level-1 vertices.

In ongoing work, we are mining associations between
categories of syntactic blocks as well as between par-
ticular instances of syntactic blocks. Generalization
replaces arguments to commands with a token for their
production rule. For example, MAC addresses are
replaced with the token “M ACADDRESS” [1]. An
example of a generalized association rule comes from
Sung’s approach [30]. Using Sung’s approach, practi-
tioners can detect associations between the access-list,
interface, and policy-map categories. However, using
our approach, practitioners can also drill-down to see
the particular access-lists and policy-maps with which
interface FastEthernet 0/8 is associated.

Identity Management in Federations Our ini-
tial and ongoing work in hierarchical change mining
also improves upon research in identity management
in federations and addresses real-world problems that
policy analysts face during accreditation.

Our hierarchical model of policy is based on over
20 years of experience to model, reference, and re-
trieve Classical texts [11, 12, 36, 37]. Others have done
work in high-level policy formalization. Authoriza-
tion and authentication policies have been formalized
using various XML vocabularies including SAML [4]
and XACML [22]. Previous work in certificate pol-
icy formalization focuses less on human-readable,
machine-actionable representation than our prior re-
search [35, 38] and our current work. Several have ex-
plored using ASN.1 to model properties based on a CP’s
source text [2, 26]. Others like Casola [5, 6] have experi-
mented with data-centric XML representations of policy.
and Jensen have experimented with data-centric XML
representations of policy. Contemporary to our previous
work, Jensen [16] encoded policies using DocBook [34].

Real-World Impact Administrators recognize that
tools like RANCID are unaware of policy dependencies
and that change reports may contain false changes be-
cause RANCID is not aware of the syntactic structure
of Cisco I0S. Even our initial work improves upon
this state-of-the-art; a practitioner has lauded how the
hierarchical structure of policies gives an intuitive frame-
work against which to organize and interpret change.

Rather than reporting line numbers and forcing
administrators to peruse the entire configuration file,
we express change in terms of structural features—and
can generate queries to see the evolution of a particular
interface or access-list over a range of time across an
entire network or within a single router. In ongoing
work, we plan to try to correlate syntactic changes
within a single router configuration file and between
multiple layers of network administration. For example,
one practitioner thought it might be interesting to look
at correlations between ip helper-addresses, servers that
state which DHCP addresses to use, and snapshots of
active DHCP leases. One could also look at correla-
tions between router configuration files and network
snapshots of active MAC addresses. At a higher level,
it would also be interesting to try to correlate changes
to router configurations with bug reports [24].

Administrators also must manually sift through
meaningless changes that have no effect on the behav-
ior of routers. Our change tables are syntax-aware, and
so can enable filtering out meaningless changes accord-
ing to Cisco IOS semantics. We are the first, to the best
of our knowledge, to identify and address this problem.

Our initial work also improves the state of practice
in our other application domain. The IGTF’s current
accreditation process uses change logs as well as manual
review; the initial change tables we generated, how-
ever, revealed problems. Our initial study of 13 IGTF
member organizations revealed 5 organizations with at
least one reported change for which there was no actual
change in the policy. Out of a total of 178 reported
changes, 9 of those changes corresponded to no actual
change. Of the 94 of 178 that claimed major change,
we found 5 that were logged but never performed.

To detect the the second type of discrepancy, we are
building a change feature classifier that decides whether
or not to add a section to a changelog. This problem
is more challenging since not all policy changes affect
level-of assurance.

5 Related Work

To the best of our knowledge, we are the first to observe
that practitioners express security policy in multiple
layers ranging from high-level natural-language texts



to low-level configuration files and that these policies
must be changed and synchronized in order to maintain
security. We are also the first to propose a unified
methodology to understand change in many of these
policies through the lens of hierarchically-structured
text. Our work improves upon and leverages the state-
of-the-art in security, network service management,
data-mining, and software-engineering.

A few other security researchers have introduced
the term security policy evolution in the context of
autonomous security. A 2004 proposal [21] proposed
a mechanism for systems to dynamically change access
rights in authorization policies, collecting data, using
machine-learning to find patterns, and then using
planning and optimization to construct a new policy
on the fly. Unfortunately, this proposal did not appear
to generate any follow-on work. The proposal was cited
in later papers [20, 31] discussing how to use genetic
programming to automatically generate new policies.
Our approach differs from this group in that our goal
is to produce tools that produce useful information
for practitioners. Our approach ensures that humans
remain accountable for security decisions.

Our work is also unique in that it considers the
necessity, implications, and properties of security-policy
evolution through the lens of structured text, whether
a high-level or low-level policy, in contrast to some
prior work studying the evolution of network policies
through data mining and software engineering.

Hierarchical Change Mining The various com-
ponents of our hierarchical change mining leverage
and improve upon the state-of-the-art in data mining
and software engineering. Computing a change table
between two consecutive versions of a policy is an
instance of Chawathe’s [7] hierarchical change detection
problem. Our approach is unique, however, in that
we extract multiple features from policy node content;
most others focus on changes to the tree structure but
not the lower level features discussed above. Further-
more, a comprehensive 2009 review of XML similarity
notes that a future research direction in the field would
be to explore similarity methods that compare “not
only the skeletons of XML documents...but also their
information content” [32]. Our work improves upon
the state-of-the-art in change detection.

Our work also applies the Zhao et al.’s 2005 best
student paper XML Structural Delta Mining, which
proposed a vision for mining change patterns in XML
documents [39]—although our approach works with
any tree (not just an XML DOM). More recently,
Leskovec et al. studied how phrases evolve in the
blogosphere [19]; Bottcher et al. introduce the new
paradigm of Change Mining as “data mining over a
volatile, evolving world with the objective of under-

standing change” [3]. Our work also improves upon
the state of the art in data mining.

6 Conclusion

We have introduced and motivated the security-policy
evolution problem with anecdotal evidence from real-
world practitioners in router configuration and PKI
policy accreditation. We have argued the importance
and necessity of studying policy evolution and its
relation to policy complexity in network services. To
our knowledge, we are the first to consider a uni-
fied approach to manage change in multiple layers
of network-security policies ranging from high-level
natural-language policies to low-level router configu-
rations. We accomplish this by modeling policy as
a hierarchically-structured text and have proposed
general methods to manage change that build upon
state-of-the-art research in network management, data-
mining, and software-engineering.

We have several ideas for future work. We noted
before that Benson et al. observe that evolution in-
creases the complexity of network configuration and
that quantifying complexity can help one to evaluate
network design decisions [1]. Just as this paper de-
scribes work in progress on general methods to quantify
changes to policy, we would like to investigate how well
Benson’s referential complexity metrics generalize to
other security policies. Our current work looks at two
longitudinal datasets that correspond to two different
layers of two distinct network security policies. We
would like to study multiple layers of the same network
security policy in the future. Furthermore, we would
like to also apply hierarchical change mining to detect
changes to other policies such as SELinux.
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