
Re-Engineering Grep and Diff for NERC CIP
Gabriel A. Weaver and Sean W. Smith

Department of Computer Science
Dartmouth College

Hanover, New Hampshire 03784
Email: (gweave01,sws)@cs.dartmouth.edu

Rakesh B. Bobba and Edmond J. Rogers
Information Trust Institute

University of Illinois at Urbana-Champaign
Illinois, USA

Email: (rbobba,ejrogers)@illinois.edu

Abstract—The present and future smart grid has a large
number of devices that produce an avalanche of data. Our
research explores whether we can channel this avalanche to
drive more efficient NERC CIP audits. The power industry has
both high-level, natural-language NERC CIP policies and low-
level data sources such as router configuration files, Windows
registries, and PMU data. Utilities must use low-level data to
demonstrate compliance at a high level and each utility does
this in their own way. In this paper, we propose our two tools,
Context-Free Grep and Hierarchical Diff, to help utilities and
auditors generate reliable and reproducible evidence to support
or refute NERC CIP compliance. Our tools are currently in the
design phase, although we have prototyped Hierarchical Diff.

I. INTRODUCTION

The smart grid will increase the stability and reliability of
the grid overall with vast numbers of cyber components. Many
of these devices will generate data.

Power system control networks must comply with the North
American Electric Reliability Corporation’s Critical Infrastruc-
ture Protection (NERC CIP) regulations. The consequences
of failing to fulfill these provisions are severe. According
to one industry expert who has performed audits at a major
utility, fines scale up to 1.5 million dollars per day of violation
retroactive to the beginning of the offense. In addition to finan-
cial consequences, failure to comply implies a lack of basic
and sound security controls, making the system vulnerable to
cyber attacks and their consequences, including power outages.

Despite the importance of NERC CIP compliance audits,
there are a few drawbacks to current audit process. First, the
audit process can be arbitrary and subjective. Secondly the
audit process is costly. At Investor-Owned Utilities (IOUs),
a conservative estimate suggests that audits consume 30 man
days per day of audit. This estimate does not include ramp up
time for the auditors. Furthermore, audits cost large IOUs from
hundreds of thousands to millions of dollars. Currently utilities
are on a three-year audit cycle. However, the Federal Energy
Regulatory Commission (FERC) would like annual audits.

This Paper This paper makes two contributions to try to
address the drawbacks of the current NERC CIP audit process.
First, in Section II, we observe that network and system
configuration files form a dataset that utilities and auditors may
analyze for a more consistent, reliable, data-driven NERC CIP
audit. Given the estimated number of devices on the smarter
grid of the future, we expect this dataset to only grow in size
over time.

Second, in Section III, we propose two tools that emerged
from our broader work on security policy management but
which we argue will help with CIP audit. Our Context-Free
Grep and Hierarchical Diff tools are designed to extract and
measure changes to network and system configuration files.
We argue the utility of our tools; that our tools provide the
functionality needed to evaluate and document compliance in
several CIP provisions. These CIP provisions include CIP-
003-4 (Cyber Security - Security Management Controls), CIP-
005-4a (Electronic Security Perimeter(s)), and CIP 010-1
(Configuration Management and Vulnerability Assessments).

In Section IV we describe in detail our plan to evaluate the
correctness, performance, and usability of our tools. Section V
discusses our second contribution in the context of prior work
done in industry and academia. Finally, Section VI concludes.

II. DATASETS FOR CIP AUDIT

A. Cisco IOS

Utilities must manage their computer networks. In our field-
work, we have found that administrators must interpret and
implement security policies, sift through network configuration
data, and track changes to a network’s security configuration
through time. Although there are several options to managing
a network, we focus on Cisco IOS, a configuration languge
for Cisco routers and switches.

Cisco IOS configuration files contain information that both
utilities and auditors may use to understand how a cyber
control network evolves over time. NERC CIP-005-4a requires
utilities to update documentation to reflect changes to a net-
work within 90 days of the change. In fact, network operators
consider router configuration files to be the “most accurate
source of records of changes” [1], [2].

Although Cisco IOS has commands such as banner that
make it context-sensitive [3]. We argue that a meaningful
subset of Cisco IOS is nontheless context-free. Intuitively,
context-sensitive grammars are more general than context-free
languages and most programming languages are, in theory,
context-free. Although Cisco IOS lacks a formal grammar,
the language still represents constructs of interest through its
syntax. Many of these structures are either blocks (such as the
interface command) or span multiple lines.

978-1-4577-1683-6/12/$26.00 ©2012 IEEE

B. Windows Registry

A majority of power control systems use Windows and
NERC CIP was written for Windows-based control systems.
We therefore focus on Windows.

We argue that utilities and auditors may use the information
in a Windows registry to define a baseline configuration
of a system; baseline configurations are required by NERC
CIP-010-1. The Windows Registry stores configuration infor-
mation in a hierarchically-structured set of key/value pairs.
For example, NERC CIP 010-1 R1.1 requires utilities to
“develop a baseline configuration of the BES Cyber System,
which shall include: physical location, OS(s) and versions,
any commercially available application software (and version),
any custom software and scripts installed, logical network
accessible ports, and security-patch levels.” Figure I shows that
most of the elements of a baseline configuration are present
in the Windows registry.

Currently, there is no general best practice for utilities to
craft a baseline configuration. There are change management
products such as ChangeGear and Remedy, but generally,
many utilities will use spreadsheets to track revisions and
system levels.

There are other components of the Windows registry that
utilities could use to define a baseline configuration. For
example, the registry also specifies how a system handles
file extensions. Utilities could treat entries in this part of the
registry as a whitelist of accepted file extensions and have all
other file extensions be opened through a special application
(or not opened at all). On a production machine, for example,
extensions such as .cpp may be unnecessary since source
files are usually unnecessary in production.

III. OUR TOOLS

A. Context-Free Grep

Although grep is a traditional UNIX workhorse for sifting
data, it was not designed to extract information in terms of the
syntactic and/or logical structure of modern configuration and
programming languages. Specifically, grep can only recognize
regular languages and regular expressions are not powerful
enough to extract blocks of text nested arbitrarially deep. For
a general-purpose tool, we need to be able to extract structures
at arbitrary nesting depth.

For example, Cisco IOS, although it lacks a formal gram-
mar, represents meaningful constructs of interest through its
syntax. Some of Cisco IOS’ data structures are reflected in
its syntax. These structures, such as the interface, are
expressed as blocks. Other structures, such as the access
list span multiple lines but are logically grouped together
by identifier rather than by a block.

Our Context-Free Grep tool aligns the unit of extraction
with the block structures found in modern programming and
configuration languages. Given a grammar that generates the
syntactic structures of interest, and an input file, our proposed
tool finds matching strings in the language of the subgrammar,
and reports those matches within meaningful regions of text.

Utilities and auditors will be able to use our Context-Free
Grep tool to directly query network and system configuration
files in terms of a language’s structure. As we will see, this
capability will be useful in the context of NERC CIP-005-4a.

Furthermore, once we have the ability to parse a context-
free subset of a language like Cisco IOS or Windows registry,
practitioners can grep out this structure as an abstract syntax
tree. Different kinds of syntax tree consumers could then
generate reports in a variety of formats and one of these
formats could be a controlled natural-language description of
contents. This would be similar in flavor to the work done
by Inglesant, Sasse, and Chadwick in which they used a
controlled natural language to create RBAC policy [4].

B. Hierarchical Diff

Diff is a time-honored UNIX shell tool whose unit of
comparison is the line. TkDiff recognized that other units
of comparison are useful and so began to color the differing
portion of the string. Many modern programming and con-
figuration languages, however, specify structures (meaningful
units of text) that span multiple lines. For example, Cisco IOS’
interface blocks, C functions, and subtrees in the logical
structure of a Windows registry.

Our Hierarchical Diff tool aligns the unit of comparison
with context-free substructures found in programming and
configuration languages. In its most general form, Hierar-
chical Diff takes two versions of a file written in the same
configuration language or syntax. These files are parsed into
an intermediate tree representation. The current intermediate
representation is XML, however, XML is a bloated format
and the final version of our tool may use an alternative
representation. Once in an intermediate tree representation, we
compare both versions in terms of the structure of the file and
its content. Finally, we output a change report that describes
how to transform the first version of the file into the second.

Our Hierarchical Diff tool will let utilities compare network
and system configuration files in terms of their syntactic
structure rather than by line number. We anticipate this tool
will be useful in NERC CIP compliance audit.

C. Our Tools and NERC CIP

We now discuss the utility of our proposed tools in the
context of NERC CIP compliance audit. Table II quotes
the provisions that we discuss. Table III summarizes the
requirements that emerge from our discussion.

CIP-005-4a NERC CIP-005-4a R5.2 requires responsible
entities to update documentation within 90 days of a change
to the network [5]. In this manner, documentation reflects the
actual configuration of the power system network.

Our Context-Free Grep and Hierarchical Diff will enable
utilities and auditors to extract and compare meaningful re-
gions of network configuration files. We hypothesize that both
of these capabilities will be time-efficient ways to demonstrate
compliance with CIP-005-4a R5.2.

Utilities and auditors will benefit from the capability to
extract meaningful regions of text from system and network

CIP 010-1 R1 Baseline Configuration
Component Corresponding Windows Registry Subtree

1.1.1. Physical location not available

1.1.2. Operating system(s)
(including version) HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion

1.1.3. Any installed application
software (including version)

HKEY_LOCAL_MACHINE\Software
 InstallDir, Revision, and Version are contained in this subtree

1.1.4. Custom software and scripts Uncertain, perhaps in HKEY_LOCAL_MACHINE\Software

1.1.5. Logical network accessible ports HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\Tcpip

1.1.6. Security-patch levels HKEY_LOCAL_MACHINE\Software\Microsoft\Updates

TABLE I
MOST OF THE ELEMENTS OF A BASELINE CONFIGURATION ARE PRESENT IN THE WINDOWS REGISTRY.

CIP 003-4

CIP 010-1

CIP
005-4a

Description

R6

R5.2

R1.2

R1.5

R2.1

Change Control and Configuration Management — The Responsible Entity shall establish and
document a process of change control and configuration management for adding, modifying,
replacing, or removing Critical Cyber Asset hardware or software, and implement supporting
configuration management activities to identify, control and document all entity or vendor- related
changes to hardware and software components of Critical Cyber Assets pursuant to the change
control process.

Authorization, by the CIP Senior Manager or delegate, and document changes to the BES Cyber
System that deviate from the existing baseline configuration.

For each change that deviates from the existing baseline configuration for Control Centers...

Where technically feasible, monitor for changes to the baseline configuration (as defined per
CIP-010 R1, Part 1.1) and document and investigate the detection of any unauthorized changes.
The Responsible Entity shall update the documentation to reflect the modification of the network or
controls within ninety calendar days of the change.

R1.1

Develop a baseline configuration of the BES Cyber System, which shall include the following for
each BES Cyber Asset identified, individually or by specified grouping: 1.1.1. Physical location;
1.1.2. Operating system(s) (including version); 1.1.3. Any commercially available application
software (including version) intentionally installed on the BES Cyber Asset; 1.1.4. Any custom
software and scripts developed for the entity; 1.1.5. Any logical network accessible ports; and 1.1.6.
 Any security-patch levels.

TABLE II
THE NERC CIP PROVISIONS DISCUSSED IN THIS PAPER.

configuration files. In CIP-005-4a R5.2, responsible entities
must update documentation within 90 days of a change to the
network.

Context-Free Grep would provide the mechanism for utili-
ties and auditors to extract meaningful units of configuration
files for comparison. Given a grammar and an input file,
Context-Free Grep will find matching strings in the language
of the grammar and report those matches within meaningful
units of text. For example, utilities could extract all interfaces
to which a certain access list is applied and have matches
reported as interfaces. Figure 1 illustrates the usage scenario

for our design.
Our approach is different from available tools. In traditional

grep, one can approximate this effect by reporting lines of
context surrounding a match. Cisco IOS’s show include
command similarly allows one to extract matching strings from
a configuration. Our approach, however, allows one to grep out
the interface block that contains the match. Once extracted,
meaningful units of configuration files may be compared using
our Hierarchical Diff.

Our Hierarchical Diff will provide utilities and auditors
the capability to compare meaningful regions of system and

Context-Free Grep Hierarchical DiffCIP Provisions

CIP 003-4

CIP 010-1

CIP 005-4

1) extract Windows registry subtrees to
monitor for changes.

1) compare versions of Windows registry subtrees.
2) Nightly change report generation.

1) extract Windows registry subtrees
relevant to a baseline configuration

1) compare a baseline configuration registry to a
system registry.
2) Nightly change report generation

1) locate strings generated by Cisco
IOS sub grammar.
2) return matches in meaningful unit of
text, such as an interface

1) compare Cisco IOS interface blocks
2) network configuration changelog generation

Softw
are

N
etw

ork

TABLE III
THIS PAPER MOTIVATES SEVERAL REQUIREMENTS FOR OUR CONTEXT-FREE GREP AND HIERARCHICAL DIFF IN TERMS OF NERC CIP REQUIREMENTS.

interface 2

interface 3

...

ro
ut
er
.v
0

<Match 1

<Match 2

2 previous lines to report

ro
ut
er
.v
0

grep -B 2 router.v0

cf_grep --units=interface --grammar=ciscoIOS "shutdown" router.v0

<root> -> <interface>*
<interface> -> interface <id> <line>+

CiscoIOS grammar

(a)

(b)

2 previous lines to report

interface 2

interface 3

...

<Match 1

<Match 2

Fig. 1. (a) The unit of extraction in traditional grep is the line, but even with previous context, via the -B flag, matches may be missing useful information
such as the interface name in which the match occurs. (b) In contrast, the unit of extraction in our Context-Free Grep corresponds to meaningful regions of
text. Practitioners know where matches occur. The grammar need only specify production rules for interfaces and lines.

network configuration files. We hypothesize that this capability
will be a time-efficient mechanism to demonstrate compliance
with CIP-005-4a R5.2.

Auditors could use Hierarchical Diff to identify meaningful
changes to network components. After Context-Free Grep
extracts meaningful units of text, Hierarchical Diff could be
used to compare them. For example, suppose we have two
versions of a set of network interfaces that are on edge routers
and use a particular access list. Hierarchical Diff compares
these subtrees both in terms of tree structure and node values
and then generates an edit script to transform one version into
the other. The change operations defined by the edit script,
report the meaningful changes to the system between those
two versions.

The output of our Hierarchical Diff could also be used
to help utilities to quickly document meaningful changes to
both software and network components. Since change deltas
are expressed in terms of a configuration language’s syntactic
structure, we could generate natural-language changelogs.
These logs could then be used by utilities comply with
requirements to document changes to network configurations.

Both our own work in other domains (such as PKI), as well
as literature from software engineering suggests that traditional
change logs, although used in audit, may not accurately reflect
changes. In the domain of PKI we did an initial study of
the changelogs for security policies of 13 organizations. We
found that out of 178 reported changes, 9 of those changes
corresponded to no actual change [6]. If these observations
on changelogs generalize to power system networks, then
automatically-generated, meaningful changelogs would both
save time and increase accuracy of a compliance audit on a
control network.

NERC CIP-003-4 and CIP-010-1 We now discuss how our
tools will give utilities and auditors the capability to efficiently
and consistently satisfy several provisions within NERC CIP-
003-4 and NERC CIP-010-1.

NERC CIP-003-4 R6, and CIP-010-1 R1.2, R1.5, and R2.1
motivate the need for utilities to have the fundamental capa-
bility to compare system configurations. In NERC CIP-003-
4, utilities must be able to “identify, control, and document”
meaningful changes to software components of Critical Cyber
Assets [5]. In NERC CIP-010-1, utilities must be able to com-
pare a system configuration against a baseline configuration.

Both Context-Free Grep and Hierarchical Diff are our pro-
posed tools for utilities and auditors to achieve the capabilitity
of meaningful configuration comparison in Windows systems.
We contend that this capability is useful to satisfy both NERC
CIP-003-4 R6 as well as several provisions in NERC CIP-010-
1.

Context-Free Grep would allow utilities and auditors to ex-
tract meaningful units of system configuration files to compare.
For example, auditors could extract all references to Adobe
within the software subtree of the logical view of a Windows
registry.

Hierarchical diff would help utilities to “identify, control,
and document” meaningful changes to software and network

components as required by CIP-003-4 R6. In this case, we
would compare the meaningful regions of text extracted by
Context-Free Grep. For example, suppose we extract the
subtrees that correspond to installed software.

To address CIP-010-1, our Hierarchical Diff will enable
utilities and auditors to measure how a system changes from
a baseline configuration directly from the Windows registry.
In this case we would compare a baseline configuration to the
current registry of a system.

Given two versions of a Windows registry subtree, our
Hierarchical Diff will return an edit script that describes
how to transform one registry into the other using operations
such as insert, delete, update, or move. Unlike
traditional diff, however, the edit script will be in terms of
operations on the registry’s tree structure. Practitioners may
then either document changes to the cyber system by saving
this edit script, or writing a summary of the changes. As
mentioned before, it may also be possible to generate human-
readable changelogs directly from the edit script.

Our Hierarchical Diff could help utilities and auditors to
monitor changes to Windows Registries. If the baseline con-
figuration was expressed as the logical view of the Windows
registry, then a nightly batch process could either extract
interesting registry subtrees and diff them or diff the current
configuration against the baseline configuration. A change
script or machine-generated change log could then be emailed
to the administrator.

IV. EVALUATION

In this section, we give a detailed plan of how we shall
evaluate the correctness, performance, and usability of our
Context-Free Grep and Hierarchical Diff tools.

A. Correctness

Table III, lists the functional requirements for our tools in
order to help utilities comply with NERC CIP-003-4, CIP 010-
1, and CIP 005-4a. These requirements, combined with use
cases such as those shown in Figures 1 and 2 form the basis
for evaluating correctness. We now describe our proposed
evaluation of correctness for both of our tools.

Context-Free Grep: We want to verify two statements
based on the usage diagram in Figure 1 to ensure the correct-
ness of our implementation of Context-Free Grep. First, if we
give cf_grep a pattern, a set of units in which to report found
instances of that pattern, a grammar that specifies productions
for those units, and a file to query, then all instances of that
pattern that occur within the desired unit are reported. Note
that there may be instances of the pattern that do not occur
within a specified reporting unit. In that case, that instance is
not output.

In order to verify these two statements, we will develop
a test suite for our future implementation of Context-Free
Grep. The use cases for our tests will be derived from each
of the requirements outlined in Table III. This means that we
will build up test cases for Cisco IOS and a logical view of
Windows Registries.

Hierarchical Diff: We now describe how we intend to
evaluate the correctness of Hierarchical Diff.

Based upon the usage diagram in Figure 2, we need to verify
two statements. First, if we give hier_diff a set of units
of comparison, a grammar that specifies productions for those
units, and two files to compare, then our tool generates an
edit script that describes how to transform the first file into
the second. Note that the changes should be reported in the
largest unit of comparison possible so as to reduce the length
of the change report. For example, we note in Figure 2 that
the move of interface 2 is reported as a delete and an insert of
one interface, rather than as deleting and inserting four lines.

Again, we can verify our notion of correct behavior for
Hierarchical Diff with a test suite. The test suite will be based
upon the requirements outlined in Table III. If we design our
tests carefully, our blackbox tests will be able to evaluate any
implementation of our Hierarchical Diff specification.

1) Performance: In order to estimate how many man hours
our tools can save during a NERC CIP compliance audit, we
need to evaluate the performance of our tools on realistic
datasets. As mentioned before, current NERC CIP audits at
major IOUs consume 30 man days per day of audit and cost
large IOUs from hundreds of thousands to millions of dollars.

Towards this end, we have already begun to collect real-
world datasets. For example, we have four years of Cisco IOS
router configuration data provided by Dartmouth Computing
Services. We need to build up a similar dataset for Windows
Registries.

We will use both of these datasets to benchmark our
Hierarchical Diff and Context-Free Grep to understand their
memory usage and execution time relative to the size of the
files input. In this manner, we will understand the context in
which our tools can be used by utilities and auditors.

2) Usability: Finally, we want to evaluate our tools with
usability studies based upon the requirements in Table III. We
now outline some of the aspects of our tools that our usability
studies should address.

Since both Context-Free Grep and Hierarchical Diff are
redesigns of two traditional UNIX workhorses, we should
evaluate both of our tools against traditional grep and tradi-
tional diff. In particular, one aspect of our tools that may make
them harder to learn are the input grammars. Depending upon
how difficult these grammars are for test participants to write,
we may decide to have precanned grammars for utilities and
auditors to use during a NERC CIP audit.

We want to evaluate the interpretability of our tools’ output.
For Context-Free Grep, how much do the meaningful units of
extraction help test participants to locate matches? Is the addi-
tional structural information provided by these units actually
useful or does the traditional grep suffice? In Section III we
provided evidence for why we think our tool would improve
traditional grep.

Additionally, we want to understand Hierarchical Diff and
whether the meaningful units of comparison actually help
here as well. Does expressing edit scripts in different units of
comparison (such as interfaces) help or confuse users? How

much savings in edit script length do we get by varying the
unit of comparison. Figure 2 suggests there may be a benefit
to our approach over traditional diff.

Finally, we want to evaluate the overall user satisfaction
with our tool. In other words, we will make our tool available
to utilities and auditors to try and collect anecdotal feedback.
Already, we have some interested industrial partners.

V. RELATED WORK

We now discuss our proposed tools in the context of prior
work done in both industry and academia.

A. Context-Free Grep

Industry: Currently, there are a variety of tools available
to extract regions of text based upon its structure. The closest
tool we have found to our design of Context-Free Grep is
sgrep [7]. SGrep is suitable for querying structured document
formats like mail, RTF, LaTeX, HTML, or SGML. Currently,
an SGML/XML/HTML scanner is available but it does not
produce a parse tree. A parse tree library might be useful
for our Hierarchical Diff. Nonetheless, the querying model of
sgrep is worth paying attention to. If one is processing XML,
XSLT may be used to transform and extract information based
upon the structure of the XML.

Windows Powershell has a Where-Object Cmdlet that
allows people to issue queries on the properties of an object
at the command line. An object may be created from a source
file by casting it as a type (such as xml) [8].

Pike’s structural regular expressions allow users to write a
program to refine matches based on successive applications of
regular expressions [9]. Our approach is different because we
extract matches based upon whether a string is in the language
of the supplied grammar.

Academia Although Grunschlag has built a context-free
grep [10], this classroom tool only extracts matches with re-
spect to individual lines. Coccinelle [11] is a semantic grep for
C. In contrast, we want our tool to have a general architecture
for several languages used by system administrators.

Our Context-Free Grep complements research in network
configuration management. For example, Sun et al. argue that
the block is the right level of abstraction for making sense
of network configurations across multiple languages. Despite
this, however, they only look at correlated changes in network
configurations in Cisco [1]. Similarly, Plonka et al. look at
stanzas in their work [12].

B. Hierarchical Diff

In this paper, we argued that our Hierarchical Diff can
help utilities and auditors to satisfy NERC CIP 010-1 because
much of the information in a baseline policy is available in a
Windows registry.

The goal of our Hierarchical Diff is to produce a general-
purpose tool to compare multiple versions of a file with the
same syntactic structure. Our tool is unique because we seek
to build a tool that can do a structural comparison of files in

interface 2

interface 3

...

<D

<D
<D
<D

<D

<D
<D
<D

I>

I>
I>
I>

I>

I>
I>
I>

...

ro
ut
er
.v
0

ro
ut
er
.v
1

D

I

I

hierdiff -y --units=interface,line
--grammar=CiscoIOS router.v0 router.v1

diff -y router.v0 router.v1

D

<root> -> <interface>*
<interface> -> interface <id> <line>+

interface 2

interface 3

(a)

interface 2

interface 3

...

...

ro
ut
er
.v
0

ro
ut
er
.v
1

interface 2

interface 3

(b)

Fig. 2. (a) The unit of comparison in traditional diff is the line. (b) In contrast, the units of comparison in our Hierarchical Diff directly corresponds to
meaningful, nested regions of text. This reduces the length of a change report. The grammar need only specify productions for interfaces and lines.

general. In fact, we could use our Hierarchical Diff to compare
Cisco IOS configuration files as well as Windows Registries.

Industry: Several commercial products can already be used
to help utilities and auditors with NERC CIP-010 compliance.
In general CIP-010 R2.1 requires utilities to identify, monitor,
and document changes to an existing baseline configuration.
Open Source Tripwire [13] could be used to monitor changes
to the files that form the Windows registry. The files could
be hashed and a change to the hash would indicate a change
to the registry. However, this technology would only inform
utilities that a change occurred, not what the change was.

The commercial TripWire product monitors changes to a
more general set of file attributes and couples this with a line-
based diff tool that also could be used to monitor the files
that represent the Windows registry [14]. We note, however,
that CIP-010 concerns itself not with changes to the physical
registry file, but rather to changes to the baseline configuration.

Many components of the baseline configuration, are found
in the logical structure of the Windows registry, not in the
physical attributes of the registry files.

Change management products such as ChangeGear [15] and
Remedy [16] provide a ticketing system to document changes.
They do not provide a mechanism to compare the contents of
files, to automatically monitor whether a file on a system has
been changed, or to automatically document how the file was
changed.

There are several commercial or open source products that
utilities and auditors could use to compare two versions of
a Windows registry. WinDiff [17] and the more recent Win-
Merge [18] are both line-based, graphical file comparison tools
that one could use to compare two registry files. However, as
both tools are line-based, change reports will not be expressed
in terms of edits to the logical, tree-structure of a registry.
Furthermore, since the tools are graphical in nature, it the

change reports may not be processed by subsequent services.
Finally, TkDiff [19], available for Windows, improves upon
line-based units of comparison by highlighting character dif-
ferences within a changed line.

In contrast to the above commerical products, we designed
our Hierarchical Diff to express changes in terms of the
logical structure of the Windows registry. This means that
changes are reported in terms of inserted, deleted, updated,
or moved registry subtrees as well as changes to key values.
Since registry subtrees correspond to required components of a
baseline configuration, we expect our tool to help practitioners
more quickly isolate changes relevant to CIP-010.

Academia: The various components of our Hierarchical
Diff tool use and improve upon the state-of-the-art in computer
science. Computing changes between two trees is an instance
of the tree diffing problem and has been studied by theoretical
computer science [20]. Depending upon the number of moves
required to transform one tree into another, some instances
of tree diff are NP-hard [21]. Nonetheless, researchers have
investigated heuristics such subtree hashing, and even using
XML IDs to align subtrees between two versions of a struc-
tured document and generate an edit script [22], [21].

Furthermore Tekli et al. in a comprehensive 2009 review of
XML similarity note that a future research direction in the field
woiuld be to explore similarity methods that compare “not
only the skeletons of XML documents . . . but also their infor-
mation content” [23]. Our Hierarchical Diff tool, expresses edit
scripts both in terms of structural changes (registry subtrees) as
well as changes to the content within tree nodes (registry key
data values). Other researchers have looked at techniques to
compare XML trees for version control [24], and to compare
Puppet network configuration files based upon their abstract
syntax trees [25].

VI. CONCLUSION

In this paper, we have proposed two tools to help utilities
and auditors use network and software configurations to gen-
erate evidence for a NERC CIP compliance audit. Specifically,
our Context-Free Grep and Hierarchical Diff tools, will help
practitioners to demonstrate compliance with NERC CIP-003-
4, CIP-005-4a, and CIP-010-1. Our planned evaluation of
correctness, performance, and usability will help to ensure that
these tools, once built, actually help reduce the man hours and
costs involved in CIP compliance audit.

ACKNOWLEDGMENT

The authors would like to thank Sergey Bratus, and Jun Ho
Huh for their discussions of these tools and their applicability
to power system networks. This work was supported in part
by the TCIPG project from the DOE (under grant DE-
OE0000097). Views are the authors’ alone.

REFERENCES

[1] X. Sun, Y. W. Sung, S. Krothapalli, and S. Rao, “A systematic approach
for evolving VLAN designs,” in In Proceedings of the 29th IEEE
Conference on Computer Communications (INFOCOM 2010). IEEE
Computer Society, March 2010, pp. 1–9.

[2] Y.-w. E. Sung, S. Rao, S. Sen, and S. Leggett, “Extracting network-
wide correlated changes from longitudinal configuration data,” in In
Proceedings of the 10th Passive and Active Measurement Conference
(PAM 2009). unknown, April 2009, pp. 111–121.

[3] D. Caldwell, S. Lee, and Y. Mandelbaum, “Adaptive parsing of router
configuration languages,” in Internet Network Management Workshop,
2008. (INM 2008). IEEE, October 2008, pp. 1–6.

[4] P. Inglesant, M. A. Sasse, D. Chadwick, and L. L. Shi, “Expressions
of expertness: The virtuous circle of natural language for access control
policy specification,” in In Proceedings of the 4th Symposium on Usable
Privacy and Security (SOUPS ’08). ACM, July 2008, pp. 77–88.

[5] “NERC CIP reliability standards,” 2011, retrieved November 11, 2011
from http://www.nerc.com/page.php?cid=2%7C20.

[6] G. A. Weaver, N. Foti, S. Bratus, D. Rockmore, and S. W. Smith,
“Using hierarchical change mining to manage network security policy
evolution,” in In Proceedings of the 11th USENIX Conference on Hot
Topics in Management of Internet, Cloud, and Enterprise Networks and
Services (HotICE 2011). USENIX Association, March–April 2011, p.
unknown.

[7] J. Jaakkola and P. Kilpelainen, “Using sgrep for querying structured text
files,” in In Proceedings of SGML Finland 1996. unknown, October
1996, p. unknown.

[8] “Windows PowerShell,” retrieved February 3, 2012 from
http://technet.microsoft.com/en-us/library/bb978526.aspx.

[9] R. Pike, “Structural regular expressions.”
[10] Z. Grunschlag, “cfgrep - context free grammar egrep

variant,” 2011, retrieved November 11, 2011 from
http://www.cs.columbia.edu/ zeph/software/cfgrep/.

[11] “Coccinelle: A program matching and transformation tool for systems
code,” 2011, retrieved November 11, 2011 from http://coccinelle.lip6.fr/.

[12] D. Plonka and A. J. Tack, “An analysis of network configuration
artifacts,” in The 23rd Conference on Large Installation System Ad-
ministration (LISA ’09). USENIX Association, November 2009, p.
unknown.

[13] “Open Source Tripwire,” retrieved February 3, 2012 from
http://sourceforge.net/projects/tripwire/.

[14] “TripWire,” retrieved February 3, 2012 from http://www.tripwire.com/.
[15] “SunView Software, ChangeGear,” retrieved February 3, 2012 from

http://www.sunviewsoftware.com/.
[16] “BMC Remedy IT Service Management,” retrieved February 3, 2012

from http://www.bmc.com/solutions/itsm/it-service-management.html.
[17] “Download WinDiff,” retrieved February 3, 2012 from

http://www.grigsoft.com/download-windiff.htm.
[18] “WinMerge,” retrieved February 3, 2012 from http://winmerge.org/.
[19] “TkDiff,” retrieved February 3, 2012 from http://tkdiff.sourceforge.net/.
[20] P. Bille, “A survey on tree edit distance and related problems,” The-

oretical Computer Science, vol. 337, no. unknown, p. unknown, June
2005.

[21] G. Cobéna, S. Abiteboul, and A. Marian, “Detecting changes in XML
documents,” in In Proceedings of the 18th International Conference on
Data Engineering. IEEE, February and March 2002, pp. 41–52.

[22] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change detection in hierarchically structured information,” in In Pro-
ceedings of the 1996 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’96). ACM, June 1996, pp. 493–504.

[23] J. Tekli, R. Chbeir, and K. Yetongnon, “An overview on XML similarity:
Background, current trends and future directions,” Computer Science
Review, vol. 3, no. 3, pp. 151–173, August 2009.

[24] S. Apel, J. Liebig, C. Lengauer, C. Kastner, and W. R. Cook, “Semistruc-
tured merge in revision control systems,” in In Proceedings of the Fourth
International Workshop on Variability Modeling of Software Intensive
Systems (VaMoS 2010). University of Duisburg-Essen, January 2010,
pp. 13–20.

[25] B. Vanbrabant, P. Joris, and J. Wouter, “Integrated management of net-
work and security devices in it infrastructures,” in The 25th Conference
on Large Installation System Administration (LISA ’11). USENIX
Association, December 2011, p. unknown.

