
Adding Public Key Security to SSH

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Master of Science

in

Computer Science

by

Yasir Ali

DARTMOUTH COLLEGE

Hanover, New Hampshire

Feb, 20th, 2003

Examining Committee:

Sean Smith (chair)

Edward Feustel

Christopher Hawblitzel

!!!!!!!!!____________________________
!!!!!!!!!Carol Folt
!!!!!!!!! Dean of Graduate Studies

1

2

Abstract

SSH, the Secure Shell, is a popular software-based approach to network security. It is a

protocol that allows user to log into another computer over a network, to execute

commands in a remote machine, and to move files from one machine to another. It

provides authentication and encrypted communications over unsecured channels.

However, SSH protocol has an inherent security flaw. It is vulnerable to the “man-in-the-

middle Attack”, when a user establishes his first SSH connection from a particular client

to a remote machine. My thesis entails designing, evaluating and prototyping a public key

infrastructure which can be used with the SSH2 protocol, in an academic setting, thus

eliminating this vulnerability due to the man in the middle attack. The approach presented

is different from the one that is based on the deployment of a Certificate Authority. My

scheme does not necessarily require third party verification using a Certificate Authority;

it is decentralized in nature and is relatively easy to set up.

Keywords used: SSH, PKI, digital certificates, Certificate Authority, certification path,

LDAP servers, Certificate Revocation List, X509v3 Certificate, OpenSSL, mutual

authentication, and tunneled authentication.

3

Acknowledgments

I want to thank Professor Sean Smith for his guidance, assistance and unremitting

support over the last two years. He has always been always there to guide me and

provide his insight on all the technical and non-technical aspects of this thesis work. His

intellectual creativity, and insightful suggestions have been invaluable for my thesis

research. I could never thank him enough for being an excellent mentor and a wonderful

person. Sometimes words are just not enough to express one’s heartfelt gratitude.

My thanks also go to the other members of my thesis committee – Professor Chris

Hawblitzel, who assisted me in setting up and using Java Cryptographic API for my

project; Professor Edward Feustel for the discussions during the course of the project,

which helped me clarify my concepts.

I would like to thank Professor Fillia Makedon for guiding and assisting me in every

possible way throughout my course of study. I would also like to thank Carl Ellison for his

discerning suggestions that were incorporated in developing a solution that is proposed in

this paper.

This work was supported in part by the Mellon Foundation, Internet2/AT&T, and by the

U.S. Department of Justice, contract 2000-DT-CX-K001. Therefore, special thanks to

them for making this project possible.

4

TABLE OF CONTENTS

1. INTRODUCTION... 7

1A. This Paper: .. 8

2. BACKGROUND... 8

2A. The Man in the middle Attack ... 14

2B. Spoofing Attack ... 15

2C. A lesser significant Knownhosts2 file Attack.. 16

2D. SSH Security Vulnerability.. 16

3. POSSIBLE SOLUTIONS .. 17

3A. Solution 1: TLS (Transport Layer Security using User Certificates)........................... 17

3B. Solution 2: Smart Cards/Tokens (using X509 Certificates)... 21

3C. Solution 3: TTLS (Tunneled Transport Layer Security using Passwords) 22

3D. Solution 4: LEAP (Lightweight Extensible Authentication Protocol) 23

3E. Our Solution:.. 26

i. HMAC.. 28

ii. Centralized Minimal PKI Approach:.. 29

iii. How it works:.. 31

iv. A Decentralized Non-CA Approach:... 32

v. Is it really secure? ... 34

4. DESIGN CHOICES FOR DARTMOUTH’S ACADEMIC SETTING............................ 40

4A. Suitable and scalable Certificate deployment methodology 40

5. IMPLEMENTATION .. 45

5A. Application Interface.. 46

5

6. SCOPE OF FUTURE WORK ... 50

7. RELATED WORK AND CONCLUSION... 52

7A. F-SSH: ... 52

7B. SSH Client 3.2.0, SSH Communications Security Inc:.. 52

8. REFERENCES.. 55

9. Appendix - Code Snippets Used to Extend TTSSH. .. 58

6

LIST OF FIGURES

Figure 1 Transport Layer Key Exchange ... 11

Figure 2 User Authentication Layer... 12

Figure 3 Semi-centralized minimal PKI Scheme.. 39

Figure 4 Decentralized Scheme ... 39

Figure 5 Extended SSH2 ... 46

Figure 6 Authentication Setup ... 48

Figure 7 Retrieve Hash Store... 49

Figure 8 Verify server public key received .. 49

Figure 9 Enter Pass Phrase .. 49

Figure 10 Certificate Selection Window .. 50

LIST OF TABLES

Table 1 Authentication Schemes... 25

7

1. INTRODUCTION

This research thesis develops a minimal and yet scalable solution for the “Man-in-the-

Middle-Attack” problem in the SSH protocol.

This paper offers guidelines to develop a practicable and a viable Infrastructure for

certificate usage for SSH so that the user can be certain that he has mutual ly1

authenticated with the server, in an academic setting such as the one at Dartmouth.

Design constraints on the certificate authority, such as certificate generation, distribution,

verification, revocation, and management have also been evaluated so that the user has

to make a minimal effort to set up an ssh client and use it securely.

The deployment constraints, design considerations and scalability issues with in a

Dartmouth scenario are also evaluated in this paper. Dartmouth College has a

decentralized network with several LANS each independent of the other and connected

to a central backbone. Each building has its own LAN that is independently managed.

The network at Dartmouth has roughly 8,000 ports.

The design and code that was written to develop the prototype is open source and

modifies the SSH protocol. It is based on the original open source code for TeraTerm

SSH client that was written by Robert O'Callahan and OpenSSL libraries2. There are two

ssh protocols, the SSH1 protocol and the SSH2 protocol. The SSH1 and the SSH2

protocols encrypt at different parts of the packets. The SSH2 protocol is a complete

rewrite of the SSH1 protocol, and it does not use the same networking implementation

that the SSH1 does [14.ii]. They have slightly different Key Exchange Algorithms.

1 The user is authenticated at the server and the server key is verified on the client machine.
2 The source code written and modified for this project is placed at www.cs.dartmouth.edu/~yasir/pki

8

Generally, the SSH2 protocol is considered more secure, as it avoids known

vulnerabilities in the SSH1 implementation. Amongst the SSH products, there are

OpenSSH and SSH clients and servers. Both the products implement the SSH1 and the

SSH2 protocols. OpenSSH client and server are open source and are distributed freely

with Red Hat Linux distributions. SSH client and server are developed by SSH Inc. and

are available for Windows and Linux platforms.

Based on this research, Professor Sean Smith and I have also submitted a paper,

“Flexible and Scalable Public Key Security for SSH”, for the second annual PKI Research

Workshop.

1A. This Paper:

The next section provides the background knowledge to understand the problem. The

third section discusses the possible solutions and their weaknesses as I lay groundwork

for my solution and then describe my solution. The fourth section presents the design

considerations for a viable Public Key Infrastructure for SSH in a “Dartmouth” setting. The

fifth section presents architectural and implementation details. The sixth section

highlights related work on this problem. The seventh section summarizes and concludes

this paper. The last section provides definitions for the PKI terms used in this paper.

2. BACKGROUND

Putting it simply, the SSH2 protocol allows two hosts to construct a secure channel for

data communication using DSA (public key authentication) and a diffie-hellman-group1-

9

sha1 exchange3. The Diffie-Hellman key exchange provides a shared secret key that

cannot be determined by either party alone. The shared secret key established is used as

a session key. Once an encrypted tunnel is created using this key, the context for

negotiated compression algorithm, and encryption algorithm are initialized. These

algorithms may use independent keys in each direction. The first session key established

is randomly unique for every session. The OpenSSH clients, using the SSH2 protocol,

allow re-keying (generating a new session key for an existing session) if the user

requests during a session (by typing ~R). The SSH server provided by OpenSSH can be

configured to provide automatic re-keying after a specified interval.

At this point, it is important to distinguish the difference between mutual authentication

and client authentication. Mutual authentication is where two entities authenticate

themselves to each other. The user on client machine verifies that the server machine is

in fact the one it claims to be, similarly the server verifies that the user at the client

machine is the one who has an account on the server. Client Authentication is where only

the user on the client machine authenticates himself to the server. SSH supports both

types of authentication. In case of client authentication, if the fingerprint4 sent by the

server does not match the one that is already stored in a file on the client machine, the

user on the client machine would either receive a warning with the option of accepting the

new fingerprint as it is, or the client would drop the connection.

It is important to realize that when a user on a client machine tries to establish a secure

channel with a remote machine using the SSH2 protocol, at least four entities are

involved:

3 The "diffie-hellman-group-exchange-sha1" method specifies Diffie-Hellman Group and Key Exchange with
SHA-1 as HASH. It is used to establish a shared key in SSH2. The SSH1 protocol uses RSA-style exchange to
establish a shared key, which uses an ephemeral server key other than the server host key.

4 Fingerprints are typically 1024 bits, rsa or dsa, public keys for the server. Public key lengths can
be 512 or 2048 as well. The fingerprints are stored unencrypted on

10

- The SSH client on the client machine,

- The SSH Daemon (SSH server) running on the remote server host,

- The user on the client machine and

- The administrator on the remote server host.

The user can use various client machines to log in to a specific server. He may or may

not be required to log on to the client machines. The role of the administrator is restricted

as he is mainly responsible for configuring the security parameters on an sshd server and

ascertaining that the sshd server is running properly.

There are three main parts of the SSH protocol [3]:

- Algorithm Negotiation

- Authentication

- Data Encryption

Algorithm Negotiation is mainly responsible for determining the encryption algorithms,

compression algorithms and the authentication methods supported and to be used

between the client and the server.

Algorithm Negotiation is followed by Authentication. Authentication is further broken down

in two pieces:

- Key exchange (transport layer) [14.i,14.ii]

- User authentication (user authentication layer) [14.iii]

11

The purpose of the key exchange is dual. Firstly, it attempts to authenticate the server to

the client. Secondly, a shared key is established which is used as a session key to

encrypt all the data being transferred between the two machines. The session key

encrypts the payload and a hash generated for integrity checking of the payload using the

private key of the server. The client verifies the server’s public key, verifies the server

signature received and then continues with user authentication. User authentication

methods that are supported and are a part of the SSH2 protocol include passwords,

public key, OpenPGP certificates, X509v3 certificates, PAM, and Kerberos [16].

Currently, the latest openssh3.4 client does not provide any code that verifies certificates

or certificate chains. Certificates are merely treated as public keys. If a key blob, which is

the technical name for a data structure that loads the public key, contains a certificate

instead of a public key, openssh3.4 has routines that can extract the public key out of the

certificate and after that it only uses that public key for authentication and integrity

checking purposes. Once Authentication is successful, one of the negotiated encryption

algorithms is used to encrypt the data transferred between the two machines. Other

features that are a part of ssh clients include port forwarding, however such features will

not be discussed in this paper.

Following is a diagram [14.ii] showing the key exchange mechanism that comes after the

“algorithm negotiation” stage. The key exchange produces two values: a shared secret K,

and an exchange hash H. Given the following variables,

n is a number of bits the client requested,

p is a large safe prime,

g is a generator for a subgroup of GF(p), usually set to be equal to 2,

q is the order of the subgroup;

V_S is Server's version string;

V_C is Client's version string;

12

K_S is Server's public host key;

I_C is Client's KEXINIT message and

I_S is Server's KEXINIT message (which have been exchanged before the key exchange

begins).

The client generates a random number x where (1 < x < q) and the server generates a

random number y where (0 < y < q) and initiate the protocol as shown below [14.i,14.ii]:

Figure 1 Transport Layer Key Exchange

Figure 2 User Authentication Layer

Payload, signaturePay load is:
SSH_MSG_USERAUTH_
REQUEST, username,
service, "password",
FALSE, plaintext
password

signature is:
session identifier,

server checks
whether the
supplied
password is
acceptable for
authentication,
and if so, it
checks whether
the signature is
correct.

client server

5

Payload, signaturePay load is:
SSH_MSG_USERAUTH_
REQUEST, username,
service, "publickey",
TRUE, public key algo
name, public key

signature is:
session identifier,
payload encrypted
with private key

server checks
whether the
supplied key is
acceptable for
authentication,
and if so, it checks
whether the
signature is
correct.

SSH_MSG_USERAUTH_SUCCESS OR _FAILURE

client server

request service if userauth_success

User auth
layer (using
public key)

5

6

7

client server

Transport
Layer
Key exchange

(SSH_MSG_KEXDH_INIT), e

n

p , g

computes

computes
e = g^x mod p.

 f = g^y mod p
 K = e^y mod p
 H = hash(V_C ||
 V_S ||
 I_C ||
 I_S ||
 K_S ||
 e || f || K)
 s = signature on H
with its private host
key.

(SSH_MSG_KEXDH_REPLY), K_S || f || s

verifies that K_S really
is the host key

computes:

K = f^x mod p
H = hash(V_C || V_S ||
 I_C || I_S ||
 K_S || e || f
 || K),
and verifies the
signature s
on H.

1
2

3

4

13

The OpenSSH client, which is an open source ssh client using the SSH2 protocol,

manages the key pairs as follows [16]:

- Each “user” creates a public/ private key pair, if he intends to use “public key

authentication” on any client machine. However, that public key fingerprint needs

to be added in to the database of the server, before authentication can proceed.

- Similarly the sshd (on the server) maintains private and public key pairs created

by the root under etc/ssh. Typically there is a key pair based on RSA and another

key pair based on DSA.

- The user account on the client machine maintains a database of all the public

keys of the ssh servers to which a user logged in using SSH (

$HOME/.SSH2/knownhosts)

- If the client does not have a m a t c h i n g public key of the server in

$HOME/.SSH2/authorization, the user can configure the security on his machine

so that it accepts the public key provided by the remote server and overwrites the

existing one. It prompts the user to save the updated public host key. However

14

the user can configure the security, such that in such a scenario, the connection

would be declined.

- If the client does not have a public key (at all) of the server machine (i.e. it is

connecting to the remote machine for the first time through that client machine), it

accepts the fingerprint provided by the remote machine and stores it locally

under that specific user account.

Given this brief description of how the public keys are managed, it is easy to deduce that

the client blindly trusts the server and accepts its public key during a “first time”

connection. An intruder or an attacker can intercept in such an exchange scenario

required to establish future secure sessions and render the SSH channel to be insecure.

This brings us to a point where we can evaluate the various security vulnerabilities in ssh.

2A. The Man in the middle Attack

Suppose Alice (user) wants to talk to Bob (server) and a malicious user Trudy wants to

play the man-in-the-middle attack.

- Alice initiates a connection with Bob.

- Bob sends his public key to Alice, which Trudy intercepts;

- Trudy then sends her own public key to Alice.

- Alice accepts the new public key and stores in its database. If it was the “first

time authentication”, it would blindly add the public key provided by Trudy

thinking that it is Bob’s public key.

- Alice then sends her username and password to Bob that is again intercepted

by Trudy.

15

- Trudy decrypts Alice’s username and password using the session key and her

private key,

- Trudy then encrypts Alice’s credentials using the public key provided by Bob

and forwards the new packet to him.

- Bob authenticates Trudy thinking that it authenticated Alice.

Trudy can now be really nasty, if she sends rm –rf * command to Bob and Bob deletes

Alice’s user account. Trudy can also just accumulate user id and password pairs.

She might just pass Alice on to Bob, so Alice's session works

as normal. Except Trudy can log in later.

2B. Spoofing Attack

Spoofing is when user A claims to be user B and establishes a secure channel with host

C . C thinks that it has established a secure connection with B but in fact it has

established a channel with A . User A hides his real identity and forges a false

identification. Such an attack is possible as we do not trust the underlying network.

User spoofing is possible when an innocent user B on a client machine attempts to

establish a connection with a remote host C. A malicious server A intercepts the channel

when it is being initiated, fakes to be remote host C and replies back with its own public

key.

If the SSH client configuration on B is set to non-strict host key checking (which is the

default installation configuration), it would ask the user to overwrite the previous key

stored in its database for host C and proceed with establishing a connection. If it was the

“first time” authentication by B on that specific client, he would accept the server host key

anyway. In a common scenario, the user performs password authentication to the

16

remote server. In that case, the malicious remote server can accept the credentials

provided by B and then output the error message that invalid password was provided (the

user can re-enter his password twice and the server would give the same error message)

and then disconnect. For any future sessions, an attacker can now use B’s credentials

retrieved from malicious server A and then pose to be user B.

The “Spoofing Attack “ stems from the same basic vulnerability where a traveling user

has to retrieve the server public key for the first as was the case in the “Man in the Middle

Attack”.

2C. A lesser significant Knownhosts2 file Attack

Suppose a hacker hacks Alice’s password on a specific server machine. He can then

proceed with his attack on other machines by looking up Knownhosts2 file in Alice’s

home directory (~alice/.SSH2). He can attempt to break into all the listed machines in

the Knownhosts2 file using Alice’s username and password. If Alice used the same

username and password for those machines, in all likelihood, the hacker would

successfully break into those machines as well.

2D. SSH Security Vulnerability

Given this description of “spoofing” and “Man in the middle Attack”, we now focus on the

reasons why SSH authentication model is weak.

1. When the server sends its public key and its signature, since they are not signed

by a third party, it is trivial for an attacker to sit in the middle and intercept the

connection, and send his own public key and signature instead;

17

2. When the user sends his own password, to the attacker thinking that he is the

server, the username and password are compromised by the attacker as shown

in the previous attack scenarios.

3. If it is the first time the user is connecting to a host and hence does not have the

server's public key stored locally, he will be none the wiser. The attacker can

send his public key to be stored instead of the real server. If the user does have

the server's public key, when the attacker sends his own public key instead, the

user will generally receive a warning like “Warning: server's key has changed.

Continue?” Most users typically hit “Yes” and do not realize the risk that

someone might be trying to compromise the security of his connection by putting

the attackers own public key in use instead of the real server’s public key.

Unless both parties have some pre-established shared data, any authentication system

will probably be susceptible to a man-in-the-middle attack.

3. POSSIBLE SOLUTIONS

Before we delve into discussing our solution, let us explore existing authentication

methodologies that can be used or integrated into SSH Clients to resolve the problems

identified above. The prerequisites and the drawbacks for each one of those

methodologies would also be discussed. After analyzing these authentication solutions,

our proposed authentication solution would be presented and evaluated. At this point it is

pertinent to mention that the latest SSH Clients by SSH Inc., provide a solution to resolve

the vulnerabilities discussed in this paper [16i]. Their solution is based on the deployment

of a Certificate Authority that issues certificates to all the SSH servers. The SSH client

18

retrieves the CA Certificate first and then uses it to perform server certificate verification.

Their solution is discussed in greater detail, in the “related work” section of this paper.

3A. Solution 1: TLS (Transport Layer Security using User Certificates)

TLS is based on Secure Socket Layer protocol (SSLv3), and performs the SSL

handshake for authentication. It allows for mutual authentication between the user and

the server, using certificates.

The user on the client machine must have:

- User Certificate.

- CA Certification Path5 installed on the client machine.

The server must have:

- Server Certificate

- CA Certification Path (or the CA Certificate)

By using certificates, the problem caused by the lack of proper verification of the

fingerprints in the SSH2 protocol would be solved, as now when a user receives a new

server certificate (instead of a new fingerprint), the user can verify whether the root CA

signed the new certificate. If so, then it is a valid certificate and it can continue with

authentication. It would no longer be a judgment call, where the user decides on his own

5 A certification path is an ordered list of certificates. If a certification path meets certain
validation rules, it may be used to securely establish the mapping of a public key to a subject.
Typically , the last node in the ordered list of certificates is the CA certificate. A CA certification
path is a list of certificates that establish a validation path for a user certificate to the CA
certificate

19

will if he wants to accept the fingerprint or not. Similarly when it is a first time

authentication, it can verify that the certificate received is actually the right one.

Prerequisites:

A successful deployment of a Root Certificate Authority is integral to the success of this

solution. A Certificate Authority is responsible for generating, revoking, signing, storing

and managing certificates. A ‘Trusted’ Root certificate authority is a certificate authority

whose signing of a certificate serves as a crucial link for it to be authentic to the

connecting hosts. An ‘Intermediate’ certificate authority is a certificate authority that

vouches for the authenticity of other certificate authorities and it has a root certificate

authority vouching for its own authenticity. However, it does not issue any user

certificates.

OpenSSL provides a set of open source libraries that allow verification of certificates and

certificate chains that is needed for such a solution. Currently, this library is being used in

several commercial products. RSA’s B-safe libraries also provide a similar set of libraries.

Microsoft Certificate Store (viewed from inside Internet Explorer or Microsoft

Management Console in Windows 2000 and XP) contains a list of root trusted CA, that

are used in verification during SSL handshakes. Using OpenSSL libraries and the

Microsoft crypto libraries, certificates can be accessed and verified from the Microsoft

Certificate Store. This lays out a clean design for setting up, storing and accessing

underlying user certificate structures. Netscape and Mozilla also offer browser-based

certificate stores that can be accessed in a similar fashion.

20

In terms of ease of use, most Certificate Authorities that run on Windows Operating

System are easy to set up and use. Microsoft Certificate Authority runs on a Windows

2000 Advanced Server. There are also open source CA’s such as OpenCA that can be

downloaded and set up.

Dissemination of user certificates in the Dartmouth scenario would require a web

interface that would allow users to download their user certificates and certification paths.

The web interface would be protected by a Kerberos log in mechanism that is already

deployed fully at Dartmouth. The user credentials could be verified via Kerberos log in or

using default domain log in mechanism provided by Windows 2000. Bob Brentrup is

currently heading the deployment of a PKI and Trust Hierarchies at Dartmouth.

Drawbacks:

When a user uses a new client machine that is outside the realm of Dartmouth, he would

not have the Certification Path installed on the machine, therefore he will not be able to

verify whether the certificate received by the server is valid or not. Suppose that the

Dartmouth Certificate Authority protected by a login mechanism is accessible from

outside the Dartmouth realm6, the user successfully retrieves the CA certificate. However,

he still needs to verify that he received the correct certificate. An attacker can use IP

spoofing or DNS spoofing to send him a fake CA certificate. The existing solutions for this

problem require setting up CA hierarchies that lead to scalability issues. The TLS solution

would work if the Dartmouth CA was certified by one of the standard browser trust roots

which is an expensive proposition.

6 this poses security risks as hackers can attempt to access user certificates by password guessing. According
to some studies, students tend to have passwords that can be guessed by dictionary attacks.

21

Secondly, user certificates installed on a client machine, no longer remain user specific.

Instead they become machine specific. Therefore if a user downloads his certificate on a

specific machine, he will have to delete it, before he leaves the machine. Otherwise a

malicious user can impersonate him by using his certificate on that machine. This

problem would come up on machines where the users are not required to log in to use

the machine7.

Thirdly, most users want to use “hassle” free authentication mechanisms, where once the

machine is configured for authentication, they will not have to modify it again. This

solution requires vigilance on the part of the user.

Fourthly, dedicated resources, both human and machine, are needed to manage and

track the certificates issued to users, which makes it an expensive scheme. Furthermore

it poses security risks as anyone with a Kerberos log in can access the Certificate

Authority, including students who like to consider themselves hackers.

3B. Solution 2: Smart Cards/Tokens (using X509 Certificates)

Smart cards can store certificates on them. The certificate image and the certificate path

are stored on the local storage on the smart cards may also be protected by a pin

number/pass-phrase if they store the private key corresponding to the certificate.

A smart card is plugged into a smart card device, which is plugged into the USB port. It

may export its x509v3 certificate image and certification path onto the Microsoft certificate

store. The Certificate image must contain the public key and it can also have a private

key that would either reside on the smart card or in the certificate manager. The user can

7 For instance machines with Windows 98, ME, or Irix (sgi) with guest accounts

22

then use his ssh client to perform TLS authentication using smart card certificates. Ideally

when the user unplugs the smart card, it should remove the certificate from the Microsoft

certificate store, however not all the smart cards work that way. USB-Tokens can be

directly plugged into a USB port and do not require a smart card reader. Unlike the

traditional smart cards, they cannot be kept in a wallet, but can be put on a key chain.

It solves the problem where if the user used a machine outside the realm of Dartmouth,

he did not have access to the certificate. Given he has access to a smart card for

traditional smart card readers, and the right drivers installed for USB-token he can use

the ssh client from anywhere.

Drawbacks:

Smart card is a hardware solution where the user must carry this piece of equipment with

him. In a Dartmouth scenario, students would be required to carry these cards with them.

Unless these smart cards become a part of the Dartmouth ID card, there is a low

feasibility for a successful deployment of smart cards. Secondly, smart card reader

devices need to be installed on every machine that would be used for ssh. For USB-

tokens, one would need to install drivers on all client machines. Furthermore a fully

developed Public Key Infrastructure would still be needed where a certificate authority

would issue smart card certificates; the system administrator would burn the certificate

image onto the smart card, and keep track of those certificates and the smart cards as

well. Lastly, if the user goes outside of the Dartmouth realm, there is no certainty that he

would find the same vendor specific smart card reader on a machine, where he can plug

in his smart card and use ssh. As yet smart card technology is not scalable and is

expensive. Furthermore there are various smart card vendors in the industry and are not

fully interoperable with each other. PKCS #11 provides a method for accessing hardware

23

devices in a device neutral manner, however not all the smart card devices implement

that yet. USB-tokens need driver and software installation on a client machine before

they can be used. Typically these installations are also vendor specific.

3C. Solution 3: TTLS (Tunneled Transport Layer Security using Passwords)

This is an extension to TLS, where the user is not required to have a client certificate;

instead a user name and a password are used.

- The Server sends the server certificate.

- The Client verifies the server certificate by checking if a trusted root authority

signed it.

- If verification succeeds, the user sends his username and password over a

channel encrypted by a session key. There are various protocols that can be

used for this purpose. Some of them are one-time password protocols, challenge

response protocols, or even sending the plaintext username and password

through the encrypted channel.

This method of authentication is similar to the SSH2 protocol where the user verifies the

server fingerprint by looking up its database. If the fingerprint matches, it creates an

encrypted tunnel (using symmetric session keys) and then the user sends his username

and password. TTLS is superior to the SSH2 protocol mainly because of its server

certificate verification mechanism where the signature of a root CA on the server

certificate is verified.

24

This authentication methodology has the advantage that it is easily deployable in an

academic setting or within a corporate set up, as it does not require the deployment of

user certificates.

However the drawback is the same that the user needs to have the CA certification path

(or the CA certificate) installed on the client machine, which means that he needs to

somehow access it securely and install it on his machine if it is not already installed.

PEAP (Protected Extensible Authentication Protocol) is a similar authentication protocol

used in wireless networks, using the same underlying concepts as that of TTLS.

Therefore this paper will not discuss PEAP.

3D. Solution 4: LEAP (Lightweight Extensible Authentication Protocol)

This proprietary authentication method is developed by CISCO. It provides mutual

authentication between the user on a client machine (supplicant), and a radius server

(authentication server), through a wireless Access Point (authenticator) on a wireless

network. What makes this authentication protocol so interesting is that it does not use

server certificate or a public key to authenticate the server. Instead, it uses a two way

Challenge Response mechanism to validate the radius server to the supplicant. Following

is a quotation from Cisco’s website8:

“For its Aironet solution, Cisco created an authentication scheme based
on the Extensible Authentication Protocol (EAP) called EAP-Cisco
Wireless or LEAP. Using the 802.1x draft standard for port-based
security as a foundation, but with the necessary modifications for
WLANs, LEAP provides mutual authentication between Cisco Aironet
client cards and the backend Remote Authentication Dial-In User Service
(RADIUS) server”

8 http://www.cisco.com/warp/public/784/packet/jul01/p74-cover.html

25

Wireless Security Research group at the MISSL Lab at University of Maryland analyzed

LEAP9 and deduced that LEAP although offers mutual authentication, poses security

risks in its authentication mechanism. A shortcoming of LEAP is the fact that when

authentication takes place it has to take place in the "Open mode”. If a client is trying to

authenticate for the first time, he needs to know the current link layer communication

(WEP) key. Their work shows that authentication in open mode is very insecure and

vulnerable.

On the following page is a table summarizing the differences between these

authentication schemes.

9 http://www.missl.cs.umd.edu/wireless/ethereal/leap.txt

26

Table 1 Authentication Schemes

Authentication
Method TLSv1 TTLS LEAP SSH

Provides
Mutual
Authentication

Yes Yes Yes, but is
vulnerable

Yes, but is
vulnerable

Provide Client
Authentication Yes Yes Yes Yes

Protocol
Summary

Establish TLS
session and
validate
certificate at
both ends.

Establish TLS
session, client
validates server
certificate, server
validates
username and
password

Technical
Specifications
unavailable.
Sniffing over
connection shows
a mutual challenge
response
mechanism based
on hashing.

Establish an
SSH session,
validate server
public key from
database, and
clear text
username and
password sent
through
encrypted
channel

Server
Certificate /
public key

Certificate
required

Certificate
required Not used Server public

key required

Server
Certificate /
public
validation

Using CA
certificate path
or OSCP

Using CA
certificate path or
OSCP

Not used
Server public
key verified if
stored in
database

Client
Certificate /
public key

Required Can be used, not
required though Not used

Can be used,
not required
though

Client
Certificate
validation

Using CA
certificate path
or OSCP

Using CA
certificate path or
OSCP

Not used
Public key
verified if stored
in database

Username
and Password Not used Can be used, not

required though Required Commonly used

Password
validation Not needed

Password
validated in
encrypted
channel using,
MSCHAP, PAP,
MSCHAPv2,
CHAP, none
(clear-text)

Password
validation seems to
use MSCHAPv2

Clear-text
password
validation in
encrypted
channel

Allow Secure
mobility to
users

No, as
certificates
needed

No, as CA cert
needed

No, as it is “port
access” based
authentication

No, as server
key verification
needed

Provides
Encrypted
Channel after
server
validation

Yes Yes Yes Yes

Drawbacks:

- Too many
certificates
to manage.

- Difficult
Deployment

- Mobile user
cannot trust
CA Cert
retrieved

- Mobile user
cannot trust
CA
Certification
path
retrieved

- Specifications
not available

- Analysis, by
MISSL Lab
show
vulnerabilities
in mutual
authentication
scheme

- Open to
Man in the
Middle
Attack

- IP Spoofing
- Mobile user

cannot trust
server
public key

27

CA Cert
retrieved

authentication
scheme

server
public key

3E. Our Solution:

So far we have seen that none of the previous solutions are “lightweight”. Also, they do

not fully resolve the following two issues:

- They do not make “first time” authentication on a new client machine secure for a

traveling user.

- They are not easy to deploy in an academic setting where many users share a

group of machines, or use their own machines.

Furthermore, it has been observed that most of the users are comfortable with using

usernames and passwords instead of using client certificates, which is a hassle for both,

- the user as he has to manage it on his machine and is required to install it on any

machine he may intend to use for ssh, and

- the system administrators who may be responsible for issuing, or revoking

certificates and managing the certificate authority and a registration authority.

Lastly, system administrators desire minimal maintenance once they have set up the ssh

server. The desired goals of our solution are as follows[15]:

- The solution should enable users from borrowed (but trusted) clients to establish

trusted connections to their home machines.

- The solution should be adoptable in the near-term by small groups of users with

only a small delta from the current infrastructure.

28

- The solution should accommodate users in domains where conscientious

sysadmins can set up trustable and usable CA services.

- The solution should accommodate users in domains where no such services

exist.

- The solution should not require that a new universal PKI hierarchy be established

before any of this works.

- The solution should not require that a user memorize the fingerprints of all

servers he wishes to interact with.

To solve the problem, the client needs to have some trust root upon which to build the

conclusion that the binding of the server’s public key to identity is meaningful. The “small

delta” and “no new universal PKI” constraints mean that we cannot hard-code this trust

root into the client (and that different users might have different roots). The “no

memorization” constraint means that the user cannot bring it with them.[15]

This analysis thus forces us to have the client download the user’s trust root over the

network. Since changing how the SSH protocol itself works would also violate the “small

delta” constraint, we need download this data out of band. However, this raises a

conundrum: if the user cannot trust the network against man-in-the-middle attacks on the

public key the server sends in SSH, how can the user trust the network against man-in-

the-middle attacks against this out of band data? [15]

To answer this, we use a keyed MAC—a “poor man’s digital signature.” Also known as a

keyed hash, a keyed MAC algorithm takes a message M and a secret key k, and

produces a mac value Mac(M; k) with the property that it is believed infeasible to find

another M0; k0 pair that generate the same keyed MAC. Thus, if Bob knows secret key k,

and retrieves a message M accompanied by a MAC value h which he confirms as

29

Mac(M; k), then Bob can conclude that M was produced by a party that knew k and has

not been altered in transit. Our constraints dictate that we cannot force the user to

memorize a public key—but users easily memorize URLs and pass phrases.[15]

Taking into consideration these design constraints, this paper presents two authentication

mechanisms.

- A Centralized Minimal PKI Approach

- A Decentralized Non-CA Approach

Before we describe how these schemes work, it is pertinent to provide a brief description

of a Message Authentication Code, HMAC, used in these approaches.

i. HMAC

HMAC [6] is a Keyed Message Authentication Code Algorithm. It requires a cryptographic

hash function, H that typically uses MD5 or SHA-1 and a secret key K. The cryptographic

hash function hashes the data by iterating a basic compression function on blocks of

data. The byte-length (B) of such blocks is typically set to 64 bytes. The byte-length of

hash outputs is 16 bytes for MD5 and 20 bytes for SHA1. The authentication key K can

be of any length up to the block length of the hash function. In any case the minimal

recommended length for the secret key is equal to the hash output length.

Two fixed and different strings ipad and opad are defined as follows:

(‘i’ and 'o' are mnemonics for inner and outer):

 ipad = the byte 0x36 repeated B times

opad = the byte 0x5C repeated B times.

30

To compute HMAC over the data `text', the following transformation is performed:

H(K XOR opad, H(K XOR ipad, text))

That is to say,

1. Append zeros to the end of K to create a B byte string (e.g., if K is of

length 20 bytes and B=64, then K will be appended with 44 zero bytes

0x00),

2. XOR (bitwise exclusive-OR) the B byte string computed in step 1 with

ipad,

3. Append the stream of data to the B byte string resulting from step 2,

4. Apply H to the stream generated in step 3,

5. XOR (bitwise exclusive-OR) the B byte string computed in step 1 with

opad,

6. Append the H result from step 4 to the B byte string resulting from step 5

7. Apply H to the stream generated in step 6 and output the result

The key for HMAC can be of any length (keys longer than B bytes are first hashed using

H). However, less than L bytes is strongly discouraged, as it would decrease the security

strength of the function. Keys longer than L bytes are acceptable but the extra length

would not significantly increase the function strength.

HMAC can generate a hash value for a public key that requires the user password as an

input. If the user has this hash value, he can verify a public key by hashing it using his

password as an input and if the hash value generated is the same as the one he already

had, he can be certain that the sever key has not been tampered with. Using this simple

scheme he can make sure that he has received the correct server key.

31

ii. Centralized Minimal PKI Approach:

This approach is similar to the solution offered by other commercial SSH vendors that

deploy PKI infrastucture for their clients. It mainly differs in the following ways:

- The scheme for distributing CA certificates or CA certification paths to the user is

different. In conventional solutions a CA certificate can either be installed from a

file off of a floppy (if it is stored locally on the disk in a PKCS#7 file format), or

through certificate enrollment mechanisms. In our approach the trusted

certificates are installed in the Microsoft certificate store only, primarily because

Internet Explorer is pre-installed on every other machine and they are received

from an ldap server with an HMAC.

- In our approach, users are not issued certificates. Only the server is issued

certificate. Protecting a Certificate Authority by a log in mechanism and allowing

students to access it within and outside of Dartmouth realm makes the Certificate

Authority vulnerable to attacks. Therefore, in this approach, Certificate Authority

has access limited only to system administrators unlike SSH clients by SSH Inc,

where users are required to either have certificates or key pairs.

- An additional component is added to the protocol that stores CA certification

paths.

This approach requires that:

1. The user on the client machine must have:

ß A username and a password on the server machine, and

ß He must remember the URL from where he retrieves a hash of

the certification path, and the certification path itself. HMAC is

32

used to generate the hash for the certificate path. It takes the

user password as a Key.

2. The server must have:

ß A server certificate (verified by a root certificate or a certificate

chain)

3. A Single Certificate Authority that issues:

ß Server certificates for all the machines running the ssh server,

4. A URL that is connected to an LDAP10 server or a database that stores a

list of usernames and their corresponding hash of a certificate path.11

5. A Hash generation tool that populates the LDAP database.

iii. How it works:

Suppose a Professor at the CS Department in Dartmouth goes to California to attend a

conference. While he is in California, he decides to do an “ssh log in” to one of the

machines in Dartmouth. He initiates the connection to ab.cs.dartmouth.edu:

1. ab.cs.dartmouth.edu sends the server certificate to the client machine,

2. As the professor is using the client machine for the first time, his ssh client has

no means to verify the server certificate.

3. He types in the URL address, which is connected to an LDAP server and sends

his username to it.

10 Lightweight Directory Access Protocol. Any other database can also be used.
11 A prototype LDAP server, using OpenLDAP was set up that stored a few usernames and their
corresponding hash values. A separate tool generated those hash values. Currently the process is
not automated for a centralized CA Approach.

33

4. The LDAP looks up the username and sends back the certification path and the

hashed CA certification path corresponding to that.

5. The SSH client now has

a. The server certificate,

b. A hash of CA certification path,

c. The CA certification path

6. The Professor types in his passphrase, that is used as an Initialization Key (its is

also referred to as shared key and preferably should be 20 bytes) and generates

a hash of the certification path received. The generated hash is compared with

the hash received from the LDAP server. If they match, the professor is

ascertained that he received a valid certification path.

7. The client validates the server certificate using the certification path received,

and he may also install it on the client if he plans to use the same client machine

in future, otherwise discard the certification path.

8. Once the server certificate is verified, a symmetric shared key is established and

the user sends in his username and password to the ssh server in an encrypted

tunnel.

9. The ssh server verifies the username and password, and if the verification is

successful, ssh server sends an SSH_MSG_USERAUTH_SUCCESS packet,

and authentication succeeds.

iv. A Decentralized Non-CA Approach:

This approach offers a solution that is simple and easy to set up. The underlying theory is

the same as that of a centralized CA Approach.

a. The user on the client machine must have:

34

 i. a username and a password on the server machine, and

 ii. he must remember the URL from where he retrieves a hash of

the server certificate. The hashing algorithm that is used to

generate the hash for the server certificate takes the user

password (20 byte long max) that is used as a shared key in

HMAC.

b. The server must have:

 i. a key pair

c. A URL that is connected to a web page that stores a list of hostnames

and their corresponding public key hashes.

d. A keyed-hash generation tool on the server machine.

Continuing with the same example:

1. ab.cs.dartmouth.edu sends the server public key to the client machine,

2. The professor is using the client machine for the first time, therefore the SSH

client has no means to verify the server certificate.

3. He types in the URL address, to retrieve the hash of the server key for

ab.cs.dartmouth.edu. The hash is saved into a file.

4. The SSH client now has

a. The server’s public key,

b. A hash of the public key,

5. The Professor types in his password, (a shared key and preferably should be 20

bytes) and a hash of the server’s public key is generated. The generated hash is

compared with the hash received from the web page. If the two hashes match,

the professor is ascertained that he received a valid server public key.

6. The SSH client accepts the server’s public key.

35

7. A symmetric shared key session already established is used and the professor

sends in his username and password to the ssh server in an encrypted tunnel.

A hash generation tool is needed that can be used by the user to generate hashes for the

server’s public key. The hash generation tool takes in as input, the path to the directory

(e.g. ~alice/public_html/ssh-hashes/) and the user password. It then creates a hash of all

the public keys present in /etc/ssh/ and copies each hash as a separate file into web

directory. Typically there are two public keys an RSA-based key and a DSA-based key

for every ssh server. Using this tool, a user can populate his web archive of hashes that

he can retrieve on any client machine via a web browser and then proceed with

authentication.

v. Is it really secure?

Both the approaches presented in this paper stem from the basic fact that the user can

use his password as a shared secret key to create a hash. Let us critically analyze our

authentication protocols to determine if this authentication mechanism is really secure.

Before we proceed, it is important to analyze the structure of a certificate.

A certificate is uniquely identified by either its Subject Name, (which is a composite of

Common Name, Organization Unit, Organization, Location, State, Country, Email) or one

of the X509v3 extensions that can be added to any server certificate issued. X509v3

extensions may include a server name, or a DNS address. In our case, the server name

ab.cs.foo.edu would be used as a unique identifier and would be entered as a Common

Name. All the fields in a certificate, including the public key, are signed by the

corresponding private key component for that certificate. The self-signed root certificate

can then also be appended to the server certificate. This forms a 2-node certificate chain.

36

Typically the private key of the server is not attached on to the certificate. However, if

needed, it can be attached to the certificate and protected by encrypting it with a

password. Therefore any person who knows that password can extract the private key

from such a certificate. Such certificates are said to have “exportable keys”. In our case

we will not use certificates with exportable keys as they are open to password attacks.

Given this basic structure of the certificate being used, let us evaluate all the steps of the

protocol.

Centralized CA Approach:

1. ab.cs.dartmouth.edu sends the server certificate to the client machine. An

attacker who has a different server certificate issued by the same certificate

authority can intercept the server certificate. Suppose he wants to pose as

ab.cs.dartmouth.edu. He replaces the server certificate, with his own certificate.

Certificate verification would fail in such a scenario because when the ssh client

looks at the uniquely identifying field of the certificate, it would not be the one it

expected. The IP address x509v3 extension would not match. If the attacker

forges it to be the same, he would not be able to modify his signature to match

the forged IP extension, as the CA generated the signature, therefore the

certificate verification would fail again. The user would verify the signature of the

attacker using the CA’s public key and match it with the credentials provided

which would not be the same. This establishes the fact that the attacker cannot

forge a certificate, even if he has a certificate issued by the same certificate

authority.

37

2. The user types in the URL address, which is connected to an LDAP server and

sends his username to it.

a. A malicious user can intercept, the username and send back a different

hash of a ‘modified’ certification path, and a modified certification path

itself. However when the user generates the hash for the ‘modified

certification path’, it would not match the hash received, as he uses his

password as the “hash input key”. The attacker would not know the

password used by the user. The only way to crack this protocol is by

cracking the password used. That can be done by dictionary attacks or

by using other such techniques to guess a password. Therefore it is

important that the user selects a long password and fulfills the

requirements of a good password to ensure that this protocol is secure.

3. Suppose the server certificate changes. In such a scenario, an attacker could

use the old invalid server certificate from a previous session and successfully

pose as the server. The user would receive the old certificate, and he would

retrieve the hashed CA certification path, and the CA certification path from the

ldap server. As the CA’s public key has not been modified, the user would

validate the invalid server certificate, and send his username and plaintext

password to the attacker. There are two ways to avoid this problem. Firstly, the

usage of Certificate Revocation Lists [1,7] or OSCP [10] can inform users that a

certificate has been revoked. In that case, the user would check whether the

certificate has been revoked or not. If it has been revoked, he would not continue

authentication with an invalid certificate. This approach requires addition of

components to the existing protocol, which would query the status of the

certificate, retrieved at the client end and manage or store certificate revocation

[2] information at the server end. A simpler solution to the problem is that server

38

certificates issued are irrevocable. What that means is that once a server is

assigned a certificate, it cannot be changed until it expires. Once the server

certificate is expired it would be recertified. This option does not complicate the

protocol. This protocol is secure as long as the private key corresponding to the

certificate is protected and safe. We chose the latter solution. The primary reason

for that is that we want minimal extensions to the SSH2 protocol, so that it can be

used the way it is used now. SSH is used as a replacement for Telnet, therefore

it should be kept as simple as possible. Secondly, the security of any public key

infrastructure relies on the fact that private keys are secure. If the private keys

were compromised, any PKI deployment would be compromised.

Decentralized non-CA Approach:

1. ab.cs.dartmouth.edu sends the public key to the client machine. An attacker

intercepts and replaces it with his own public key. Once the client receives the

public key, he retrieves the keyed-hash of the public key. He hashes the public

key and compares it with the hash received. The two hashes would not match.

2. The attacker now attempts to send his own keyed-hash instead of the one

retrieved from the website. To be able to generate a valid hash, the attacker

needs to know one valid piece of information, the passphrase that the professor

used to generate the hash. Unless he gets access to that passphrase, he will not

be able to generate a valid hash. Therefore if he replaces a valid hash from the

website with one of his own, that hash would not match to the one that the

professor would produce using his passphrase on the spoofed public key

received. Therefore attackers attempt to hack the professor’s account are foiled.

39

3. Suppose the server public key changes. In such a scenario, the professor would

be vulnerable to a replay attack. There are two ways in which such an attack can

be avoided. In a simpler model, the professor can be informed via email, as soon

as possible, of the change in the server key so that he can update his web page

repository of hashes. This methodology is not very secure as there are security

risks related to email spoofing that come into the picture. The second

methodology requires further modifications to the SSH2 protocol. In the existing

the SSH2 protocol, once the server is verified, the user sends his username and

password as plaintext in the encrypted channel. Replacing the current user

authentication method with a “challenge response” protocol would ensure that a

replay attack cannot be performed. Incase the old private key was compromised;

the professor would not be vulnerable to an attack. However he will not be able

to connect to the server until he updates his web page repository.

4. Attacks due to DNS Spoofing are also defied by the verification of the host key.

Suppose that the user logs in on a client machine for the first time and types in

ab.cs.dartmouth.edu that maps to 129.172.111.4. However, an attacker spoofs it

so that the user attempts to connect to 129.172.111.5 instead of 129.172.111.4.

The fact that the attacker can only posses the public key of the server and not

the private key, implies that he cannot generate the signatures that validate the

payload during the key exchange, therefore he can not successfully establish a

shared secret key which follows a successful server authentication at the

transport layer. In a scenario where the physical IP address of a server changes

(e.g. ab.cs.dartmouth.edu has its IP address updated to 129.172.111.6 from

129.172.111.4), the user would receive a warning that IP address has been

changed. If the user continues, the host key would be verified and the protocol

would proceed as usual.

40

To recapitulate the two authentication methodologies discussed and analyzed so far,

following diagrams (figures 3 and 4) displays how the protocols would proceed incase of

successful authentication, where the mobile user is on a client machine that does not

have the server keys for the ssh server that he connects to for the first time.

41

Figure 3 Semi-centralized minimal PKI Scheme

Figure 4 Decentralized Scheme

[3] User verifies CA_CERT
[6] User verifies server cert

ssh server

[1] User sends User Name

[2] ldap server sends back
 Keyed Hash of CA_CERT, and CA_CERT

[4] Requests SSH connection

[5] Initiates SSH connection, sends server cert

 stores
user specific hashes,
generated by a tool,
by system admin

[7] Establish DH Key
[8] Authenticate User
[9] Use SSH Tunnel

 Issues Server Cert

CA

 Sends CA Cert or Certification Path

[4] User verifies server
public key by matching the
hash it generated and
retrieved

ssh server

[1] User retrieves hash of a server certificate
 from his web site

[2] Requests SSH connection

[3] Initiates SSH connection, sends server key

web
server. User stores
hashes for server
keys generated by
hash generation tool

[5] Establish DH Key
[6] Authenticate User
[7] Use SSH Tunnel

42

4. DESIGN CHOICES FOR DARTMOUTH’S ACADEMIC SETTING

One of the goals of this paper was to come up with a deployable, scalable and a

manageable basic Public Key Infrastructure for our authentication scheme to work with

ssh. The existent network infrastructure at Dartmouth is ideal to emulate a complex real

world network topology. It has the state-of-art computer network technology with wireless

network deployment in progress. Successful deployment in such a setting would be a

leading example for the academia and the industry to follow.

In this section, several design questions are presented to the reader. The implications of

the alternative solutions for each design question are evaluated and a specific solution is

opted based on that.

4A. Suitable and scalable Certificate deployment methodology

How many certificate authorities should be set up for “Centralized CA Approach”?

1. One for each LAN (several LANs within each building)

2. One for each Department (roughly 20 departments)

3. One for each School (Undergraduate, Graduate, Medical and Engineering

Schools)

4. Only one for the whole Dartmouth Network that can only be accessed from

within Dartmouth, only by the administrators.

43

We opt for setting up only one Certificate Authority [8] for the whole Dartmouth network.

The reasons for this choice are as follows:

First of all, this eliminates the hassle of intermediate certificates (cross certificates or

bridge certificates) that would be generated if we have multiple Certificate Authorities

within Dartmouth realm. We will not be required to set up trust policies between them.

The system administrators will not have to co-ordinate with each other to determine the

rank of their certificate authority in a Certificate Authority Hierarchy. In a complex

Certificate Authority Hierarchy, compromising the security of one CA could compromise

the whole PKI. Furthermore, if a system administrator decides to change the root

certificate on a CA, his change would be rippled through all the other CA’s who may have

its certificate in their certification paths. We follow the “KISMIF” principle (Keep it simple,

make it functional).

Secondly, as the Certificate Authority is the most crucial building block in a Public Key

Infrastructure, it is really important that the Certificate Authority is protected from any

possible security breach or unauthorized access. All effort should go in securing just

“one” CA instead of several CAs.

Thirdly, it is easy to make just one CA fault tolerant, and it would require lesser

resources. To achieve greater fault tolerance that Certificate Authority can be backed up

every day on another machine, and if on a given day, the Certificate Authority crashes,

the backup machine can quickly take its place.

Fourthly, it is logical to have multiple CA if they allow “load sharing”. However in our

scenario, only the machines running ssh servers are issued certificates. The users are

not issued certificates. The root CA would not be required to extensively manage

44

Certificate Revocation Lists [1]. Certificates would only be revoked if the ssh server

requests a new certificate if it is lost or deleted from the machine. The fact that there are

no user certificates makes this option suitable.

Lastly, the system administrators would be expected to ensure that they have the latest

CA certification path installed on their LDAP servers. They will not be required to update

the CA certification paths on each ssh server. They would only update the certification

path stored in the LDAP server, which would then update the hashed certificate paths for

each user. That process can be automated. The LDAP server can access the hashes of

the user passwords from /etc/password file. The ldap server would then generate the

hashed certification paths using user specific password hashes that would be different for

each user. In that case the clients would first generate the password hash and then

generate the hash on the CA certification path received.

What data format should be used to generate the digital certificate?

1. X509v3 Certificates, or

2. OpenPGP Certificates

We opted for X509v3 certificates. The reasons for that are multifold. First of all, X.509

standard [4] constitutes a widely accepted basis for such an infrastructure. Secondly,

Microsoft Certificate Store and OpenSSL libraries are both interoperable with x509v3

certificates. Thirdly, x509v3 certificates support extensions that can be added into a

certificate, which can then uniquely identify a certificate on the basis of its IP address

extension.

When should the certificate expire? Should they be revoked or not?

45

There are three possible choices:

1. Certificates should have short life spans.

2. Certificates should expire in one to two years.

3. Certificates should have long life spans.

Short life spans would unnecessarily burden the system administrator, who would end up

upgrading the ssh server every now and then with newer server certificates and

consequently updating the data stored and accessed through the LDAP server. It would

require active management of Certificate revocation lists [9] as well. Considering the

analysis for prevention of a replay attack, the server certificates should have long life

spans.

A certificate can be revoked for the following legitimate reasons:

• The private key may have been compromised; in which case, the certificate should

be treated as revoked.

• The binding in the certificate chain, c0..j
12,is no longer valid, in which case, cj should

be treated as invalid if it contains the same binding as c0..j.

• The binding may still be valid, but the issuer doesn’t want to vouch for it anymore, in

which case, cj should still be valid.

However it is important to realize that certificate revocation complicates the model and

opens up an opportunity for a security breach due to the replay attack. On the other

hand, the reasons why certification revocation is needed can also not be ignored.

Therefore it would be wise to allow for “minimal" usage of certificate revocation.

12 c0..j is a certificate chain where c0 is the certificate from the root certificate authority, cj is the
certificate of the client machine and all the intermediate certificates are of the other CA’s

46

What does one do when his certificate expires?

1. Get a new certificate issued from the CA, for the ssh server.

2. Alternatively, get the old certificate re-certified by sending it to the CA.

“Issuing a certificate” means that the issuer is attesting that a given party is the exclusive

entity that knows the private key matching that public key, hence tasks like renewing

certificates are not trivial in nature as they play a fundamental role in developing a robust

infrastructure.

We opted for the second option. The reason for that is that it offers consistency and

minimizes risks due to replay attacks.

How does the client machine get the server certificate verified?

In a complex Public Key Infrastructure, the client needs to know the "certification path" of

certificates taking the server's public key to the "root" public key that the client knows.

The suitability of the following technique in the context of the SSH2 protocol was

evaluated and then rejected.

1. Delegated path discovery and validation [11,12],

The client must be able to validate the signer and all the entities vouching for the

certificate's validity. The DPV/DPD protocols provide a new approach to certificate

validation. The DPV protocol allows clients to dump their validation duties onto a DPV

server, which validates a certificate by doing all the necessary homework - including

47

checking CRLs and CRL change reports - using the Online Certificate Status Protocol

(OCSP). OCSP is a request/response mechanism for checking the status of a specific

certificate.

Using the DPD protocol, clients can query a DPD server to collect and pass on all the

information the client needs for local validation. In other words, the client sends

certificates to the server, which returns current information about the certificates and any

related certificates, such as if it is valid or not [12].

2. Our Approach.

Our approach is simple and extends the SSH2 protocol easily. It has no dependency on

an external server other than the ldap server. It also limits the interaction with a certificate

authority.

5. IMPLEMENTATION

The fully decentralized solution described in the paper was completely implemented. We

also tested the following components of the semi-centralized solution to ensure that the

proposed semi-centralized solution was workable:

- Installed LDAP server,

- Hooked up the server with a dB database,

- Populated a table in the database,

- Retrieved a field of the table from the dB through the LDAP server,

The TLS extension which essentially replaced the SSH handshake with a TLS

handshake using certificates was not implemented.

Extending SSH to include this authentication method:

48

The existing SSH2 protocol supported by OpenSSH has the bare skeletal structure to

support certificates that does not support certificate verification. In addition, ssh servers

are already using OpenSSL libraries for encryption, compression and public key

authentication to perform “ssh handshake”.

Following is an Architectural Block diagram that explains how we extend ssh protocol to

support new authentication mechanisms. Authentication Types TLS and First_Time have

been added into the architecture.

Figure 5 Extended SSH2

5A. Application Interface

There are two open source ssh clients that are being used commonly.

Algorithm Negotiation

Server Authentication

Key Exchange

User Authentication

Service Request

SSL Handshake
User and Server
Certificate Verification

Server Authentication
User Authentication

SSH2 Protocol

Server Authentication
Get hashed certification
path from LDAP server
Verify Server Certificate

Authentication types:
public key, password,
none

Authentication type:
First_Time

Authentication type:
TLS

 SSH2 Protocol Extension

49

1. OpenSSH Client and Server (for the Linux World).

2. TeraTerm SSH Client (for the Windows platforms)

The only fully deployed open source SSH server is provided by OpenSSH and is

distributed freely with Red Hat Linux Operating System. NetworkSimplicity.com provides

windows’ port for OpenSSH client and server. The drawback of the OpenSSH source

code is that it does not provide a graphical user interface.

TeraTerm SSH clients that are interoperable with OpenSSH servers, provide a Graphical

User Interface that makes it easy to use on windows platform.

TeraTerm SSH client is an extension to TeraTerm Telnet client, which is also open

source.

Our extension was added to the TeraTerm SSH client, which is a Windows client,

primarily due to the following reason:

- Most of the users at Dartmouth either use Windows or Macintosh Operating

Systems.

Following are some of the Graphical User Interfaces that are displayed once the user

selects to use ssh. A brief description of the functionality is also provided.

50

In Figure 6, the user selects one of the radio buttons. If he is a traveling user and is doing

authentication for the first time on the client machine, he selects “Enable first time

authentication”. Then he clicks on the Configure button to download the hashstore from a

website or an ldap server.

Figure 6 Authentication Setup

In Figure 7, the user enters the path to the http server, with the filename for the

hashstore. An HTTP connection is made to the http server, and the file is retrieved if it is

found. Incase an ldap server name is provided then the connection is made to the ldap

server and it is queried for the needed data. As mentioned earlier the “ldap” component

was independently tested but was not embedded into this solution

51

Figure 7 Retrieve Hash Store

Once the user has successfully retrieved the hash store, he initiates the ssh connection.

He provides the server name and waits on the Authentication setup window while he

retrieves the public key of the server for the first time. When the key is retrieved, the user

is prompted with the following figure.

Figure 8 Verify server public key received

If the user clicks ‘No’ then the SSH protocol proceeds as if nothing was modified and the

user would be vulnerable to the “man in the middle attack”. However, if the user clicks on

‘Yes’, then he would be prompted to enter the pass phrase to generate the HMAC hash.

Figure 9 Enter Pass Phrase

52

If the two hashes match (hash generated and the hash stored in the hashstore), then the

public key in the keyblob received from the ssh server is verified and the SSH2 protocol

proceeds to establish a shared session key. The rest of the SSH2 protocol is the same.

If the user selects the “Use User Certificate to log in” option on Authentication Setup

window, then he has to select a user certificate that is stored in the “Personal” Microsoft

Certificate Store. In the current implementation, the user public key blob is filled up by

taking the public key from the user certificate in case of public key authentication. This

feature has been implemenedt but not fully tested yet.

Figure 10 Certificate Selection Window

6. SCOPE OF FUTURE WORK

Following modifications to the graphical interface and functionality were suggested to

enhance usability of the prototype:

1. User should be prompted right in the beginning, if he wants to use the

conventional SSH protocol or the modified version,

2. If the user selects the modified version then no warning messages

should pop up after server key verification,

53

3. The hashstore should be retrieved for every ssh session from the website

entered by the user. The hashstore would not live on the borrowed machine

and would be deleted once the ssh session disconnects.

The solution presented in this paper primarily deal with the “Man in the Middle Attack”.

However, as discussed in the paper, in the existing SSH2 protocol, once the server is

verified, the user sends his username and password as plaintext in the encrypted

channel. Although the protocol is no longer vulnerable to the man in the middle attack, it

allows for the possibility of a replay attack if the server’s public key changes. To further

strengthen the SSH2 protocol, user authentication should be replaced with a Challenge

Response Authentication method, such as MSCHAPv2. The TTLS protocol specifically

allows for that, so should the SSH2. Also SSH Client should be integrated to Certificate

Stores provided by browsers such as IE, so that the users can easily install CA

certificates on their machines that verify server certificates. The foundations for that work

has already been laid in our thesis work.

In the future the wireless networks would merge into the wired networks, offering an

acceptable level of security for both. Currently the wireless gurus are looking at the

SSH2, IPSec, TLS, TTLS, PEAP and 8021x protocols for authentication. If the existing

vulnerabilities of the SSH2 are resolved and an approach is developed that requires no

maintenance by the user without necessitating the deployment of a Certificate Authority,

it would make it a top candidate for authentication and tunneling in both the wired and

wireless networks. Therefore, the feasibility of the SSH2 for wireless authentication

should also be evaluated so that it can be modified to better fit a wireless network as well.

All the code that was used and modified in this project is open source and can be

downloaded from http://www.cs.dartmouth.edu/~yasir/Thesis/. The binaries for the

54

modified TeraTerm ssh clients are also available. The code contains all the needed

OpenSSL libraries, crypt32 libraries from Microsoft platform SDK needed for certificate

management. A readme.txt file explains how to setup the client, and the hash generation

tool. There needs to be some more work done on the ssh server with regards to

certificate verification using CA Certification Path. Individuals who may be interested in

continuing with this work can contact the PKI Lab at ISTS, Dartmouth.

7. RELATED WORK AND CONCLUSION

Developing a Public Key Infrastructure to be used with OpenSSH in an academic

environment expose us to particularly interesting and different scenarios where we have

to take into account the design considerations as discussed in the previous sections of

this paper. Following commercial SSH products also offer PKI based solutions.

7A. F-SSH:

An F-Secure product, F-SSH claims to have the requisite design to be usable

with Certificate Authorities. However they have not developed a toolkit or a

product that incorporates PKI as yet. The authentication method that they support

which can provide Certificate verification is PAM (pluggable Authentication

Mode). However, PAM is typically used with smart cards.

7B. SSH Client 3.2.0, SSH Communications Security Inc:

The SSH Communications Security Inc. have developed a suite of Applications such

as:

55

- SSH Client

- SSH Certifiers

- SSH Certification Toolkits.

SSH provides their own suit of products that allows for certificate based mutual

authentication.

SSH Client by SSH Inc. is aimed to ‘do it all’ that may be needed for a Public Key

Infrastructure. It discovers CA on a LAN, checks CRL’s and handles all the related

functionality of generating a user certificate and installing it and also installing the

certification paths. One of the major drawbacks of their solution is that a user cannot use

password authentication and also perform the new server authentication mechanism

other than the local database verification that they support.

Keeping in view the following factors:

- Ease of management and deployment,

- Scalability: It should work equally well with server machines within the same

network or server machines across different domains,

- Modularized addition to the existing open source OpenSSH. We add an

independent module into the SSH client

- Open source so that it is available to everyone and anyone, within the export

restrictions,

- And most importantly, using usernames and passwords, instead of user

certificates,

56

Our solution is unique in its nature as it is simple and embeds OpenSSH into PKI in a

manageable way, even for an academic setting as big as the one at Dartmouth. Our

solution strengthens SSH against “the Man in the middle attack”. We present two

approaches, a centralized approach that requires a CA and a decentralized one that does

not require a CA. The ease of use and deployment of the “decentralized non CA

approach” distinguishes our solution from the one provided by SSH Inc, which is based

on a PKI Infrastructure with Certificate Authorities. Given the current state of PKI, as both

the academia and the industry strive to develop internet drafts for standardized protocols

that would make the deployment and management of such infrastructure relatively

manageable, the fact of the matter remains that currently there does not exist a

homogenous, easy to deploy Public Key Infrastructure mechanism. Most of the small

corporate settings do not need to invest and develop a hierarchical trust model for a PKI.

Their needs are simple. The users want to connect to a “few” machines remotely. They

create VPN to access their corporate network or use SSH to access data securely over

connections. Our decentralized approach is ideal for such small-scale corporate

environments. The users do not have to learn the how to use user certificates and the

system administrators do not have to setup a PKI. Our centralized CA approach is suited

for larger networks with several users. It develops a PKI infrastructure by having the

minimal set of components that are needed to set up. Design constraints and policies are

set to achieve scalability with minimal set up effort that would require minimal

management effort as well. Unlike SSH Inc, our PKI design does not require the user to

interface with the CA, which makes it more secure. To sum up, our solution makes ssh

usage more secure for both, small and large networks.

57

8. REFERENCES

[1] Carlisle Adams and Robert Zuccherato, “A General, Flexible Approach to

Certificate Revocation,” Entrust technologies White Paper, June 1998.

[2] Carlisle Adams and Stephen Farrell, “Internet X.509 Public Key Infras-

tructure Certificate Management Protocols,” IETF RFC 2510, March 1999.

[3] Daniel J. Barrett & Richard E. Silverman, SSH The Secure Shell, The

Definitive Guide, O'REILLY & Associates, 2001

[4] S. Boeyen, T. Howes, P. Richard, “Internet X.509 Public Key Infrastructure,

LDAPv2 Schema”, RFC 2587, June 99

[5] Markus Friedl, et al., “Diffie-Hellman Group Exchange for the SSH Transport

Layer Protocol”, Internet Draft, January 2002.

[6] H. Krawczyk, M. Bellare, R. Canetti, “HMAC: Keyed Hashing for Message

Authentication, RFC 2104, February 1997

[7] Ninghui Li and Joan Feigenbaum, "Nonmonotonicity, User Interfaces, and

Risk Assessment in Certificate Revocation ", in Proceedings of the Fifth

International Conference on Financial Cryptography 2001, Springer-Verlag

NCS.

58

[8] Steve Lloyd, David Fillingham, Richard Lampard, Steve Orlowski, John

Weigelt, “CA-CA Interoperability”, White Paper on PKI Forum, March 2001.

[9] Michael Myers, “Revocation: Options and Challenges,” in Financial

Cryptography 1998, Springer-Verlag NCS.

[10] Michael Myers, Rich Ankney, Carlisle Adams, Stephen Farrell, and Carlin

Covey, “Online Certificate Status Protocol, version 2”, Internet Draft, March

2001.

[11] Denis Pinkas, Russ Housley, “Delegated Path Validation and Delegated Path

Discovery Protocol Requirements”, Internet Draft, February, 2002.

[12] Denis Pinkas, Russ Housely, “Certificate Validation Protocol”, Internet Draft,

June, 2002

[13] Dawn Xiaodong Song, David Wagner, Xuqing Tian, “Timing Analysis of

Keystrokes and Timing Attacks on SSH”, In 10th USENIX Security

Symposium, 2001.

[14]

i. T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen,

“SSH Protocol Architecture”, Network Working group, Internet Draft,

January 31, 2002.

ii. “SSH Connection Protocol”, Network Working group, Internet

Draft, January 31, 2002. “SSH Transport Layer Protocol”, Network

Working group, Internet Draft, January 31, 2002.

59

iii. “Authentication Protocol”, Network Working group, Internet Draft,

February 28, 2002.

[15] Yasir Ali and Sean W. Smith, “Flexible and Scalable Public Key Security for

SSH ”, submitted for the Second Annual PKI Workshop, Feb 2003

[16] Referenced Websites:
 i. www.SSH.com
 ii. www.OpenSSH.org
 iii. www.securityportal.com

 iv. http://www.openldap.org/
 v. http://www.networksimplicity.com/openssh/
 vi. http://www.f-secure.com/

 vii. http://www.webopedia.com/TERM/P/PKI.html

[17] Email correspondence with Jeff Schiller and Robert O'Callahan.

60

9. Appendix - Code Snippets Used to Extend TTSSH.

- Getting hashstore from the web interface.

#include "stdafx.h"
#include "afxinet.h"

#ifdef __cplusplus
extern "C" {
#endif

BOOL GetFileFromWeb (char* strServerName2,
 char* URL
)

{
CString strObject;
INTERNET_PORT nPort;
DWORD dwServiceType;
DWORD dwAccessType = INTERNET_OPEN_TYPE_PRECONFIG;
CInternetSession session("Tera Term", dwAccessType);
CHttpConnection* pServer = NULL;
CHttpFile* pFile = NULL;
CString strServerName(strServerName2);

AfxParseURL(URL,
 dwServiceType,

 strServerName,
 strObject,
 nPort);

 pServer = session.GetHttpConnection(strServerName, nPort);
 pFile = pServer->OpenRequest(

 CHttpConnection::HTTP_VERB_GET,
 strObject,
 NULL,
 1,
 NULL,
 NULL,
 INTERNET_FLAG_RELOAD);

 pFile->SendRequest();
 DWORD dwStatusCode;
 pFile->QueryInfoStatusCode(dwStatusCode);

if(dwStatusCode == HTTP_STATUS_OK)
{

int len = pFile->GetLength();
char buf[2000];
int numread;
CString filepath =".\\hashstore.txt";

CFile myfile(filepath,
CFile::modeCreate|
CFile::modeNoTruncate |
CFile::modeWrite|

61

CFile::typeBinary);
while ((numread = pFile->Read(buf,sizeof(buf)-1)) > 0)

{
buf[numread] = '\0';
myfile.Write(buf, numread);

 }
myfile.Close();
MessageBox(NULL,"Hash file retrieved successfully!",

 "Error",MB_OK);
}
else

MessageBox(NULL,"File Not retrieved!","Error",MB_OK);
pFile->Close();
delete pFile;
pServer->Close();
delete pServer;
session.Close();

return TRUE;
}

#ifdef __cplusplus
}
#endif

- Certificate Manipulation functions.

#include "stdafx.h"
#include "certificates.h"
#include <wincrypt.h>
#ifdef __cplusplus
extern "C" {
#endif

static int getCN(PCERT_NAME_BLOB name, LPTSTR str, DWORD len)
{
 PCERT_RDN_ATTR pAttr;

BYTE *buffer = NULL;
ULONG sz = 0;
int res = 1;

if (!CryptDecodeObject(
X509_ASN_ENCODING,
X509_NAME,
name->pbData,
name->cbData,
CRYPT_DECODE_NOCOPY_FLAG,
NULL,
&sz))

{
res = 0;
goto end;

}

if ((buffer = (BYTE *)GlobalAllocPtr(GMEM_MOVEABLE |
 GMEM_ZEROINIT, sz)) == NULL)

{ res = 0;

62

goto end;
}

if (!CryptDecodeObject(
X509_ASN_ENCODING,
X509_NAME,
name->pbData,
name->cbData,
CRYPT_DECODE_NOCOPY_FLAG,
buffer,
&sz))

{
res = 0;
goto end;

}

if ((pAttr = CertFindRDNAttr(
szOID_COMMON_NAME,
(PCERT_NAME_INFO)buffer)) != NULL)

{
res = CertRDNValueToStr(

pAttr->dwValueType,
&pAttr->Value,
str,
len);

} else
res = 0;

end:
if (buffer != NULL)

GlobalFreePtr(buffer);

return res;

}

void freeCertDescription(CertDescription *cd)
{

if (cd == NULL)
return;

if (cd->expDate != NULL)
GlobalFreePtr(cd->expDate);

if (cd->friendlyName != NULL)
GlobalFreePtr(cd->friendlyName);

if (cd->hash.pbData != NULL)
GlobalFreePtr(cd->hash.pbData);

if (cd->issuedBy != NULL)
GlobalFreePtr(cd->issuedBy);

if (cd->issuedTo != NULL)
GlobalFreePtr(cd->issuedTo);

GlobalFreePtr(cd);
 }

CertDescription *getCertDescription(PCCERT_CONTEXT pCertContext)
{

63

ULONG sz;
SYSTEMTIME sysTime;
CertDescription *cd = (CertDescription *)GlobalAllocPtr(

 GMEM_MOVEABLE | GMEM_ZEROINIT, sizeof(CertDescription));

if ((sz =(ULONG)getCN(&pCertContext->pCertInfo->Subject,
 NULL, 0)) > 0)

{
sz *= sizeof(TCHAR);
cd->issuedTo = (LPTSTR)GlobalAllocPtr(

 GMEM_MOVEABLE | GMEM_ZEROINIT, sz);
getCN(&pCertContext->pCertInfo->Subject,cd->issuedTo,

 sz);
}

if ((sz = (ULONG) getCN(&pCertContext->pCertInfo->Issuer,
 NULL, 0)) > 0)

{
sz *= sizeof(TCHAR);
if ((cd->issuedBy = (LPTSTR)GlobalAllocPtr(

 GMEM_MOVEABLE | GMEM_ZEROINIT, sz)) == NULL)
goto err;

getCN(&pCertContext->pCertInfo->Issuer, cd->issuedBy,
 sz);

}

FileTimeToSystemTime(&pCertContext->pCertInfo->NotAfter,
 &sysTime);

if ((sz = GetDateFormat(
LOCALE_USER_DEFAULT,
DATE_SHORTDATE,
&sysTime,
NULL,
NULL,
0)) > 0)

{

if ((cd->expDate = (LPTSTR)GlobalAllocPtr(GMEM_MOVEABLE|
 GMEM_ZEROINIT, sz * sizeof(TCHAR))) == NULL)

 goto err;
GetDateFormat(

LOCALE_USER_DEFAULT,
DATE_SHORTDATE,
&sysTime,
NULL,
cd->expDate,
sz);

}

sz = 0;
CertGetCertificateContextProperty(

pCertContext,
CERT_FRIENDLY_NAME_PROP_ID,
NULL, &sz);

if (sz > 0)
 {

if ((cd->friendlyName = (LPWSTR)GlobalAllocPtr(

64

 GMEM_MOVEABLE | GMEM_ZEROINIT, sz)) == NULL)
goto err;

if (!CertGetCertificateContextProperty(
pCertContext,
CERT_FRIENDLY_NAME_PROP_ID,
cd->friendlyName, &sz))
goto err;

}

cd->hash.cbData = 0;
CertGetCertificateContextProperty(

pCertContext,
CERT_HASH_PROP_ID,
NULL, &cd->hash.cbData);

if (cd->hash.cbData > 0) {
if ((cd->hash.pbData = (PBYTE)GlobalAllocPtr(

 GMEM_MOVEABLE | GMEM_ZEROINIT,
 cd->hash.cbData)) == NULL)

goto err;
if (!CertGetCertificateContextProperty(

pCertContext,
CERT_HASH_PROP_ID,
cd->hash.pbData, &cd->hash.cbData))
goto err;

}

return cd;

err:
if (cd != NULL)

freeCertDescription(cd);

return NULL;

}
#ifdef __cplusplus
}
#endif

- Hashing Code at the Client End

#include <stdio.h>
#include <windows.h>
#include <wincrypt.h>
#include "ttxssh.h"
#include <openssl/ssl.h>
#include <openssl/hmac.h>

#define MY_ENCODING_TYPE (PKCS_7_ASN_ENCODING |
X509_ASN_ENCODING)
#define ArrayLen(a) (sizeof (a) / sizeof (a[0])) +1
FILE *stream;
FILE *stream2;
extern CHAR HPassPhrase[128];
extern void HandleError(char *s);
extern BOOL GetandCompareHash(unsigned char* szIPandHash);
extern BOOL puthHash(unsigned char* szIPandHash);

65

extern void verifyhashing(PTInstVar pvar,
 int bits,
 unsigned char FAR * exp,
 unsigned char FAR * mod)

{

HMAC_CTX ctx;
CHAR MsgDigest[64];
UCHAR *temp = exp;
UCHAR *temp2 = exp;
int i = 0;
int count = 0;
unsigned int MsgDigestLen = 0;
UCHAR szHost[128] = "";
UCHAR cleanexp[4096] = "";
DWORD lpdwResult = 0;

SendMessage(pvar->NotificationWindow,
 WM_COMMAND,

ID_HASHPASSPHRASE,
0);

for (i =0; i<4;i++)
{

while ((UCHAR)*temp != ' ')
{

*temp++;
count ++;

}
*temp++;
count ++;

}
strncpy(cleanexp,exp,count-1);

HMAC_Init(&ctx,HPassPhrase,strlen(HPassPhrase), EVP_md5());
 HMAC_Update(&ctx, cleanexp, strlen(cleanexp));

HMAC_Final(&ctx, MsgDigest, &MsgDigestLen);

count = 0;
for (i =0; i<3;i++)
{

while ((UCHAR)*temp2 != ' ')
{

*temp2++;
count ++;

}
*temp2++;
count ++;

}

strncpy(szHost,exp,count-1);

if (szHost == NULL)
exit(1);

strcat(szHost," MD:");
strncat(szHost,MsgDigest,strlen(MsgDigest) -1);

66

if (GetandCompareHash(szHost))
{

MessageBox(NULL,
"Hashes Matched. Server public key verified.",
"Verification Successful",
MB_ICONINFORMATION | MB_OK);

}

else
{

MessageBox(NULL,
"Server public key verification failed.\n"\
"Possible Reasons:\n"\
"1. Public Key Hash did not match.\n"\
"2. Hashing password used is incorrect.\n"\
"3. HashStore does not contain the entry for host

 name provided",
"Verification Unsuccessful",
MB_ICONINFORMATION | MB_OK);
exit(1);

}

} // End of HASHING

void HandleError(char *s)
{
 MessageBox(NULL,s,"Error",MB_OK);

GetLastError();
 exit(1);
}

BOOL GetandCompareHash(unsigned char* szIPandHash)
{

char buffer[4096];
if((stream = fopen("hashstore.txt", "r+")) == NULL)

exit(1);

fread(buffer, sizeof(unsigned char), 4096, stream);

if (strstr(buffer, szIPandHash) != NULL)
{

fclose(stream);
return TRUE;

}
return FALSE;

}

- Code for Handling the public key when received.

static BOOL handle_server_public_key(PTInstVar pvar) {
 int server_key_public_exponent_len;
 int server_key_public_modulus_pos;
 int server_key_public_modulus_len;
 int host_key_bits_pos;
 int host_key_public_exponent_len;
 int host_key_public_modulus_pos;

67

 int host_key_public_modulus_len;
 int protocol_flags_pos;
 int supported_ciphers;
 char FAR * inmsg ;
 char FAR * dest = (char FAR *) malloc(2048);
 int len = 0;

 if (!grab_payload(pvar, 14)) return FALSE;
 server_key_public_exponent_len = get_mpint_len(pvar, 12);

 if (!grab_payload(pvar, server_key_public_exponent_len + 2))
return FALSE;
 s e r v e r _ k e y _ p u b l i c _ m o d u l u s _ p o s = 1 4 +
server_key_public_exponent_len;
 server_key_public_modulus_len = get_mpint_len(pvar,
server_key_public_modulus_pos);

 if (!grab_payload(pvar, server_key_public_modulus_len + 6))
return FALSE;
 host_key_bits_pos = server_key_public_modulus_pos + 2 +
server_key_public_modulus_len;
 host_key_public_exponent_len = get_mpint_len(pvar,
host_key_bits_pos + 4);

 if (!grab_payload(pvar, host_key_public_exponent_len + 2))
return FALSE;
 host_key_public_modulus_pos = host_key_bits_pos + 6 +
host_key_public_exponent_len;
 host_key_public_modulus_len = get_mpint_len(pvar,
host_key_public_modulus_pos);

 if (!grab_payload(pvar, host_key_public_modulus_len + 12))
return FALSE;
 protocol_flags_pos = host_key_public_modulus_pos + 2 +
host_key_public_modulus_len;

 inmsg = pvar->ssh_state.payload;
 CRYPT_set_server_cookie(pvar, inmsg);

 if (!CRYPT_set_server_RSA_key(pvar, get_uint32(inmsg + 8),
pvar->ssh_state.payload + 12,
 inmsg + server_key_public_modulus_pos)) return FALSE;

 if (!CRYPT_set_host_RSA_key(pvar, get_uint32(inmsg +
host_key_bits_pos),
 inmsg + host_key_bits_pos + 4,
 inmsg + host_key_public_modulus_pos)) return FALSE;
 pvar->ssh_state.server_protocol_flags = get_uint32(inmsg +
protocol_flags_pos);

 supported_ciphers = get_uint32(inmsg + protocol_flags_pos +
4);
 if (!CRYPT_set_supported_ciphers(pvar, supported_ciphers,
supported_ciphers)) return FALSE;
 if (!AUTH_set_supported_auth_types(pvar, get_uint32(inmsg +
protocol_flags_pos + 8))) return FALSE;

68

 /* this must be the LAST THING in this function, since it
can cause host_is_OK to be called. Used specifically for first
time authentication*/
 HOSTS_check_host_key(pvar, pvar->ssh_state.hostname,
 get_uint32(inmsg + host_key_bits_pos),
 inmsg + host_key_bits_pos + 4,
 inmsg + host_key_public_modulus_pos);

 return FALSE;
}

BOOL HOSTS_check_host_key(PTInstVar pvar, char FAR * hostname,
 int bits, unsigned char FAR * exp,
 unsigned char FAR * mod)
{
 int found_different_key = 0;

 if (pvar->hosts_state.prefetched_hostname != NULL
 && stricmp(pvar->hosts_state.prefetched_hostname,
 hostname) == 0
 && match_key(pvar, bits, exp, mod)) {
 SSH_notify_host_OK(pvar);
 return TRUE;
 }

 if (begin_read_host_files(pvar, 0))
 {
 do {
 if (!read_host_key(pvar, hostname, 0)) {
 break;
 }

 if (pvar->hosts_state.key_bits > 0) {
 if (match_key(pvar, bits, exp, mod)) {
 finish_read_host_files(pvar, 0);
 SSH_notify_host_OK(pvar);
 return TRUE;
 } else {
 found_different_key = 1;
 }
 }
 } while (pvar->hosts_state.key_bits > 0);

 finish_read_host_files(pvar, 0);
 }

 pvar->hosts_state.key_bits = bits;
 pvar->hosts_state.key_exp = copy_mp_int(exp);
 pvar->hosts_state.key_mod = copy_mp_int(mod);
 free(pvar->hosts_state.prefetched_hostname);
 pvar->hosts_state.prefetched_hostname = _strdup(hostname);

 if(MessageBox(NULL,
 "You have received the Server Public Key. \n"
 "Do you wish to verify it using the hash \n" \
 "stored in file or retrieved from ldap?",

69

 "Verification",
 MB_ICONQUESTION | MB_YESNO)

 == IDYES)
 {

 Authflag = 1;
 //CRYPT_get_server_key_info(pvar, dest, len);
 if (pvar->crypt_state.server_key.RSA_key != NULL)
 {

 char FAR * keydata = format_host_key(pvar);
 verifyhashing(pvar,

 pvar->hosts_state.key_bits,
 keydata,
 pvar->hosts_state.key_mod);

 }
 else

 MessageBox(NULL,"No RSA key","Error",MB_OK);
 }

 if (found_different_key) {
 PostMessage(pvar->NotificationWindow,WM_COMMAND,
 ID_SSHDIFFERENTHOST, 0);
 }
 else {
 PostMessage(pvar->NotificationWindow,
 WM_COMMAND, ID_SSHUNKNOWNHOST, 0);
 }
 return TRUE;
}

- Linux Configurator Code.

/* gcc -o configurator -I../include configurator.c
 ../libcrypto.a

For most of the machines:
gcc -o configurator -I/usr/local/ssl/include configurator.c
usr/local/ssl/libcrypto.a
You have to locate the ssl include and lib folders to compile
on linux.

 */
#include <stdio.h>
#include <openssl/ssl.h>
#include <openssl/hmac.h>

FILE *stream;
FILE *stream2;

int puthHash(unsigned char* exp)
{

HMAC_CTX ctx;
char szPassword[128] = "";
char MsgDigest[64];
unsigned char *temp = exp;
unsigned char *temp2 = exp;
int i = 0;
int count = 0;
unsigned int MsgDigestLen = 0;

70

unsigned char szHost[128] = "";
unsigned char cleanexp[4096] = "";

for (i =0; i<4;i++)
{

while ((unsigned char)*temp != ' ')
{

*temp++;
count ++;

}
*temp++;
count ++;

}
strncpy(cleanexp,exp,count-1);

printf("\nEnter the passphrase to hash:\n");
scanf("%s", &szPassword);

HMAC_Init(&ctx, szPassword,strlen(szPassword), EVP_md5());
HMAC_Update(&ctx, cleanexp, strlen(cleanexp));
HMAC_Final(&ctx, MsgDigest, &MsgDigestLen);

count = 0;
for (i =0; i<3;i++)
{

while ((unsigned char)*temp2 != ' ')
{

*temp2++;
count ++;

}
*temp2++;
count ++;

}
strncpy(szHost,exp,count-1);
if((stream2 = fopen("hashstore.txt", "a")) == NULL)

return -1;
if (szHost == NULL)

return -1;

printf("\n---Hash stored in hashstore.txt---\n");
 fprintf(stream2,"%s ",szHost);

printf("%s ",szHost);
fprintf(stream2,"MD:%s \r\n",MsgDigest);
printf("MD:%s \n",MsgDigest);

 fclose(stream2);
return 0;

}

int main ()
{

unsigned char buffer[4096];
unsigned char szHost[4096];

printf("This program generates the HMAC Hashes\n"
 "for the public keys of host machines.\n"
"This program is to be run on the local machine\n"
"whose public key is to be hashed\n\n");

71

if((stream = fopen("/etc/ssh/ssh_host_key.pub",
 "r")) == NULL)

return -1;

fread(buffer, sizeof(unsigned char), 4096, stream);
fclose(stream);

printf("Enter the hostname of the machine:\n");

scanf("%s", &szHost);
strcat(szHost," ");
strcat(szHost,buffer);
printf("----String to be Hashed---\n%s", szHost);

puthHash(szHost);

return 0;
}

