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Abstract: This thesis proposes a key management protocol for secure 
power SCADA systems that seeks to take advantage of the full security 
capacity of a given network by allowing devices to use public key 
cryptography for key management if they are capable of doing so and 
reverting to symmetric key cryptography only when such use is 
necessitated by the weakness of a given device.   Allowing devices to 
obtain different levels of security permits SCADA networks to maximize 
their security in the decades before such networks are capable of 
implementing fully public key-based key management protocols. Such a 
system is obtained through the use of a protocol based on a modified 
version of SSL using X.509 certificates containing encrypted symmetric 
keys that allow master devices the option of using the symmetric keys for 
encrypting the shared secret used to create keying material, instead of 
using a slave device’s public key.  This thesis presents the protocol and 
uses proof-of-concept code to carry out a performance evaluation of the 
key management scheme. 

 
 

1.  Introduction 

 Securing the power grid must include providing encryption and authentication 

capabilities to the devices that control the transmission of data across grid communication 

lines.  In order for encryption and authentication to occur, an effective key management 

system must be in place to provide the keys needed for the encryption and authentication 

protocols.  This need for encryption and authentication capabilities, and with it, the need 

for key management, is especially applicable to Supervisory Control and Data 

Acquisition (SCADA) networks, one type of network often used within the power grid to 

collect data and transmit it back to a central unit for processing.  SCADA networks’ 

architecture and the inability of some devices within SCADA networks to perform public 

key cryptography produce unique challenges for securing SCADA networks, and, more 

particularly, for developing key management schemes for SCADA systems. 
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1.1 Goals 

 The goal of this thesis is to develop a key management protocol for power 

SCADA networks, with a focus on creating a scheme that takes advantage of the full 

security capacity of the system, despite the mixed capabilities of the devices within the 

network, and that allows for ease of future upgrade.   

Because SCADA networks often include some devices that are unable to perform 

public key cryptography and some devices that are able to perform public key operations, 

using a key management protocol that fails to take advantage of those devices that are 

able to use public key cryptography wastes the resources available in the system and 

makes the system less secure than it could be if the all devices were used to their full 

potential.  Thus, this thesis seeks to develop a key management system that will utilize 

the full capacity of all devices within the system, allowing those devices that can perform 

public key operations to use public key cryptography for key management and allowing 

those devices unable to use public key cryptography to use symmetric key operations. 

SCADA networks are also in the process of being upgraded to computationally 

superior devices that are able to perform public key encryption and that could be 

integrated into a normal Public Key Infrastructure (PKI).  This thesis, therefore, seeks to 

create a protocol that uses a PKI and Secure Sockets Layer (SSL)-based handshake that 

differs only slightly from the normal PKI and SSL handshake commonly in use. This 

would allow for ease of upgrade to a normal PKI system, likely using SSL for key 

establishment, once all the machines in a given SCADA network developed the capacity 

for public key operations at some point in the distant future. 
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1.2 Proposal  

 To meet the previously described goals, this thesis proposes a key management 

system based on PKI, using a slightly modified version of SSL.  SCADA systems are 

made up of central master devices, which play the role of the client in the SSL 

handshake, and they also include potentially remote slave devices, which each play the 

role of the server in the handshake.  The proposed system relies on X.509 certificates 

with an encrypted symmetric key included in an extension.  These augmented certificates 

allow the SSL handshake to be modified so that when a slave device is unable to perform 

public key cryptography, a master device can use the symmetric key, which is removed 

from the slave device’s certificate and decrypted, instead of the slave device’s public key, 

when encrypting a value to be used to develop keying material.  This allows the master 

device to use the slave device’s public key for encryption with slave devices that are able 

to perform public key cryptography and to only use symmetric key cryptography with 

those devices unable to perform asymmetric operations, thus taking advantage of the full 

capacity of the network.  It also allows for easy upgrade to normal PKI, as devices with 

public key abilities can be phased in with no change to the key management protocol, 

until an entirely PKI/SSL-based system with devices able to perform public key 

cryptography is in place. 

 

1.3 Outline 

 This thesis will first, in Section 2, provide a summary of the issue’s background, 

outlining the various characteristics of power SCADA networks, elaborating on the need 
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to provide security for such systems, and describing the various aspects of key 

management.  Section 3 will then outline six key assumptions being made about power 

SCADA networks and the implications these assumptions have for the development of an 

effective key management protocol.  Next, Section 4 will describe various work that 

relates to developing a key management protocol specific to SCADA networks, focusing 

on PKI, Kerberos, and two papers that have been published specifically addressing the 

issue of key management in SCADA systems. Section 5 will describe the proposed key 

management scheme, and Section 6 will describe the relative performance of the various 

devices in the different handshakes, offering further justification for the chosen protocol.  

Finally, Section 7 will suggest direction for future work, and Section 8 will offer 

conclusions. 

 

2. Background 

 A typical power SCADA network consists of a central control master device and 

slave Remote Terminal Unit (RTU) devices that gather data (referred to for the remainder 

of this thesis as master and slave devices respectively).  Connected to the slave devices 

by serial lines, the master device polls them, one at a time, to retrieve the gathered data 

for processing.  Because the slave devices are constantly gathering data and the master 

device is able to get steady updates, such devices are used in systems in which real time 

updates on remote processes and conditions are necessary.  Within the power grid, 

SCADA networks are used “to monitor and manage the electric distribution, transmission 
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and generation environments.”1  Thus, SCADA networks have a unique purpose that 

makes them vital to power grid function. 

 Because SCADA networks control critical data in systems in the power grid, 

ensuring the authenticity and integrity of the data as it travels over the SCADA lines is 

very important. The National Strategy to Secure Cyberspace identifies “securing 

[…SCADA as] a national priority […as] disruption of these systems can have significant 

consequences for public health and safety.”2  According to the Center for Scada Security, 

however, “studies and assessments have found a lack of security in SCADA systems,”3 

because, when SCADA networks were implemented in the power grid, data security was 

not the key concern; rather, they were designed, for “availability and personal safety.” 4  

Consequently, many SCADA systems currently in the power grid do not possess the 

security features necessary to protect the data traveling over SCADA serial lines and, 

therefore, lack the ability to protect the critical power grid functions dependent on that 

data. 

 Because SCADA networks are widely used in the power grid, it is not feasible to 

replace all the SCADA devices currently in use with devices designed to be used in a 

secure manner.  While devices are slowly being replaced, for decades there will continue 

                                                
1Hadley, M., Huston, K., (2006), AGA 12: Part 2 Performance Test Plan, National 
SCADA Test Bed, Retrieved April 5, 2008 from the World Wide Web: 
http://www.oe.energy.gov/DocumentsandMedia/AGA_12_Part_2_Performance_Test_Pla
n.pdf, 1.  This same article also describes how polling takes place on a SCADA device  
(1-2). 
2The White House, (February 2003) The National Strategy to Secure Cyberspace, 
Retrieved May 15, 2008 from the World Wide Web: 
http://www.whitehouse.gov/pcipb/cyberspace_strategy.pdf, 32. 
3 Frequently Asked Questions: Why the sudden concern about SCADA systems?, Sandia 
National Laboratories: The Center for SCADA Security, Retrieved May 15, 2008 from 
the World Wide Web: http://www.sandia.gov/scada/faq.htm. 
4 Hadley et al. 1. 



 6 

to be SCADA devices in the power grid that were not designed to be used in a secure 

network.    Thus, SCADA devices transmit data that needs to be secured; yet, currently 

they are not designed to implement secure data processing or transmission.  To increase 

the security of the power grid, it is necessary to find ways to add security to existing 

SCADA devices and networks, while simultaneously securing new SCADA devices as 

they are added to the network. 

One of the main ways in which security can be increased in SCADA networks is 

through the implementation of symmetric key authentication (e.g. through HMACs) and 

encryption of data traveling over SCADA links.  However, for symmetric key 

authentication and encryption to be an effective means of security, proper key 

management is necessary.  As Bruce Schneier puts it, “Designing secure cryptographic 

algorithms and protocols isn’t easy, but […k]eeping the keys secret is much harder.”5  

Key management, the practice of keeping the symmetric keys used for encryption and 

authentication secure, secret, and provably attached to the appropriate users, encompasses 

several major issues.   

First, the key itself must be large and random enough to be secure and, therefore, 

must be created in a secure manner.  For a key to be securely generated, it must be as 

random as possible and, thus, must be created using a good pseudo random number 

generator seeded with a random value (or be obtained from another truly random source). 

While the issue of choosing a good random key is important, this thesis does not address 

this problem.  To prevent the use of keys with poor randomness in implementing the key 

                                                
5 Schneier, B. (1996), Applied Cryptography.  New York: John Wiley & Sons, 169. 
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management scheme described here, one should do as Schneier recommends and use a 

good source for the random number and avoid known weak keys.6 

Key management also encompasses the important issue of delivering the keys to 

the devices that will be using them.  Beyond being generated in a secure manner, keys 

must also be transmitted securely, so that they will not be intercepted in transit by an 

adversary and later used to decrypt data or authenticate false data.  This issue of key 

transmission differs for the two major types of cryptography – public key cryptography 

and private key cryptography (also known as asymmetric and symmetric key 

cryptography, respectively).  In private key cryptography, two or more parties share a 

secret key, and it is this shared secret that allows them to perform encryption and 

authentication. The same secret key is used for encryption and decryption, with one key, 

for example, used for such tasks as calculating and checking a HMAC for authentication 

or encrypting and decrypting data (although a different key would be used for each of 

these tasks). Thus, it is necessary for this shared key to be secretly transported from one 

party to another or established in a joint manner that will allow the proper parties to have 

knowledge of the secret key but will prevent an adversary from learning its contents. 

Instead of using a single symmetric key, public key cryptography relies on an 

asymmetric key pair consisting of a public key and a private key.  The private key is used 

for decrypting ciphertexts and computing signatures, while only the public key is 

required for encrypting plaintexts or checking a signature.  Thus, only the party to whom 

the key pair belongs needs to know the private key and only the private key needs to be 

kept a secret. However, public key cryptography still faces the challenge of ensuring that 

                                                
6 Requirements for secure key generation summarized from Schneier, 170-175.  
Requirements for good implementation found in Schneier, 173-174. 
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other devices can trust that a public key actually belongs to the party for which they wish 

to perform encryption or authentication.7 

There are three major ways to transmit symmetric keys from one party to another 

securely.  First, it is possible to secure the transmission of a key by encrypting it with a 

previously distributed key.  This ensures that an adversary will not be able to intercept the 

new key, as long as they do not possess the old key.  Such a method requires only that the 

previous key was managed securely and that a secure encryption algorithm is used.   

Second, it is possible to physically transmit a key over a trusted physical channel.  Using 

a trusted physical channel means ensuring that the means of delivery are truly trustworthy 

– for example, making sure that personnel can be trusted to keep the key secret en route 

to the destination device.8  While ensuring that physical channels of transmission are 

secure is important, this thesis does not address that issue, and instead assumes that such 

means are secure.  Establishing such secure channels (including hiring trustworthy 

personnel, preventing them from accidentally, or purposely, revealing the key, and 

ensuring that devices used to store keys are not stolen or lost) is left to those 

implementing the protocol.   

The third means of transmission, is not strictly the transmission of a key.  Instead, 

it is the establishment of a key through the use of a protocol, like Diffie-Hellman, in 

which a key is created through coordinated steps taken by each party and without either 

                                                
7 Smith, S. & Marchesini, J., (2008), The Craft of System Security, Upper Saddle River: 
Addison-Wesley, 163-180, provides a description of public and symmetric key 
cryptography. 
8 Summarized from Schneier 176-178. 
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party ever sending the entire key.9   Both sides end up with the key, but the key itself is 

never actually transmitted. SSL, the handshake on which this thesis’s protocol is based, 

does not directly transmit a key across a connection, but instead sends a master secret 

across that can be used by each side to develop material for various symmetric keys.10  

While, in the SSL protocol, this master secret is encrypted using a previously known key, 

the session key itself is not transmitted across the connection. This thesis, therefore, in 

addressing means of key transmission, will focus on distributing material used for 

developing keys by encrypting it with previously known keys and by physically 

transmitting actual keys. 

To address the issue faced by public key cryptography, it is possible to use a 

trusted Certification Authority that signs a certificate containing a device’s public key 

and information about the device’s identity.  This ties the key to the identity, and certifies 

that the key belongs to the device. Other parties that trust the Certification Authority can 

then trust that the public key belongs to the party claiming it.  This is the approach taken 

by PKI, as will be further described in the related works section and adopted by this 

thesis. 

A third issue addressed under the broad category of key management is ensuring 

key freshness.  If a key is used for too long of a period of time, such use increases the 

likelihood that an adversary will be able to gather enough outputted messages, or will 

have the time to run the computations necessary, to figure out the key. Long-term use 

                                                
9 Smith, S. & Marchesini, J., 178-179 provides a description of the Diffie-Hellman 
algorithm for establishing a shared secret without either party creating and transmitting 
the secret itself. 
10 Rescorla, E. (2001), SSL and TLS: Designing and Building Secure Systems, Boston: 
Addison-Wesley, 83-88 describes the process of deriving various keys from the secret 
material in the SSL protocol. 
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also makes it more likely that the key will be accidentally or purposely revealed in some 

other manner, and, as the key is used to encrypt more and more messages, the potential 

cost of the key’s compromise rises.  It is necessary, therefore, to regularly change the key 

being used for encryption over a particular channel, with the specific lifetime dependent 

on what the key is being used to encrypt and how often it is being used. 11  

As Schneier summarizes, “Different keys may have different lifetimes.”12  In the 

case of this thesis, keys are used for encrypting other keys or material to develop keys 

and for encrypting data sent over the SCADA data channels.  The keys used for 

encrypting and authenticating the data sent over SCADA communication lines “should 

have relatively short lifetimes[,…while the…] Key-encryption keys don’t have to be 

replaced as frequently [as t]hey are used only occasionally […] for key exchange.”13  As 

will be outlined in Section 5, the key management protocol proposed in this thesis 

addresses freshness by using frequently-replaced keying material to create session keys 

for encrypting data and by using less frequently-replaced, but still updated, long-term 

keys for encrypting the master secret used to create the keying material (equivalent to 

“key-encryption keys”) and for encrypting the keys found within the certificates of the 

slave devices unable to perform public key cryptography. 

Finally, key management also involves dealing with keys that have been 

compromised.  If a key has been compromised, it should no longer be used for encryption 

or authentication, and all devices using that key for cryptographic operations need to be 

                                                
11 Summarized from Schneier, 183-184. 
12 Schneier, 184. 
13 Schneier,184. 
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informed of the key’s compromised status.14  In the power SCADA system model used in 

this thesis, notification of key compromise is important only at the master device’s level.  

As will be explained in Section 3, if the security of the master device inside the 

substation is compromised, the security issues go beyond those involved in cryptography, 

and notifying the slave devices of the compromise of a master device for cryptographic 

purposes would be ineffective. 

 This thesis seeks to contribute to efforts to increase the security of the existing 

SCADA systems within the power grid by developing a key management system for 

power SCADA that allows for effective key distribution, freshness, and revocation after 

compromise. 

 

3.  Assumptions and Implications 

 SCADA networks represent a unique network topology and function and, 

therefore, have a variety of unique characteristics that must be taken into account when 

attempting to implement security measures for them.  Because it was not possible to gain 

access to a power facility over the course of developing this work, this thesis makes 

several assumptions about characteristics of SCADA networks based on information 

from current literature and from a phone conversation with David Whitehead, Vice 

President of R&D at Schweitzer Engineering Laboratories, Inc.  This section provides an 

outline of those assumptions (briefly summarized in Table 1) and their implications, 

noting that it is possible that, with further research, such assumptions could prove to be 

false, which would necessitate a reevaluation of the affected portions of this thesis. 

                                                
14 Summarized from Schneier 182-183. 



 12 

 

 

 First, this thesis assumes that, while the SCADA master device has computing 

capabilities typical of a modern computing system15, some SCADA slave devices lack 

the capacity to perform asymmetric encryption, at least in a reasonably efficient manner.  

David Whitehead suggested that slave devices lacked such capabilities, and Dawson et al. 

state that “RTUs have limited memory and processing power.  There are RTUs running 

                                                
15 Dawson, R., Boyd, C., Dawson, E., & Nieto J. (2006), SKMA- A Key Management 
Architecture for SCADA Systems, In Conference in Research and Practice in 
Information Technology, Vol. 54, Fourth Australasian Information Security Workshop 
Hobart, Australia (AISW-NetSec 2006), Australian Computer Society, Inc, suggests that 
“Master stations and sub-master stations are computers with resources at least as plentiful 
as a modern desktop computer” (Section 2.2). 
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industry standard protocols on 16 bit Microprocessors with 8 kilobytes of RAM (working 

memory), and 64 kilobytes of EPROM (persistent memory).”16 Beaver et al. also support 

this assumption, suggesting that “many critical SCADA communications […] have 

maximum delay times on the order of 2- 4 milliseconds”17, and that “The time to sign and 

then verify using the public protocols such as DSA, RSA run on the order of 2-11 ms for 

moderate security [and…] may be many times lower than these values if a less powerful 

processor is used.  At worst, these times may be on the order of 1000 times slower if an 

8-bit processor is used.  Further, these times do not account for any sort of message 

queuing.”18   While Beaver et al.’s argument applies to how public key cryptography 

would add a large delay if it were used to encrypt messages, it also holds for key 

management – on weak devices, public key cryptography, even if only used for 

infrequent key management messages, would be prohibitively slow, if not impossible. 

This thesis assumes, therefore, that there commonly exist slave devices in SCADA 

networks that cannot carry out public key operations for key management. 

 This assumption presents a challenge to key management.  Several key 

management protocols, like using RSA or elliptic curve cryptography to implement PKI, 

require the capacity for public key operations.  If any SCADA devices within the network 

lack the ability to perform asymmetric cryptography, then such key management 

protocols cannot be used effectively without modifying the protocol.  As PKI, and with it 

SSL, represents one of the primary means of establishing secure communication 

                                                
16 Dawson et al., Section 2.1 
17 Beaver, C., Gallup D., NeuMann, W. & Torgerson, M, (March 2002), Key 
Management for SCADA, Sand Report, New Mexico: Sandia National Laboratories, 10 
18 Beaver et al., 11. 
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pathways and of providing at least partial authentication, this limitation is one of the main 

issues that this thesis seeks to overcome. 

 Second, while the assumption is made that many slave devices are unable to 

perform asymmetric encryption, at least in a reasonably efficient manner, such devices 

are in the process of being upgraded to more advanced machines with the capacity to 

perform public key operations.19  When combined with the previous assumption, this 

presents another challenge to creating an effective key management system for SCADA 

devices.  Because, as previously described, there are often devices in the SCADA 

network that are unable to perform asymmetric cryptography, key management must be 

carried out using symmetric cryptography.  However, if key management is performed 

solely using symmetric key cryptography, it does not take advantage of the superior 

capability of those devices within the system that are able to perform public key 

operations.  Key management protocols that use public key cryptography are more secure 

than symmetric key-based systems, as only one party, the device performing the 

decryption and producing the signatures, needs to know the private key.  Public key 

cryptography is also much more scalable than symmetric key cryptography, as it allows 

all messages encrypted for or authenticated by one party to use one key; whereas, 

symmetric key cryptography requires one key per communicating pair. Not utilizing the 

superior computing power of devices able to perform public key operations would lead 

the network to have an increasingly suboptimal level of security as the number of 

computationally stronger devices in the network increased over time.  Thus, in order to 

take advantage of the increasing numbers of computationally strong devices in SCADA 

                                                
19 This assumption is supported by Dawson et al, Table 1, and Beaver et al., 7. 
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networks, this thesis outlines a key management system that allows for public key-based 

management for those devices capable of asymmetric cryptography and symmetric key-

based key management for those devices that lack the capacity to perform public key 

operations. 

 Third, this thesis assumes that, considering the current data transmission rates 

without added security, there is not a large amount of extra bandwidth available on the 

connections between slave and master devices that can be used for key management.  

This assumption is based on the conversation with David Whitehead, in which he 

suggested that SCADA lines were currently used to near-capacity, leaving little 

bandwidth for the overhead added by the addition of security measures.  Hadley et al. 

also support this assumption, stating that “It is common to find 75 to 80 percent of the 

bandwidth utilized.”20  However, based on the conversation with David Whitehead and 

Hadley et al.’s work, 21 this thesis also assumes that not all bandwidth is being used at 

once.  In Whitehead and Hadley et al.’s descriptions of the SCADA topology, the 

network is set up such that the master device is at the center of several slave devices and 

queries the slave devices one at a time.  The slave devices then respond with large 

amounts of data.  This topology seems to indicate that traffic along the SCADA lines 

would be sporadic and might follow set patterns of use, depending on when the master 

device needed to query the various slave devices.  This thesis, therefore, does not address 

the issue of ensuring that key management can take place within such a reduced-

bandwidth environment, beyond ensuring that any data that it would be necessary to send 

in the course of the key management processes would only need to be sent at short, 

                                                
20 Hadley et al., 2. 
21 Hadley et al., 2. 
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schedulable intervals, which would allow it to be sent during lag times in the patterns of 

use.  This thesis does not address how such lag times would be found or how such 

transmissions would be scheduled, leaving such implementation to future work. 

 Fourth, this thesis assumes that devices within substations (the master devices) are 

secure.  Beaver et al. also make this assumption,22 and David Whitehead suggested that it 

would be acceptable to assume that devices within a substation were secure because, if 

the substation were to be compromised, the security breach would go beyond 

cryptographic security.  This assumption affects the network model used in the 

development of key management protocols.  Because devices within substations are 

assumed to be secure, the channels that are assumed to require encryption and 

authentication and, therefore, keys in order to perform encryption and authentication, are 

those between master devices and the slave devices and between master devices. Thus, 

key management only needs to take place between these devices, not within a substation 

between the master device and other substation devices. 

 Fifth, this thesis assumes that the slave devices in power SCADA networks can be 

located remotely from the substation and, thus, from the master device, but that even 

remotely located slave devices are physically visited by personnel on a regular basis.  

David Whitehead mentioned that remotely located SCADA devices were visited by 

personnel and suggested the possibility that the devices were visited monthly. This 

assumption indicates that keys used for encrypting communications cannot be kept fresh 

through transmission over physical channels, as devices are not visited often enough to 

                                                
22 Beaver et al., 10. 
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replace the keys with the necessary frequency.  However, because visits do occur, there is 

a reliable means of physically updating keys on a longer-term time schedule. 

 Sixth, and finally, this thesis assumes that slave devices rarely communicate 

directly with one another.  Although Dawson et al. suggests that such communication 

does take place and should, therefore, be allowed for in any SCADA key management 

scheme,23 Beaver et al. present a model of SCADA communication in which slave 

devices that wish to communicate with one another must do so through the master device 

to which they are connected, arguing that such a model limits the damage that one 

compromised slave device can inflict upon the network, simplifies the process, and 

reduces the scope and cost of the protocol.  They conclude that in some special cases 

slave devices should be allowed to communicate directly with each other without going 

through the master device; however, these cases could be dealt with on an individual 

basis and would not have to be part of the generalized protocol.24  Based on the strength 

of Beaver et al.’s arguments, this thesis assumes that slave devices do not communicate 

directly with each other but, rather, communicate through a master device.  This thesis 

will, however, outline how special cases of slave device to slave device communication 

could be added without significantly changing the protocol. 

 These assumptions, based on literature and on the conversation with David 

Whitehead, shape the concept of SCADA devices used in this thesis. In such a network, a 

master device that can perform asymmetric cryptography queries slave devices, some of 

which that can perform asymmetric cryptography and some of which that cannot, with 

the number of those which that can perform asymmetric cryptography increasing over 

                                                
23 Dawson et al., Section 2.5.2. 
24 Beaver et al. 13-14. 
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time.  The assumptions also shape the challenge addressed by this thesis – the need to 

create a key management system in which public key cryptography can be used for those 

devices that are able to perform such operations, while still allowing for symmetric key 

cryptography for those devices that lack the capacity to carry out asymmetric key 

functions. 

 

4.  Related Work 

Two major categories of work relate to this thesis – work related to key 

management for general cryptography (more specifically, related to using Public Key 

Infrastructures (PKI) and Kerberos for key management) and work related to securing 

SCADA networks and providing key management for securing SCADA networks.  

 

4.1 Work Related to Key Management 

There has been a great deal of work done on the general issue of providing key 

management for cryptographic systems.  Schneier provides a general outline of work 

related to the issues involved in key management.25  However, this thesis concentrates on 

addressing the idea of using X.509 certificates, with symmetric keys included in their 

extension fields for use in establishing keying material that can be used to create 

symmetric session keys.  Therefore, it draws primarily upon two key management 

schemes that can be used to establish symmetric session keys – Kerberos and PKI. 

Kerberos is a symmetric key-based key management protocol that performs key 

management through the use of a central server that issues symmetric key-encrypted 

                                                
25 Schneier, 169-187. 
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tickets that include a symmetric session key.  The encrypted tickets tie a client’s identity 

to the symmetric session key in such a way that a server the client wishes to use can trust 

that the client is the one who shares the session key.  For this to work, each client on the 

network has a secret symmetric key that it shares with the Kerberos server.  When a user 

wishes to use a server on the network, the user first authenticates himself or herself to the 

client using his or her password.  Then, the client contacts Kerberos to obtain a key to use 

to communicate with the Kerberos Ticket-Granting Service, and Kerberos responds with 

a key encrypted with the client’s password. Using the key it received from the Kerberos 

server, the client then contacts the Kerberos server’s Ticket-Granting Service with a 

request for a ticket for a session with the desired service.   Kerberos’s Ticket-Granting 

Service responds to the request by issuing a ticket for the desired session that identifies 

the client and the server and includes a symmetric session key produced by Kerberos for 

the requested session.  The Ticket-Granting Service sends the client both the key 

encrypted under the client’s symmetric key and a ticket encrypted under the symmetric 

key shared between Kerberos and the server with whom the client wishes to 

communicate.  This allows the client to present the ticket to the server to prove its 

identity and establish a session key, as the server trusts the Kerberos server, and only the 

Kerberos server could have encrypted the ticket that contains both the client’s identity 

and the session key.26 

                                                
26Neuman, B., & Ts’o, T, (September 1994), Kerberos: An Authentication Service for 
Computer Networks, IEEE Communications, 32(9), 33-38, Retrieved May 28, 2008 from 
the World Wide Web: http://gost.isi.edu/publications/kerberos-neuman-tso.html, 
originally presented the Kerberos protocol. 
 
 Schneier 566-571 also provides a summary of the Kerberos protocol. 
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While Kerberos allows for the establishment of symmetric session keys through 

symmetric key cryptography, the use of Public Key Infrastructures (PKI) helps provide 

key management for public key cryptography.  Whereas Kerberos is designed for a 

system in which two parties – the client and the Kerberos server or the server and the 

Kerberos server – need to have a shared secret (the shared symmetric key), PKI only 

requires that one party know the secret (the private key) while all other parties can use the 

public key.  This leads to a different system, with a focus on using a public/private key 

pair, rather than a shared secret value, to tie a public key to a party’s identity. Whereas 

Kerberos relies on a central Kerberos server that shares keys with all the clients and 

servers on the network, PKI relies on a Certification Authority (CA) with a publicly 

known public key.  Instead of tickets that tie a client’s identity to a session key, PKI uses 

public key certificates that can include an entity’s identity and its public key and that are 

digitally signed by a trusted CA using the CA’s private key.  The CA’s signatures ties the 

entity’s name and public key together in the same manner that the Kerberos server’s 

encryption of the ticket with the symmetric key it shares with the server does in the 

Kerberos scheme – it allows other entities to verify that the CA is certifying that the 

public key belongs to the entity whose name is in the certificate, and it prevents 

untrustworthy entities from asserting bindings between attributes and clients (because 

they would be unable to sign the certificate with the CA’s private key).   

Because of the properties of public key cryptography, a single public key 

certificate can be used more universally than a Kerberos ticket can be used.  While a 

Kerberos ticket can only be presented to the server under whose key it is encrypted, a 

public key certificate can be presented to any other entity who also trusts the CA that 
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issued and signed the certificate.  Because the CA’s public key is commonly known 

among those entities that trust its signature, trusting parties can check the signature and 

verify that the user and the user’s public key have been bound by the CA.  Thus, when 

two entities wish to establish symmetric session keys while using PKI, they can each 

present their respective certificates, verify the certificates to gain each others’ public 

keys, and then use the public keys to encrypt and send or, in some protocols, establish, a 

session key that they can use for later encryption.27  This process is often carried out 

using Secure Sockets Layer (SSL), a handshake process that can, among other 

capabilities, provide authentication of at least one of the devices’ public keys through 

verification of its certificate (or, in some cases, chain of certificates) and establish shared 

secret material for use in creating the symmetric keys for authentication and encryption 

using the authenticated public keys.28 

For SCADA networks, neither symmetric key management, nor PKI alone, is 

sufficient.  PKI alone would not work because many SCADA slave devices lack the 

capacity to perform public key operations, at least in a reasonably efficient manner.  

Alternatively, while symmetric key management alone could work in the short term, 

concentrating on creating a specialized key management system made efficient for 

symmetric key use could be counterproductive in the long term, as it would neglect to 

take advantage of newer slave devices (with the ability to perform public key operations) 

                                                
27 Housley, R., & Polk, T., (2001),  Planning for PKI: Best Practice Guide for Deploying 
Public Key Infrastructure.  New York: John Wiley & Sons, Inc, 17-27 describes the basic 
functioning of PKI certificates.  Polk 43-68 describes the various constituents of PKI and 
PKI architectures.  Polk 69-105 describes X.509 certificates.   
 
Smith & Marchesini, 249-267. also describes PKI. 
28 Rescorla, 57-94 describes the basic SSL procedure. 
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as they were inserted into the network. Setting up a system with a concentration on 

symmetric key management would not only waste capacity for security, but could also 

make an eventual transition to PKI more difficult.  Therefore, this thesis looks for a 

solution to SCADA key management that can implement a modified version of PKI that 

would allow for symmetric key management for devices that lack the computational 

capacity to carry out the asymmetric key operations. 

There have been some efforts to combine PKI and Kerberos.  KX.509, produced 

by the University of Michigan, allows one to use a Kerberos ticket to create an X.509 

certificate,29 and Kerberos Public Key Initialization uses PKI to authenticate clients to the 

Kerberos server.30  However, neither of these schemes allow for a PKI structure in which 

a phased withdrawal of symmetric key management could occur.   

 

4.2 Work Related to Secure SCADA and SCADA Key Management: 

 The work related to implementing cryptography in SCADA networks from which 

this thesis arises is entitled “YASIR: A Low-Latency, High-Integrity Security Retrofit for 

Legacy SCADA Systems.”31  The YASIR scheme provides a bump in the wire device 

that allows for encryption and authentication of data using symmetric key cryptography.  

Such cryptographic operations would require the use of a secure key management 

protocol to maintain the symmetric keys required for such operations; however, the 

YASIR scheme currently lacks a means for key management.  This thesis seeks to 
                                                
29 Information Technology Central Services at the University of Michigan (Oct. 10, 
2005), KX.509: X.509 certificates via Kerberos, Retrieved May 30, 2008 from the World 
Wide Web: http://www.kx509.org/ provides details. 
30 Housley & Polk,  38-39 describes Kerberos Public Key Initialization. 
31 Tsang, P. & Smith, S., (To appear August 2008), YASIR: A Low-Latency, High-
Integrity Security Retrofit for Legacy SCADA Systems. 23rd International Information 
Security Conference (SEC 2008).�Springer-Verlag LNCS. 
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provide such a key management protocol that could be used to make encryption and 

authentication schemes like YASIR effective. 

 Because this thesis is designed to address a need for symmetric key management 

in power SCADA systems, a variety of closely-related key management work bears only 

slight relevance.   A great deal of research has been done on key management for sensor 

networks.  While such networks have some similarities to SCADA networks in that their 

abilities to perform cryptographic operations are severely constrained by a lack of 

computational resources, they also face challenges that are not faced by SCADA 

networks.  Sensor networks are not of a fixed size and must deal with nodes entering and 

leaving the network and with the network growing to large sizes at various times.32  For 

SCADA systems, on the other hand, “The structure of the network and its communication 

channels will be well defined.  Ad hoc communications are not required.”33  Thus, while 

sensor network key management protocols, like that presented in “SMOCK: A Self-

contained Public Key Management Scheme for Mission-critical Wireless Ad Hoc 

Networks,”34 address the issue of implementing key management in systems with 

resource limitations, they primarily address issues relating to the unknown nature of 

sensor networks that, because of the differences between the two types of systems, are 

not relevant to SCADA. 

 More relevant to SCADA systems are two papers that describe key management 

schemes specific to SCADA.   Beaver et al. outline a multi-level key management 

                                                
32 He, W., Huang Y., Nahrstedt, K., & Lee, W., (2007), SMOCK: A Self-Contained 
Public Key Management Scheme for Mission-critical Wireless Ad Hoc Networks 
 Proceedings of the Fifth Annual IEEE International Conference on Pervasive 
Computing and Communications, IEEE Computer Society, 1. 
33 Dawson et al., Table 1. 
34 He et al. 
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architecture with a certification authority.  Between substations, this scheme uses PKI 

with specialized certificates, and between a substation and its slave devices it uses a hash 

function applied to shared long-term keys that creates symmetric session keys shared 

between the substation and the slave devices. Dawson et al. present a symmetric key-

based scheme that uses a key distribution center.   

 Both of these protocols offer SCADA network-specific key management 

protocols.  They do not, however, allow for easy upgrade to PKI as SCADA systems are 

upgraded.  While either of the schemes suggested in these papers could provide a viable 

short-term solution, implementing such a solution might be detrimental in the long run, as 

it would prevent the use of the increasing resources in the network as the devices were 

slowly upgraded.  Both of these schemes also neglect to take advantage of the full 

capabilities of the network, if the network includes devices that are able to perform public 

key operations (Diagram 1 illustrates this wasted capacity over time), because both 

protocols use shared keys for key management, even with devices capable of public key 

cryptography. This thesis presents a scheme that would allow key management in the 

current network while also allowing for future upgrade and while taking advantage of the 

full capabilities of all the devices within the network.  
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Diagram 1: This diagram illustrates how, if a symmetric key management protocol is used over time, 
more and more slave devices with public key capacity will be added to the SCADA network, leading 
to more and more wasted capacity for security within the network until the point in time at which the 
system is switched over to PKI (or another system that takes advantage of public key capabilities).  
As shown above, to optimize the amount of the security in the system, it is necessary to allow devices 
that are capable of public key cryptography to use public key cryptography for key management. 
 

5.  Key Management Scheme 

 The key management scheme presented here is based on the typical PKI key 

management scheme, with some modifications to allow for its use with slave devices that 

lack the capacity to perform asymmetric cryptography. PKI uses X.509 certificates 

signed by a trusted CA to tie a public key to a device’s identity and to allow that device 

to participate in an SSL handshake process – that is, presenting its certificate and using its 

public key to establish a random value known as the master secret that can be used to 

derive keying material, including symmetric session keys for use in authentication and 
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encryption of data.  To modify this scheme, the CA must add a long-term symmetric key, 

known to the CA and the certificate-holding device, to the certificates of those slave 

devices unable to perform public key cryptography.  In order to prevent these keys from 

being intercepted, these long-term symmetric keys in the slave devices’ certificates must 

be encrypted with a symmetric key sent to the master device by the CA for the purpose of 

decrypting these encrypted keys. If the slave device is unable to perform the asymmetric 

key operations necessary to decrypt the master secret encrypted under a public key, this 

allows the master device another option – it can decrypt the symmetric key in the slave 

device’s certificate and encrypt the master secret using the symmetric key from within 

the slave device’s certificate instead of using the public key in the slave device’s 

certificate.   

This section will go into the details of this scheme, describing the various actors 

in the protocol and how they interact, outlining the details of how the extra symmetric 

key can be inserted into the X.509 certificates, and explaining how a modified SSL 

handshake (using the decrypted symmetric key rather than the slave device’s public key 

to encrypt the master secret) would work. 

 

5.1 Actors 

 There are several actors in this protocol.  The first is the master device.  As 

outlined in the previous section, the master device is assumed to have the computational 

power of a modern computer and is, thus, able to perform both public and symmetric key 

cryptography.  As described previously, the master device and its keys are also assumed 

to be secure, as they are located within a substation or other such facility.  While a 
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SCADA network topology consists of one master polling several slave devices, there can 

be multiple master devices (with their own sets of slave devices) arranged hierarchically 

on the network, with lines running from master stations to sub-master stations.35  While 

such links do exist within the network, they will not be explicitly addressed in the 

protocol portion of this thesis, as all master devices are able to perform public key 

operations; thus, normal SSL with PKI can be used between master devices. 

The second actor is the slave device.  Slave devices can be located remotely, in 

locations physically distant from the substation.  As described in Section 3, slave devices 

vary in their computational power; some are able to perform public key cryptography, 

while others are limited to symmetric key operations because their computational 

capacities render public key operations inefficient or impossible.   

The final actor is the Certification Authority (CA).  The CA certifies the public 

keys belonging to the master devices and slave devices capable of public key 

cryptography by producing and signing the devices’ certificates with its private key.  The 

CA also produces the symmetric keys stored in the certificates and the symmetric key 

used for encrypting/decrypting the symmetric keys stored in the certificates.  Thus, the 

CA must be reliable, and its private key must be kept very secure.  The CA should be 

similar to that suggested by Beaver et al., in that it should have “sufficient computational 

resources, be physically secure, and [have] a high quality random number generator,”36 

and it should be located in a secured, supervised area, where the its private key can be 

protected.37 

                                                
35 Dawson et al., Section 2. 
36 Beaver et al., 8. 
37 Franklin, M., Mitcham, K, Smith, S., Stabiner, J., & Wild, O., (2005),  CA-in-a-Box, 
Public Key Infrastructure: EuroPKI 2005, �Springer-Verlag LNCS.  describes the various 
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 These separate actors all communicate with each other over several general 

communication links.  First, master stations can communicate with each other over the 

data links that run between them.  Second, master stations can communicate with the 

slave devices to which they are connected over the serial lines connecting the SCADA 

network.  Third, slave devices can communicate with the master device to which they are 

connected using these same serial lines. As outlined in the description of assumptions, 

slave devices are assumed not to communicate directly with each other except in special 

cases outside of the normal protocol.  Finally, the CA can communicate with the master 

device and the slave devices. Unlike the other communication channels, the CA 

communicates with the devices over physical, out-of-band channels rather than over data 

lines.  The CA is responsible for generating and signing certificates based on public keys 

generated by the devices and distributing the certificates among the devices. The CA is 

also responsible for producing the symmetric keys used in the protocol. Along with 

creating these keys, the CA must ensure that the symmetric keys stored in the certificates 

are distributed to the appropriate devices along with the certificates, and that the key used 

to encrypt the symmetric key in the certificates is transmitted to the master device. To 

accomplish all of these tasks, public keys that need to be certified from the various 

devices and the material the CA generates for the master and slave devices are 

transported using the physical visits to the various devices – that is, the monthly 

personnel visits to the slave devices suggested by David Whitehead or a physical visit to 

the master or slave device by CA personnel. 

                                                                                                                                            
requirements for a CA, the options for building a CA, and how an organization can develop 
its own CA from commercial software. 
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 These various actors and communication channels produce a simple network 

model: various slave devices communicate with one master device, which communicates 

with other master devices and the various slave devices while the Certification Authority 

simultaneously communicates with all devices intermittently over physical, out-of-band 

channels.  This thesis will primarily address a subset of this model – the interactions 

between slave devices, the CA, and one master device.  As described previously in this 

section, it will not address master device to master device key management. 

 

5.2 Keys and Certificates 

 To begin to secure these communication channels, the different actors need to 

create and possess various keys (as outlined in Table 2) and certificates. 
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Table 2: Summary of Keys 

 

First, the Certification Authority must have a public and private key pair, with the public 

key known to all the master devices and all the slave devices that are able to perform 

asymmetric key cryptography and with the private key absolutely secure and unknown to 

any other devices besides the CA itself.  This key pair is used in a manner typical of PKI 

– the CA uses it to sign certificates, tying other public keys to device names and 

attributes, with the security of the signature dependent on the security of the CA’s private 

key.   
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Second, the master device must have a symmetric key for decrypting the keys 

encrypted within the certificates of its slave devices that are unable to perform public key 

operations, which will allow for the establishment of keying material if the slave device 

is incapable of public key cryptography.  This symmetric decrypting key is generated by 

the CA and physically distributed to the master device through an out-of-band, physical 

channel.  

Third, each master and slave device needs an X.509 certificate signed by the CA.  

All of these certificates must include the typical information found in an X.509 certificate 

– identifying information, including the device’s common name, public key, and length 

of time of validity (with the public key value containing a dummy number in a slave 

device’s certificate if the slave device is incapable of public key cryptography).  Those 

certificates distributed to the slave devices, or at least those distributed to those slave 

devices that are unable to perform public key operations (although for ease of 

implementation it may be simpler to standardize all certificates), must also include a 

symmetric key encrypted with the symmetric key the master device receives from the 

CA.  The slave devices that are incapable of public key cryptography also need to know 

the unencrypted form of the symmetric key contained, in encrypted form, in their 

certificates.  The symmetric keys within the certificates would, therefore, be distributed 

to the slave device along with the certificate over the out-of-band channel.   As will be 

described in more detail in the following section, this allows the master device, when it 

receives a certificate from a slave device unable to perform public key operations, to 

decrypt the symmetric key in the certificate the slave device presents and use that 

symmetric key (rather than the slave device’s public key) to encrypt the master secret for 



 32 

establishing keying material for a session key.  The symmetric key in the certificate is 

able to take the place of the slave device’s public key because, after decryption takes 

place, both the master device and the slave device have knowledge of the key and no 

adversary should know it. 

X.509 allows for information outside of the basic information required for 

certificate generation to be included in a certificate through the use of extensions.  

Extensions can either be standard and defined by X.509 (like the BasicConstraints 

extension which appears as the first extension under X509v3 extensions in Diagram 2), or 

they can be non-standard and user defined38.  While it is generally better to use standard 

extensions as they are “widely supported by commercial products,”39 because the 

extension containing the encrypted symmetric key is used by only a subset of slave 

devices within the specific SCADA network implementing this slightly modified PKI, it 

is possible to add a private extension to the certificates to hold the symmetric key.  An 

example of such an added private extension can be seen as the second extension under 

X509v3 extensions in Diagram 2.  In this example, a Netscape Comments-type private 

extension was added (Netscape Comments allow for a variety of data types to be included 

in an extension, including an encrypted key value), and it contains an encrypted 

symmetric key (which is not shown in the example, because the encrypted key appears as 

unprintable binary data). 

 To allow for such certificates to be potentially integrated with other commercial 

systems, a case that could arise, for example, if a master device were to communicate 

with a non-SCADA system using the same CA, it is necessary to mark the added private 

                                                
38 Summarized from Housley & Polk 79-98. 
39 Housley & Polk, 80. 



 33 

extension as non-critical.  If a certificate has a critical extension that a device does not 

recognize, the device will automatically reject the certificate; however, if the extension is 

marked non-critical and the device does not recognized the extension the device will 

simply ignore the extension and not necessarily reject it.40   

Certificate: 

    Data: 
        Version: 3 (0x2) 
        Serial Number: 13 (0xd) 
        Signature Algorithm: md5WithRSAEncryption 
        Issuer: CN=ManyasThesis, ST=New Hampshire, 
C=US/emailAddress=manya@dartmouth.edu, O=Dartmouth 
        Validity 
            Not Before: May 29 10:43:41 2008 GMT 
            Not After : May 29 10:43:41 2009 GMT 
        Subject: C=US, O=Dartmouth, OU=CS, 
CN=SlaveDevice/emailAddress=manyas@dartmouth.edu 
        Subject Public Key Info: 
            Public Key Algorithm: rsaEncryption 
            RSA Public Key: (1024 bit) 
                Modulus (1024 bit): 
                    00:b8:d4:a7:7d:78:3c:10:84:e9:5a:b7:55:bd:5c: 
                    5b:0e:46:8f:41:cd:f9:82:f3:04:23:d2:d2:26:50: 
                    c4:e2:04:9d:e8:16:96:04:d7:6a:d1:04:66:cc:bd: 
                    09:1f:c4:77:6c:39:65:aa:1a:79:c4:43:e7:de:0d: 
                    d3:09:d6:ca:d9:2b:d8:92:73:a3:ab:08:69:0d:cc: 
                    f1:dc:26:8a:b4:96:28:3c:b3:70:49:52:a9:b3:df: 
                    54:a6:a3:c6:04:2c:e0:82:b7:15:21:93:e8:45:89: 
                    85:69:73:b8:47:b9:f7:d6:5e:d5:b0:eb:ba:fb:ee: 
                    44:8d:37:b6:5a:9e:c1:a0:3b 
                Exponent: 65537 (0x10001) 
        X509v3 extensions: 
            X509v3 Basic Constraints:  
                CA:FALSE 
            Netscape Comment:  

               ENCRYPTED SYMMETRIC KEY (UNPRINTABLE BINARY)  
    Signature Algorithm: md5WithRSAEncryption 
        63:7b:59:84:0c:19:93:4c:a7:4a:e3:86:5e:a3:38:bf:e3:fb: 
        e4:36:46:9d:72:5c:60:d5:1d:bb:89:ca:4b:b1:5f:7d:d1:f3: 
        8a:23:ab:79:a8:52:3a:e5:11:ff:74:b0:c4:c8:93:3f:42:98: 
        f3:b8:24:34:ce:e1:81:ff:ae:57:23:4e:13:4a:1a:87:39:f6: 
        b8:ed:2e:75:9d:62:99:53:09:93:18:90:b2:f2:e7:6a:b3:d7: 
        29:04:bb:97:11:3c:02:e2:91:4d:61:64:8c:3d:1c:10:11:f6: 
        bc:2c:0f:de:f7:90:48:7d:bc:1e:c0:17:31:57:6d:a4:a2:b2: 
        9a:8e 

 
Diagram 2: Example of an X.509 certificate with an added encrypted symmetric key (seen 
under X509v3 extensions as the Netscape comment type field – the encrypted symmetric key 
would appear as a line of binary) 
 

                                                
40 Housley & Polk, 80 describe the criticality flag in X.509 certificates. 
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This is the desired behavior in this system.  If the certificates are used in the specialized 

system, the devices will use the encrypted symmetric key extension as necessary.  If the 

certificates are used outside of the system, the other devices will ignore that extension 

field, but, assuming the slave or master device is capable of public key operations, they 

will be able to perform a normal SSL handshake or other PKI-based operation with the 

device. This allows for both the utilization of the maximal capacity within the SCADA 

network and potential ease of integration with other networks and future upgrades. 

Master devices and slave devices capable of public key cryptography also require 

the public/private key pair that goes along with the certificate.  The master device and 

slave devices with the proper computational capacities create their own public/private 

key pairs in order to prevent any other device from knowing the private keys.  The 

devices’ public keys are then transported to the CA using physical means of 

transportation.  The CA authenticates the public keys as belonging to the master or slave 

devices through physical, out-of-band measures (e.g. authenticating personnel bringing 

the public keys using ID cards).  For each public key the CA authenticates, it creates and 

signs a certificate that ties the public key to the master or slave device from which it 

arrived. Certificates are then distributed to the devices using physical, out-of-band 

channels.  

Diagram 3 illustrates the final network model, showing the master device, the CA, 

the two types of slave devices, the various communication paths, and the resources, keys, 

and capabilities each device has. 
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Diagram 3: This diagram shows the network configuration and the various capacities, keys, and 
certificates each device has. 
 

This establishes the basic model that will be used in the key management protocol for key 

distribution and freshness, as outlined in the next section. 

 

5.3 Key Distribution and Freshness 

 As described in Section 2, one of the main aspects of key management is key 

distribution in order to maintain key freshness.  In the model described in the previous 

section, keys are distributed in two ways – physically and over data lines. 

Symmetric keys from the CA, along with the certificates certifying that they are 

tied to a particular device, are physically moved from the CA’s location to the various 

slave devices.  The security of this move depends on the trustworthiness of personnel and 

the physical channel used for transportation and is not addressed in this thesis. These 
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physically distributed keys, however, cannot be changed on a short-term regular basis.  

As described in the assumptions section, remote slave devices are not necessary easily 

reachable and are only visited on a (potentially) monthly basis.  Using the keys within the 

certificates to encrypt data, therefore, is not a viable option, as they would be used 

repeatedly and would rapidly lose their freshness.  Instead, it is necessary to create, 

exchange, and use shorter-lived keying material to create symmetric session keys for use 

in encrypting data.   

It is also necessary to use shorter-lived keying material with slave devices that are 

able to use public key cryptography.  Public key encryption operations are much more 

computationally costly than symmetric key operations, so it is more efficient to use the 

public keys to exchange keying material that can be used to create a symmetric session 

key and then use that symmetric session key for encryption.  The procedure often utilized 

to establish the material used to create symmetric session keys for encryption and 

authentication using public keys and PKI, is SSL (this, among other functionalities).  SSL 

is a handshake process that takes place between a client, a device that is requesting a 

service, and a server, a device that is providing the service.  In the case of the SCADA 

network, the master device plays the role of the client, and the slave device plays the role 

of the server. Diagram 4 shows a simplified version of the typical SSL process applied to 

a SCADA master device and a slave device that can perform public key operations. 
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Diagram based on a diagrams of the simplified SSL handshake found in Rescorla, page 60 and page 98.  Process based on the SSL 
handshake described in Rescorla pages 61-88 and pages 96-97, 108-112 . 
 
Diagram 4: This diagram illustrates a simplified version of the SSL handshake between a SCADA 
master device and a SCADA slave device that is able to perform public key operations. 
 

First, the master device sends the slave device the first handshake message, called 

the ClientHello message.  This message alerts the slave device to the fact that the master 

device wishes to establish new keying material.  The ClientHello message also allows the 

master device to send the slave device its preferences for the settings to be used during 

the handshake exchange, including the cryptographic algorithms that it prefers be used 

for encryption and authentication.  Finally, the ClientHello message includes a random 
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value, chosen by the master device, that both devices will later use in creating session 

keys in order to prevent replay attacks (attacks in which an adversary, without knowledge 

of the keys involved, repeats a message used during an earlier exchange and passes it off 

as part of a later exchange). 

 Second, the slave device sends the master device the ServerHello message.  The 

ServerHello message is similar to the ClientHello message.  It establishes the settings that 

will be used for communication, including finalizing the encryption and authentication 

algorithms, and includes a random value that both the slave and master device will later 

use in computing session keys.  After sending the ServerHello message, the slave device 

sends the X.509 certificate it received from the CA. Because the X509 certificate 

contains the slave device’s public key and because, in this case, the slave device is 

capable of public key cryptography, sending the certificate to the master device provides 

the master device with the means to encrypt messages to the slave device using public 

key encryption.  Once the slave device sends its certificate to the master device, it sends 

the master device the CertificateRequest handshake message to request that the master 

device send its certificate so that the slave device can verify the master device’s identity.  

Finally, the slave device indicates that it is finished with this segment of the handshake 

by sending a ServerHelloDone handshake message. 

 When the master device receives the slave device’s CertficateRequest message, 

the master device sends the slave device its X.509 certificate.  Once the master device has 

received the slave device’s certificate, it is able to verify that the slave device’s public 

key actually belongs to that slave device by verifying the signature on the certificate 

using the CA’s public key.  When the master device has verified the authenticity of the 
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slave’s public key, the master device encrypts the random value that will serve as the 

master secret with slave device’s public key and sends it to the slave device in the 

ClientKeyExchange message (as described previously, the master secret is the secret 

material that, combined with the random values from the ClientHello message and 

ServerHello message, is run through a key derivation algorithm to create, among other 

things, the session key shared by the master and slave devices for use in encrypting and 

decrypting data and the shared session key used for authenticating messages).  After the 

ClientKeyExchange message is sent, the master device sends the CertificateVerify 

handshake message, a message consisting of the handshake messages signed using the 

private key corresponding to the private key the master device included in its certificate, 

proving that the master device actually possesses the public/private key pair and that the 

master device is, in reality, the party bound to the public key in the certificate.  The 

master device then creates hashes using the master secret and the handshake messages 

and sends the hashes to the slave device in the Finished message so that the slave device 

can confirm that the exchange was not tampered with. 

 After receiving the encrypted master secret from the master device in the 

ClientKeyExchange message, the slave device decrypts the master secret using the 

symmetric key contained within its certificate (that it received, unencrypted, from the 

CA).  The slave device also verifies the master device’s X.509 certificate, and uses the 

public key found in the certificate to check the signature in the CertificateVerify 

handshake message, in order to verify the master device’s identity.  The slave device then 

checks the hashes in the Finished message it received from the master to confirm that the 

handshake was not tampered with and ends the basic handshake by sending a final 
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Finished message containing hashes created using all the handshake messages it received 

(including the final Finished message from the master device) and the master secret to the 

master device to again confirm that the handshake was not tampered with.41 

 At the end of this handshake, both the master device and the slave device have a 

shared secret (the master secret), and potentially session keys (derived from that shared 

secret and the random values passed in the ServerHello and ClientHello messages) that 

they can use to encrypt data traveling over the serial line between them.  An adversary 

listening in the middle of the exchange would be unable to create the same session key, 

because one component necessary to create the keying material (the master secret) only 

traveled over the link in encrypted form.  As described previously, because of the random 

values, the adversary would also be unable to repeat previously sent handshake messages.  

When the handshake completes, each side has also authenticated the other side through 

the use of the X.509 public certificates.  Thus, SSL allows for both sides to end up with 

secure symmetric session keys for encryption and authentication. 

 A modified version of the typical SSL handshake is necessary in order to produce 

the same results for slave devices that are unable to perform public key cryptography.  

There are two major areas in which the handshake differs.  First, the master device is 

unable to encrypt the master secret using the slave device’s public key, and, second, the 

slave device is unable to verify the master device’s identity through the use of the master 

device’s X.509 certificate and the VerifyCertificate handshake message.  

 The slave device cannot perform the asymmetric key operations.  Therefore, 

when the master device sends the ClientKeyExchange message, encrypting the master 

                                                
41 Description of basic SSL exchange summarized from Rescorla, 57-88.  Description of 
client authentication aspects summarized from Rescorla 96-98 and 108-112. 
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secret using the slave device’s public key would not allow the slave device to decrypt the 

message and gain access to the master secret.  Instead, the master device can extract the 

encrypted symmetric key from the extension in the slave device’s certificate, decrypt it 

using the symmetric key the CA sent to the master device (with which the CA also 

encrypted the key in the certificate) and use the now-decrypted symmetric key to encrypt 

the master secret for the ClientKeyExchange.  Diagram 5 illustrates a simplified version 

of the modified SSL process for slave devices that lack the capacity to perform public 

key operations.  The changes from the normal SSL handshake are shown in bold and are 

highlighted by boxes. 
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Diagram based on a diagram of the simplified SSL handshake found in Rescorla, page 60.  Process based on the SSL handschake 
described in Rescorla pages 61-88. 
 
Diagram 5: This diagram illustrates a simplified version of the SSL handshake between a SCADA 
master device and a SCADA slave device that is unable to perform public key operations (changes 
from the normal SSL handshake shown in bold and surrounded by boxes). 
  

As it is possible to see in Diagram 5, the handshake is nearly the same with slave 

devices that are unable to perform public key operations as it is with devices that have the 

capacity for such operations.  There are only three major differences.  The first difference 

can be seen in Step 2 of the handshake in Diagram 5.  Whereas slave devices that are able 

to perform public key operations include whatever preferences they have for 

cryptographic algorithms in the ServerHello message, the slave devices that are unable to 
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perform asymmetric key operations indicate in the ServerHello message that they are 

unable to use public key functions. 

This message alerts the master device to the fact that the slave device is unable to 

perform public key cryptography. Therefore, when the master device sends the master 

secret to the slave device in the ClientKeyExchange message, the master device does not 

encrypt the value using the slave device’s public key; instead, it reverts to symmetric key 

cryptography to maintain the value’s secrecy. This second difference between the 

handshakes can be seen in Step 5 of the handshake in Diagram 5.  Instead of using the 

slave device’s public key to encrypt the master secret for use in the ClientKeyExchange 

message, the master device extracts the encrypted symmetric key from the extension in 

the slave’s certificate, decrypts it using the symmetric key it received from the CA for 

decrypting the symmetric keys in the certificates, and uses this decrypted symmetric key 

to encrypt the master secret for the ClientKeyExchange. As in normal SSL, this allows 

both the master device and the slave device to gain knowledge of the master secret 

without an adversary being able to intercept the secret value.  The master and slave 

devices are then able to use this master secret, along with the random values from the 

ClientHello and ServerHello messages, to derive session keys for encryption and 

authentication.  The use of these random values again prevents an adversary from 

performing replay attacks, and the client and server are left with the ability to derive 

secure session keys from the shared master secret. 

 The third difference can be seen in how this modified handshake deals with the 

problem that arises in verifying the master device’s identity. While the master device can 

still verify the slave device’s identity using the slave device’s certificate, the slave device 
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is unable to perform the public key operations necessary to verify the master device’s 

identity using the master device’s certificate and the CertificateVerify message.  

Therefore, as can be seen in Diagram 5 (compared to Diagram 4) a slave device that is 

unable to perform public key cryptography does not send the CertificateRequest 

handshake message to the master device and, therefore, does not receive the master 

device’s X.509 certificate or the CertificateVerify handshake message.  This is because 

the slave device would be unable to check the signature on the certificate or the 

handshake message, so receiving such data would only waste time and bandwidth. 

Instead, the slave device indirectly verifies the master device’s identity through the 

master device’s knowledge of the symmetric key, which is needed to decrypt the 

symmetric key in the slave device’s certificate.  Because only the master device should 

know the key needed for this decryption operation, any adversary would be unable to 

obtain the decrypted version of the symmetric key in the slave device’s certificate and, 

therefore, would be unable to encrypt the master secret under the proper value.  The 

encryption of the master secret using the key obtained from the certificate, combined with 

the Finished handshake message created from the master secret (and, therefore, proving 

knowledge of the encrypted value) proves the identity of the master device.  Thus, at the 

end of this second type of handshake, both the master device and slave device have been 

able to authenticate each others’ identities, and both have knowledge of the master secret 

that can be used to derive session keys for encrypting and authenticating data. Thus, the 

combination of these two handshakes allows both sides to authenticate each others’ 

identities and to end up with secure symmetric session keys for encryption and 
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authentication, regardless of whether or not the slave device is able to perform public key 

cryptography. 

 

5.4 Initializing Devices 

 To add a new device to the network, the device produces a public/private key pair, 

if it is able to do public key cryptography, and the CA issues a certificate for the device, 

certifying that the public key belongs to the device.  The certificate includes an encrypted 

symmetric key that the master device can extract if the device is unable to do public key 

cryptography. The certificate and, if the device is a slave device that is unable to do 

public key cryptography, the symmetric key are then physically loaded onto the new 

device, either at the production facility or, if the system is being put into place using 

devices that have already been put into the field, by CA personnel.42  

When the master device wishes to establish a session key with a new device, it 

goes about doing so in the same way it would with an established device, and the signed 

certificate vouches for the new device when it enters the network.  When a new master 

device is added to the network, it is also issued a symmetric key for decrypting the 

symmetric keys in the certificates of the slave devices with which it communicates.  

Thus, new devices can be added to the network, or the proper materials to create this 

protocol can be added to devices already in an existing SCADA network 

 

5.4 Revoking Keys/Certificates 

                                                
42 CA idea suggested by Patrick Tsang, PhD student in the Dartmouth Computer Science 
Department, personal communications, May 28, 2008. 
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 As described in previous sections, it is only necessary to revoke keys and 

certificates for the slave devices.  If a master device’s key or certificate is compromised, 

this indicates that security problems are larger than those arising from cryptographic 

compromise.  To revoke a slave device’s certificate, the master device keeps a Certificate 

Revocation List that keeps track of those certificates that have been revoked, and does 

not accept certificates on that list.  This will prevent the master device from accepting a 

certificate from a slave device whose long-term symmetric key (contained within its 

certificate) or private key has been compromised and whose certificate has been revoked.  

A certificate should be revoked and added to the Certificate Revocation List as 

soon as the master device becomes aware of the compromise of a slave device.  This 

leaves the risk that a slave device will become compromised without the master device 

being aware of it occurring.  Such an issue would have to be handled by attempting to 

maximize detection of compromise, perhaps through the detection of unusual traffic 

patterns or of protocol disturbances.  The details of such a system, however, will have to 

be left to future work. 

 

5.5 Bandwidth Considerations 

 As outlined in Section 3, it is assumed that there is limited bandwidth available 

for the key management process; however, it is also assumed that there are certain 

periods in which it would be possible to send key management data.  This protocol could 

fit this assumption by not having the master device establish keying material/session keys 

when it wishes to send data but, rather, at a pre-planned time that could be scheduled into 

the usage patterns of the network.  Thus, it could be possible to use this protocol to get 
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around bandwidth limitations if such usage patterns were confirmed and pinpointed.  

Actually determining a means to find, confirm, and locate such patterns, however, is left 

to future work. 

 

5.6 Slave Device to Slave Device Key Management 

 As mentioned previously, there might be some special cases in which two slave 

devices regularly have a need to communicate and, therefore, should be provided with a 

special instance of direct key management.  If both devices are capable of public key 

cryptography, they can establish secret keying material in the same manner as the master 

device and a slave device capable of asymmetric cryptography.  Because both devices 

would have fully functioning public key certificates, no additional material or 

modifications to the protocol would be necessary.  This is one of the advantages of using 

a modified version of PKI; it would allow for increased scalability if it became necessary 

to add large numbers of slave to slave device links and if the slave devices were all able 

to perform public key cryptography (a case that might arise if the network topology 

changed as the devices were modernized). 

 If only one of the devices in the special case is incapable of asymmetric 

cryptography, the two devices would perform the same handshake performed between the 

master device and a slave device that is incapable of public key operations, with the slave 

device that can perform public key cryptography initiating the process and playing the 

role of the master device.  To set up this special case, it would be necessary for the CA to 

create an additional symmetric key for decrypting keys within certificates and an 

additional certificate (for the slave device unable to perform public key cryptography) 
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with an encrypted symmetric key in the certificate’s extension.  This certificate, and the 

symmetric key that was encrypted and included within it, would be distributed to the 

slave device unable to perform asymmetric key cryptography, and the decrypting key 

would be distributed to the slave device able to carry out public key operations.  The 

distribution of the keys and certificate would use the same out-of-band channels as 

normal key and certificate distribution; however, the symmetric keys used would be 

different from those used in master-slave device key management, as this would prevent 

the compromise of master-slave device communications if slave-slave device 

communications were compromised.  Once the additional certificates and keys were 

established, the handshake would proceed normally, with the slave device capable of 

public key operations playing the role of the master device.  

 If, in the special case, both slave devices are unable to perform public key 

cryptography, it would be necessary for the CA to create an additional certificate for each 

of the two devices, with each certificate containing the same symmetric key, encrypted 

with the same, new, decryption key.  Again, the symmetric keys would have to be 

different from those used for master-slave device communications to prevent the 

compromise of slave-slave device keys from compromising master-slave 

communications.  The CA would then distribute the certificates, the symmetric key from 

within the certificate and the decryption key to each of the two devices.  One of the 

devices would then be designated to play the role of the master device, and the two 

devices would carry out a variation on the normal SSL handshake.  Because neither 

device would be able to perform public key operations, after receiving each others’ 

certificates in the handshake, the devices would extract the encrypted symmetric key, 
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decrypt it, and verify it against the symmetric key they received from the CA.  This 

would take the place of checking the signature on the certificate.  To confirm that the 

slave device playing the role of the master device also knew the symmetric key, the 

CertificateVerify message would include a HMAC with the shared symmetric key, 

instead of a signature using the private key from of the public/private key pair.  The slave 

device playing the role of the master device would also encrypt the master secret using 

the shared symmetric key from the certificate, instead of using the other slave device’s 

public key. This would allow two slave devices that were both unable to perform public 

key operations to authenticate each others’ identities and establish a shared secret when 

necessary. 

As these three cases show, although this key exchange protocol does not include 

slave-slave communication channels, it would be possible to set up such channels in the 

special cases where they might be absolutely necessary. 

 

6.  Performance Differences 

 Looking at the two handshakes presented in the previous section, it is possible to 

identify the specific operations unique to each handshake.  The performance differences 

associated with these different operations show how modifying the SSL handshake 

allows slave devices with more limited computational capabilities to participate in the 

key management process.   

In proof-of-concept code created to illustrate the handshake between a master 

device and a slave device with a computational capacity that prevents it from performing 

public key operations, the slave device has to perform one necessary symmetric key 
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operation that a slave device able to perform public key operations would not have to 

perform; it has to decrypt the encrypted master secret it is sent by the master device.43  In 

the case of the proof-of-concept code, this decryption is performed using DES in cipher 

feedback mode; however, in actual implementation, it could be done using whichever 

symmetric key operation best fit the specific SCADA system’s use of authentication and 

encryption (as described in Section 6: Future Work).  In this section, however, when this 

operation is referenced, it will refer to the DES cipher feedback decryption used in the 

proof-of-concept code.  Alternatively, the normal SSL-style handshake, as seen in 

Diagram 4, necessitates that the slave device perform two public key verifications (one of 

the signature on the master device’s certificate and one of the signature on the 

CertificateVerify handshake message) and an asymmetric key decryption (of the master 

secret encrypted under the slave device’s public key) that do not take place in the 

handshake with a slave device unable to perform public key operations.  The difference 

in the demands placed on slave devices with the capacity for public key cryptography and 

those without the capacity for public key cryptography are summarized in Table 3: 

 

 

 

 

 

                                                
43 To receive a copy of the proof-of-concept code, email 
manya.k.sleeper@alum.dartmouth.org.  The proof-of-concept presents a simplified 
prototype of the handshake process, and includes one extra symmetric key operation on 
the slave device’s side for ease of programming that would not be included in an actual 
handshake.  



 51 

Table 3: Summary of Handshake Distinctions 
 

 

  

It is possible to show why a computationally weak slave device would be unable 

to carry out the requirements for the public key-based handshake, yet would be able to 

carry out the requirements for the symmetric key-based handshake and to show that a 

computationally stronger slave device would be able to carry out the requirements for the 

public key-based handshake.  To do so, it was necessary to calculate how long it would 

take weak and strong slave devices to carry out each of the two sets of unique handshake 

requirements.   

Determining how long it would take for a computationally weak SCADA device 

to perform each of the sets of unique handshake operations was done by timing the slave 

device’s symmetric key decryption of the master secret in the proof-of-concept code, 
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timing an RSA verification operation44, and timing an implementation of a public key 

decryption of the same master secret that the slave device decrypts in the proof-of-

concept code.45  Because the proof-of-concept code was run on a computer with a 

3391.654 MHz CPU, and because David Whitehead suggested that weak SCADA 

devices can have processors with 20 MHz CPUs46, it was necessary to normalize the 

timing data, which was done by multiplying the time by the CPU ratio.  After 

normalizing the data for weak SCADA devices, the timing results were as follows in 

Table 4. 

 
 
 
 
 
 
 
 

                                                
44 The exact operation timed was the verification of the slave device’s certificate by the 
master device in the proof-of-concept code, as, in the proof-of-concept code, the slave 
device does not verify the master device’s certificate.  However, as both the master and 
slave device possess the same format of certificate in the protocol, and perform the same 
verification operation, timing this verification operation should have provided data that 
was representative of the verification that would occur if the slave device verified the 
master device’s certificate. 
45 To obtain these results, the code was run on a 32-bit, Unix machine with a 3391.654 
MHz CPU running Fedora.  Timing was done using the C function getrusage(), with 20 
repetitions for each test, and a loop of a thousand trials for each repetition for symmetric 
key decryption (in order to gain enough time to get a result), all of which were averaged 
afterwards.  Repeated symmetric key decryption using OpenSSL functions also required 
two additional operations (the initialization of the decryption context and a malloc) each 
time a decryption was performed, that would not be required as part of a non-repeated 
decryption.  To correct for this, the two operations were also repeated one thousand times 
and timed; that time was then subtracted from the total time of the thousand repetitions of 
decryption and the two operations.  Results of 0 (or very close to 0) were assumed to be 
faulty data and were removed from the data set.  Symmetric key decryption was 
performed using DES in cipher feedback mode, and public key verification and 
decryption was performed using RSA with a 1024 bit key. 
46 D. Whitehead, personal communications, May 6, 2008. 
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Table 4: Normalized Times for Unique Handshake Operations  

 

As can be seen in Table 4, public key operations take significantly more time than 

symmetric key operations, and the overhead that would be added to a computationally 

weak SCADA device, if it attempted to take part in a public key based handshake, would 

be considerable.  The total differences between a computationally weak SCADA device 

taking part in a symmetric key-based handshake and a public key-based handshake and a 

computationally strong SCADA device with the capacity for public key operations 

(assumed to be comparable to the machine the timing tests were run on) taking part in a 

public key based handshake, can be seen in Table 5. 
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Table 5: Total Time Differences for the Two Handshakes and Weak and Capable 
SCADA Devices 

 

As seen in Table 5, the public key operations that are prohibitive for weak SCADA 

devices (adding 957.93027ms of overhead) are possible for more capable SCADA 

devices (in this case, the device would be able to perform the handshake with only 

5.64875 ms extra time).  This shows how the modified SSL-based protocol allows for the 

maximum level of security by taking advantage of the capabilities of the computationally 

stronger devices in the network, while providing the computationally weaker devices 

with an option that is not prohibitively expensive in terms of time. 
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7. Future Work 

 There are three major directions future work on further developing this key 

management system could take.  First, to make such a protocol applicable to actual 

SCADA networks, it would be necessary to develop an implementation of the handshake 

that could function on SCADA devices.  This would also involve determining which 

symmetric cipher would be best for encrypting the key within the certificate and for 

encrypting the master secret encrypted with the key removed from the certificate.  It 

would also necessitate figuring out how to deal with the cipher-specific issues necessary 

for implementation.   

 Second, to allow this key management protocol to be used in actual power 

SCADA systems, it would be necessary to determine how the various components of the 

protocol would fit into the human infrastructure of the power grid.  Various roles would 

have to be defined, and power grid employees would have to be placed in charge of such 

tasks as transporting new symmetric keys to the slave devices and determining if slave 

devices had been compromised.  All these roles would have to fit into the existing 

structure of the power grid, adding as little additional overhead as possible and allowing 

for as few mistakes as possible.  Additional work would have to be done to develop the 

infrastructure needed and to determine how it could merge with the existing power grid 

organization. 

 Finally, as mentioned in Section 3, this thesis does not fully address how this key 

management protocol would overcome bandwidth limitations, although it assumes that 

there exist identifiable times in which key management data could be sent because of 

predictable use patterns.  Additional work would have to be carried out to confirm that 
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such patterns exist in the use of SCADA serial lines and to determine how to identify the 

periods in which it would be best to send key management data to avoid overloading at-

capacity data lines. 

   

8.  Conclusion 

 It is necessary to increase power grid security without replacing all the devices 

within the grid, and, therefore, it is necessary to develop a key management protocol that 

can allow for key management for SCADA slave devices that are unable to perform 

public key cryptography.  However, in creating a key management system for SCADA 

networks, it is not necessary to sacrifice the capacity of those devices in the network that 

are able to perform public key operations.  As Section 6 outlined, slave devices of 

different computational capacities can take part in different handshakes and, while doing 

so, achieve different levels of security.   To take advantage of such differences in the 

capabilities of devices within SCADA networks, it is necessary to use a system, like the 

one outlined in this thesis, that allows for symmetric key-based key management while 

simultaneously putting in place a structure that permits devices that can perform public 

key cryptography to perform at their full capacities.  Such a system would provide the 

highest degree of security that the system is capable of and, therefore, would provide an 

added benefit over systems that force devices with the capacity for public key operations 

to rely on symmetric key cryptography for key management. 
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