
Dartmouth Computer Science Technical Report TR2008-628

Key Management for Secure Power SCADA

Manya Sleeper
manya.k.sleeper@alum.dartmouth.org

Senior Honors Thesis

June 2008

This research was sponsored in part by the NSF, under grant CNS-0524695. The views and conclusions do not
necessarily reflect the views of the sponsors

 1

Key Management for Secure Power SCADA
By: Manya Sleeper

Advisor: Sean Smith
manya.k.sleeper@alum.dartmouth.org

Abstract: This thesis proposes a key management protocol for secure
power SCADA systems that seeks to take advantage of the full security
capacity of a given network by allowing devices to use public key
cryptography for key management if they are capable of doing so and
reverting to symmetric key cryptography only when such use is
necessitated by the weakness of a given device. Allowing devices to
obtain different levels of security permits SCADA networks to maximize
their security in the decades before such networks are capable of
implementing fully public key-based key management protocols. Such a
system is obtained through the use of a protocol based on a modified
version of SSL using X.509 certificates containing encrypted symmetric
keys that allow master devices the option of using the symmetric keys for
encrypting the shared secret used to create keying material, instead of
using a slave device’s public key. This thesis presents the protocol and
uses proof-of-concept code to carry out a performance evaluation of the
key management scheme.

1. Introduction

 Securing the power grid must include providing encryption and authentication

capabilities to the devices that control the transmission of data across grid communication

lines. In order for encryption and authentication to occur, an effective key management

system must be in place to provide the keys needed for the encryption and authentication

protocols. This need for encryption and authentication capabilities, and with it, the need

for key management, is especially applicable to Supervisory Control and Data

Acquisition (SCADA) networks, one type of network often used within the power grid to

collect data and transmit it back to a central unit for processing. SCADA networks’

architecture and the inability of some devices within SCADA networks to perform public

key cryptography produce unique challenges for securing SCADA networks, and, more

particularly, for developing key management schemes for SCADA systems.

 2

1.1 Goals

 The goal of this thesis is to develop a key management protocol for power

SCADA networks, with a focus on creating a scheme that takes advantage of the full

security capacity of the system, despite the mixed capabilities of the devices within the

network, and that allows for ease of future upgrade.

Because SCADA networks often include some devices that are unable to perform

public key cryptography and some devices that are able to perform public key operations,

using a key management protocol that fails to take advantage of those devices that are

able to use public key cryptography wastes the resources available in the system and

makes the system less secure than it could be if the all devices were used to their full

potential. Thus, this thesis seeks to develop a key management system that will utilize

the full capacity of all devices within the system, allowing those devices that can perform

public key operations to use public key cryptography for key management and allowing

those devices unable to use public key cryptography to use symmetric key operations.

SCADA networks are also in the process of being upgraded to computationally

superior devices that are able to perform public key encryption and that could be

integrated into a normal Public Key Infrastructure (PKI). This thesis, therefore, seeks to

create a protocol that uses a PKI and Secure Sockets Layer (SSL)-based handshake that

differs only slightly from the normal PKI and SSL handshake commonly in use. This

would allow for ease of upgrade to a normal PKI system, likely using SSL for key

establishment, once all the machines in a given SCADA network developed the capacity

for public key operations at some point in the distant future.

 3

1.2 Proposal

 To meet the previously described goals, this thesis proposes a key management

system based on PKI, using a slightly modified version of SSL. SCADA systems are

made up of central master devices, which play the role of the client in the SSL

handshake, and they also include potentially remote slave devices, which each play the

role of the server in the handshake. The proposed system relies on X.509 certificates

with an encrypted symmetric key included in an extension. These augmented certificates

allow the SSL handshake to be modified so that when a slave device is unable to perform

public key cryptography, a master device can use the symmetric key, which is removed

from the slave device’s certificate and decrypted, instead of the slave device’s public key,

when encrypting a value to be used to develop keying material. This allows the master

device to use the slave device’s public key for encryption with slave devices that are able

to perform public key cryptography and to only use symmetric key cryptography with

those devices unable to perform asymmetric operations, thus taking advantage of the full

capacity of the network. It also allows for easy upgrade to normal PKI, as devices with

public key abilities can be phased in with no change to the key management protocol,

until an entirely PKI/SSL-based system with devices able to perform public key

cryptography is in place.

1.3 Outline

 This thesis will first, in Section 2, provide a summary of the issue’s background,

outlining the various characteristics of power SCADA networks, elaborating on the need

 4

to provide security for such systems, and describing the various aspects of key

management. Section 3 will then outline six key assumptions being made about power

SCADA networks and the implications these assumptions have for the development of an

effective key management protocol. Next, Section 4 will describe various work that

relates to developing a key management protocol specific to SCADA networks, focusing

on PKI, Kerberos, and two papers that have been published specifically addressing the

issue of key management in SCADA systems. Section 5 will describe the proposed key

management scheme, and Section 6 will describe the relative performance of the various

devices in the different handshakes, offering further justification for the chosen protocol.

Finally, Section 7 will suggest direction for future work, and Section 8 will offer

conclusions.

2. Background

 A typical power SCADA network consists of a central control master device and

slave Remote Terminal Unit (RTU) devices that gather data (referred to for the remainder

of this thesis as master and slave devices respectively). Connected to the slave devices

by serial lines, the master device polls them, one at a time, to retrieve the gathered data

for processing. Because the slave devices are constantly gathering data and the master

device is able to get steady updates, such devices are used in systems in which real time

updates on remote processes and conditions are necessary. Within the power grid,

SCADA networks are used “to monitor and manage the electric distribution, transmission

 5

and generation environments.”1 Thus, SCADA networks have a unique purpose that

makes them vital to power grid function.

 Because SCADA networks control critical data in systems in the power grid,

ensuring the authenticity and integrity of the data as it travels over the SCADA lines is

very important. The National Strategy to Secure Cyberspace identifies “securing

[…SCADA as] a national priority […as] disruption of these systems can have significant

consequences for public health and safety.”2 According to the Center for Scada Security,

however, “studies and assessments have found a lack of security in SCADA systems,”3

because, when SCADA networks were implemented in the power grid, data security was

not the key concern; rather, they were designed, for “availability and personal safety.” 4

Consequently, many SCADA systems currently in the power grid do not possess the

security features necessary to protect the data traveling over SCADA serial lines and,

therefore, lack the ability to protect the critical power grid functions dependent on that

data.

 Because SCADA networks are widely used in the power grid, it is not feasible to

replace all the SCADA devices currently in use with devices designed to be used in a

secure manner. While devices are slowly being replaced, for decades there will continue

1Hadley, M., Huston, K., (2006), AGA 12: Part 2 Performance Test Plan, National
SCADA Test Bed, Retrieved April 5, 2008 from the World Wide Web:
http://www.oe.energy.gov/DocumentsandMedia/AGA_12_Part_2_Performance_Test_Pla
n.pdf, 1. This same article also describes how polling takes place on a SCADA device
(1-2).
2The White House, (February 2003) The National Strategy to Secure Cyberspace,
Retrieved May 15, 2008 from the World Wide Web:
http://www.whitehouse.gov/pcipb/cyberspace_strategy.pdf, 32.
3 Frequently Asked Questions: Why the sudden concern about SCADA systems?, Sandia
National Laboratories: The Center for SCADA Security, Retrieved May 15, 2008 from
the World Wide Web: http://www.sandia.gov/scada/faq.htm.
4 Hadley et al. 1.

 6

to be SCADA devices in the power grid that were not designed to be used in a secure

network. Thus, SCADA devices transmit data that needs to be secured; yet, currently

they are not designed to implement secure data processing or transmission. To increase

the security of the power grid, it is necessary to find ways to add security to existing

SCADA devices and networks, while simultaneously securing new SCADA devices as

they are added to the network.

One of the main ways in which security can be increased in SCADA networks is

through the implementation of symmetric key authentication (e.g. through HMACs) and

encryption of data traveling over SCADA links. However, for symmetric key

authentication and encryption to be an effective means of security, proper key

management is necessary. As Bruce Schneier puts it, “Designing secure cryptographic

algorithms and protocols isn’t easy, but […k]eeping the keys secret is much harder.”5

Key management, the practice of keeping the symmetric keys used for encryption and

authentication secure, secret, and provably attached to the appropriate users, encompasses

several major issues.

First, the key itself must be large and random enough to be secure and, therefore,

must be created in a secure manner. For a key to be securely generated, it must be as

random as possible and, thus, must be created using a good pseudo random number

generator seeded with a random value (or be obtained from another truly random source).

While the issue of choosing a good random key is important, this thesis does not address

this problem. To prevent the use of keys with poor randomness in implementing the key

5 Schneier, B. (1996), Applied Cryptography. New York: John Wiley & Sons, 169.

 7

management scheme described here, one should do as Schneier recommends and use a

good source for the random number and avoid known weak keys.6

Key management also encompasses the important issue of delivering the keys to

the devices that will be using them. Beyond being generated in a secure manner, keys

must also be transmitted securely, so that they will not be intercepted in transit by an

adversary and later used to decrypt data or authenticate false data. This issue of key

transmission differs for the two major types of cryptography – public key cryptography

and private key cryptography (also known as asymmetric and symmetric key

cryptography, respectively). In private key cryptography, two or more parties share a

secret key, and it is this shared secret that allows them to perform encryption and

authentication. The same secret key is used for encryption and decryption, with one key,

for example, used for such tasks as calculating and checking a HMAC for authentication

or encrypting and decrypting data (although a different key would be used for each of

these tasks). Thus, it is necessary for this shared key to be secretly transported from one

party to another or established in a joint manner that will allow the proper parties to have

knowledge of the secret key but will prevent an adversary from learning its contents.

Instead of using a single symmetric key, public key cryptography relies on an

asymmetric key pair consisting of a public key and a private key. The private key is used

for decrypting ciphertexts and computing signatures, while only the public key is

required for encrypting plaintexts or checking a signature. Thus, only the party to whom

the key pair belongs needs to know the private key and only the private key needs to be

kept a secret. However, public key cryptography still faces the challenge of ensuring that

6 Requirements for secure key generation summarized from Schneier, 170-175.
Requirements for good implementation found in Schneier, 173-174.

 8

other devices can trust that a public key actually belongs to the party for which they wish

to perform encryption or authentication.7

There are three major ways to transmit symmetric keys from one party to another

securely. First, it is possible to secure the transmission of a key by encrypting it with a

previously distributed key. This ensures that an adversary will not be able to intercept the

new key, as long as they do not possess the old key. Such a method requires only that the

previous key was managed securely and that a secure encryption algorithm is used.

Second, it is possible to physically transmit a key over a trusted physical channel. Using

a trusted physical channel means ensuring that the means of delivery are truly trustworthy

– for example, making sure that personnel can be trusted to keep the key secret en route

to the destination device.8 While ensuring that physical channels of transmission are

secure is important, this thesis does not address that issue, and instead assumes that such

means are secure. Establishing such secure channels (including hiring trustworthy

personnel, preventing them from accidentally, or purposely, revealing the key, and

ensuring that devices used to store keys are not stolen or lost) is left to those

implementing the protocol.

The third means of transmission, is not strictly the transmission of a key. Instead,

it is the establishment of a key through the use of a protocol, like Diffie-Hellman, in

which a key is created through coordinated steps taken by each party and without either

7 Smith, S. & Marchesini, J., (2008), The Craft of System Security, Upper Saddle River:
Addison-Wesley, 163-180, provides a description of public and symmetric key
cryptography.
8 Summarized from Schneier 176-178.

 9

party ever sending the entire key.9 Both sides end up with the key, but the key itself is

never actually transmitted. SSL, the handshake on which this thesis’s protocol is based,

does not directly transmit a key across a connection, but instead sends a master secret

across that can be used by each side to develop material for various symmetric keys.10

While, in the SSL protocol, this master secret is encrypted using a previously known key,

the session key itself is not transmitted across the connection. This thesis, therefore, in

addressing means of key transmission, will focus on distributing material used for

developing keys by encrypting it with previously known keys and by physically

transmitting actual keys.

To address the issue faced by public key cryptography, it is possible to use a

trusted Certification Authority that signs a certificate containing a device’s public key

and information about the device’s identity. This ties the key to the identity, and certifies

that the key belongs to the device. Other parties that trust the Certification Authority can

then trust that the public key belongs to the party claiming it. This is the approach taken

by PKI, as will be further described in the related works section and adopted by this

thesis.

A third issue addressed under the broad category of key management is ensuring

key freshness. If a key is used for too long of a period of time, such use increases the

likelihood that an adversary will be able to gather enough outputted messages, or will

have the time to run the computations necessary, to figure out the key. Long-term use

9 Smith, S. & Marchesini, J., 178-179 provides a description of the Diffie-Hellman
algorithm for establishing a shared secret without either party creating and transmitting
the secret itself.
10 Rescorla, E. (2001), SSL and TLS: Designing and Building Secure Systems, Boston:
Addison-Wesley, 83-88 describes the process of deriving various keys from the secret
material in the SSL protocol.

 10

also makes it more likely that the key will be accidentally or purposely revealed in some

other manner, and, as the key is used to encrypt more and more messages, the potential

cost of the key’s compromise rises. It is necessary, therefore, to regularly change the key

being used for encryption over a particular channel, with the specific lifetime dependent

on what the key is being used to encrypt and how often it is being used. 11

As Schneier summarizes, “Different keys may have different lifetimes.”12 In the

case of this thesis, keys are used for encrypting other keys or material to develop keys

and for encrypting data sent over the SCADA data channels. The keys used for

encrypting and authenticating the data sent over SCADA communication lines “should

have relatively short lifetimes[,…while the…] Key-encryption keys don’t have to be

replaced as frequently [as t]hey are used only occasionally […] for key exchange.”13 As

will be outlined in Section 5, the key management protocol proposed in this thesis

addresses freshness by using frequently-replaced keying material to create session keys

for encrypting data and by using less frequently-replaced, but still updated, long-term

keys for encrypting the master secret used to create the keying material (equivalent to

“key-encryption keys”) and for encrypting the keys found within the certificates of the

slave devices unable to perform public key cryptography.

Finally, key management also involves dealing with keys that have been

compromised. If a key has been compromised, it should no longer be used for encryption

or authentication, and all devices using that key for cryptographic operations need to be

11 Summarized from Schneier, 183-184.
12 Schneier, 184.
13 Schneier,184.

 11

informed of the key’s compromised status.14 In the power SCADA system model used in

this thesis, notification of key compromise is important only at the master device’s level.

As will be explained in Section 3, if the security of the master device inside the

substation is compromised, the security issues go beyond those involved in cryptography,

and notifying the slave devices of the compromise of a master device for cryptographic

purposes would be ineffective.

 This thesis seeks to contribute to efforts to increase the security of the existing

SCADA systems within the power grid by developing a key management system for

power SCADA that allows for effective key distribution, freshness, and revocation after

compromise.

3. Assumptions and Implications

 SCADA networks represent a unique network topology and function and,

therefore, have a variety of unique characteristics that must be taken into account when

attempting to implement security measures for them. Because it was not possible to gain

access to a power facility over the course of developing this work, this thesis makes

several assumptions about characteristics of SCADA networks based on information

from current literature and from a phone conversation with David Whitehead, Vice

President of R&D at Schweitzer Engineering Laboratories, Inc. This section provides an

outline of those assumptions (briefly summarized in Table 1) and their implications,

noting that it is possible that, with further research, such assumptions could prove to be

false, which would necessitate a reevaluation of the affected portions of this thesis.

14 Summarized from Schneier 182-183.

 12

 First, this thesis assumes that, while the SCADA master device has computing

capabilities typical of a modern computing system15, some SCADA slave devices lack

the capacity to perform asymmetric encryption, at least in a reasonably efficient manner.

David Whitehead suggested that slave devices lacked such capabilities, and Dawson et al.

state that “RTUs have limited memory and processing power. There are RTUs running

15 Dawson, R., Boyd, C., Dawson, E., & Nieto J. (2006), SKMA- A Key Management
Architecture for SCADA Systems, In Conference in Research and Practice in
Information Technology, Vol. 54, Fourth Australasian Information Security Workshop
Hobart, Australia (AISW-NetSec 2006), Australian Computer Society, Inc, suggests that
“Master stations and sub-master stations are computers with resources at least as plentiful
as a modern desktop computer” (Section 2.2).

 13

industry standard protocols on 16 bit Microprocessors with 8 kilobytes of RAM (working

memory), and 64 kilobytes of EPROM (persistent memory).”16 Beaver et al. also support

this assumption, suggesting that “many critical SCADA communications […] have

maximum delay times on the order of 2- 4 milliseconds”17, and that “The time to sign and

then verify using the public protocols such as DSA, RSA run on the order of 2-11 ms for

moderate security [and…] may be many times lower than these values if a less powerful

processor is used. At worst, these times may be on the order of 1000 times slower if an

8-bit processor is used. Further, these times do not account for any sort of message

queuing.”18 While Beaver et al.’s argument applies to how public key cryptography

would add a large delay if it were used to encrypt messages, it also holds for key

management – on weak devices, public key cryptography, even if only used for

infrequent key management messages, would be prohibitively slow, if not impossible.

This thesis assumes, therefore, that there commonly exist slave devices in SCADA

networks that cannot carry out public key operations for key management.

 This assumption presents a challenge to key management. Several key

management protocols, like using RSA or elliptic curve cryptography to implement PKI,

require the capacity for public key operations. If any SCADA devices within the network

lack the ability to perform asymmetric cryptography, then such key management

protocols cannot be used effectively without modifying the protocol. As PKI, and with it

SSL, represents one of the primary means of establishing secure communication

16 Dawson et al., Section 2.1
17 Beaver, C., Gallup D., NeuMann, W. & Torgerson, M, (March 2002), Key
Management for SCADA, Sand Report, New Mexico: Sandia National Laboratories, 10
18 Beaver et al., 11.

 14

pathways and of providing at least partial authentication, this limitation is one of the main

issues that this thesis seeks to overcome.

 Second, while the assumption is made that many slave devices are unable to

perform asymmetric encryption, at least in a reasonably efficient manner, such devices

are in the process of being upgraded to more advanced machines with the capacity to

perform public key operations.19 When combined with the previous assumption, this

presents another challenge to creating an effective key management system for SCADA

devices. Because, as previously described, there are often devices in the SCADA

network that are unable to perform asymmetric cryptography, key management must be

carried out using symmetric cryptography. However, if key management is performed

solely using symmetric key cryptography, it does not take advantage of the superior

capability of those devices within the system that are able to perform public key

operations. Key management protocols that use public key cryptography are more secure

than symmetric key-based systems, as only one party, the device performing the

decryption and producing the signatures, needs to know the private key. Public key

cryptography is also much more scalable than symmetric key cryptography, as it allows

all messages encrypted for or authenticated by one party to use one key; whereas,

symmetric key cryptography requires one key per communicating pair. Not utilizing the

superior computing power of devices able to perform public key operations would lead

the network to have an increasingly suboptimal level of security as the number of

computationally stronger devices in the network increased over time. Thus, in order to

take advantage of the increasing numbers of computationally strong devices in SCADA

19 This assumption is supported by Dawson et al, Table 1, and Beaver et al., 7.

 15

networks, this thesis outlines a key management system that allows for public key-based

management for those devices capable of asymmetric cryptography and symmetric key-

based key management for those devices that lack the capacity to perform public key

operations.

 Third, this thesis assumes that, considering the current data transmission rates

without added security, there is not a large amount of extra bandwidth available on the

connections between slave and master devices that can be used for key management.

This assumption is based on the conversation with David Whitehead, in which he

suggested that SCADA lines were currently used to near-capacity, leaving little

bandwidth for the overhead added by the addition of security measures. Hadley et al.

also support this assumption, stating that “It is common to find 75 to 80 percent of the

bandwidth utilized.”20 However, based on the conversation with David Whitehead and

Hadley et al.’s work, 21 this thesis also assumes that not all bandwidth is being used at

once. In Whitehead and Hadley et al.’s descriptions of the SCADA topology, the

network is set up such that the master device is at the center of several slave devices and

queries the slave devices one at a time. The slave devices then respond with large

amounts of data. This topology seems to indicate that traffic along the SCADA lines

would be sporadic and might follow set patterns of use, depending on when the master

device needed to query the various slave devices. This thesis, therefore, does not address

the issue of ensuring that key management can take place within such a reduced-

bandwidth environment, beyond ensuring that any data that it would be necessary to send

in the course of the key management processes would only need to be sent at short,

20 Hadley et al., 2.
21 Hadley et al., 2.

 16

schedulable intervals, which would allow it to be sent during lag times in the patterns of

use. This thesis does not address how such lag times would be found or how such

transmissions would be scheduled, leaving such implementation to future work.

 Fourth, this thesis assumes that devices within substations (the master devices) are

secure. Beaver et al. also make this assumption,22 and David Whitehead suggested that it

would be acceptable to assume that devices within a substation were secure because, if

the substation were to be compromised, the security breach would go beyond

cryptographic security. This assumption affects the network model used in the

development of key management protocols. Because devices within substations are

assumed to be secure, the channels that are assumed to require encryption and

authentication and, therefore, keys in order to perform encryption and authentication, are

those between master devices and the slave devices and between master devices. Thus,

key management only needs to take place between these devices, not within a substation

between the master device and other substation devices.

 Fifth, this thesis assumes that the slave devices in power SCADA networks can be

located remotely from the substation and, thus, from the master device, but that even

remotely located slave devices are physically visited by personnel on a regular basis.

David Whitehead mentioned that remotely located SCADA devices were visited by

personnel and suggested the possibility that the devices were visited monthly. This

assumption indicates that keys used for encrypting communications cannot be kept fresh

through transmission over physical channels, as devices are not visited often enough to

22 Beaver et al., 10.

 17

replace the keys with the necessary frequency. However, because visits do occur, there is

a reliable means of physically updating keys on a longer-term time schedule.

 Sixth, and finally, this thesis assumes that slave devices rarely communicate

directly with one another. Although Dawson et al. suggests that such communication

does take place and should, therefore, be allowed for in any SCADA key management

scheme,23 Beaver et al. present a model of SCADA communication in which slave

devices that wish to communicate with one another must do so through the master device

to which they are connected, arguing that such a model limits the damage that one

compromised slave device can inflict upon the network, simplifies the process, and

reduces the scope and cost of the protocol. They conclude that in some special cases

slave devices should be allowed to communicate directly with each other without going

through the master device; however, these cases could be dealt with on an individual

basis and would not have to be part of the generalized protocol.24 Based on the strength

of Beaver et al.’s arguments, this thesis assumes that slave devices do not communicate

directly with each other but, rather, communicate through a master device. This thesis

will, however, outline how special cases of slave device to slave device communication

could be added without significantly changing the protocol.

 These assumptions, based on literature and on the conversation with David

Whitehead, shape the concept of SCADA devices used in this thesis. In such a network, a

master device that can perform asymmetric cryptography queries slave devices, some of

which that can perform asymmetric cryptography and some of which that cannot, with

the number of those which that can perform asymmetric cryptography increasing over

23 Dawson et al., Section 2.5.2.
24 Beaver et al. 13-14.

 18

time. The assumptions also shape the challenge addressed by this thesis – the need to

create a key management system in which public key cryptography can be used for those

devices that are able to perform such operations, while still allowing for symmetric key

cryptography for those devices that lack the capacity to carry out asymmetric key

functions.

4. Related Work

Two major categories of work relate to this thesis – work related to key

management for general cryptography (more specifically, related to using Public Key

Infrastructures (PKI) and Kerberos for key management) and work related to securing

SCADA networks and providing key management for securing SCADA networks.

4.1 Work Related to Key Management

There has been a great deal of work done on the general issue of providing key

management for cryptographic systems. Schneier provides a general outline of work

related to the issues involved in key management.25 However, this thesis concentrates on

addressing the idea of using X.509 certificates, with symmetric keys included in their

extension fields for use in establishing keying material that can be used to create

symmetric session keys. Therefore, it draws primarily upon two key management

schemes that can be used to establish symmetric session keys – Kerberos and PKI.

Kerberos is a symmetric key-based key management protocol that performs key

management through the use of a central server that issues symmetric key-encrypted

25 Schneier, 169-187.

 19

tickets that include a symmetric session key. The encrypted tickets tie a client’s identity

to the symmetric session key in such a way that a server the client wishes to use can trust

that the client is the one who shares the session key. For this to work, each client on the

network has a secret symmetric key that it shares with the Kerberos server. When a user

wishes to use a server on the network, the user first authenticates himself or herself to the

client using his or her password. Then, the client contacts Kerberos to obtain a key to use

to communicate with the Kerberos Ticket-Granting Service, and Kerberos responds with

a key encrypted with the client’s password. Using the key it received from the Kerberos

server, the client then contacts the Kerberos server’s Ticket-Granting Service with a

request for a ticket for a session with the desired service. Kerberos’s Ticket-Granting

Service responds to the request by issuing a ticket for the desired session that identifies

the client and the server and includes a symmetric session key produced by Kerberos for

the requested session. The Ticket-Granting Service sends the client both the key

encrypted under the client’s symmetric key and a ticket encrypted under the symmetric

key shared between Kerberos and the server with whom the client wishes to

communicate. This allows the client to present the ticket to the server to prove its

identity and establish a session key, as the server trusts the Kerberos server, and only the

Kerberos server could have encrypted the ticket that contains both the client’s identity

and the session key.26

26Neuman, B., & Ts’o, T, (September 1994), Kerberos: An Authentication Service for
Computer Networks, IEEE Communications, 32(9), 33-38, Retrieved May 28, 2008 from
the World Wide Web: http://gost.isi.edu/publications/kerberos-neuman-tso.html,
originally presented the Kerberos protocol.

 Schneier 566-571 also provides a summary of the Kerberos protocol.

 20

While Kerberos allows for the establishment of symmetric session keys through

symmetric key cryptography, the use of Public Key Infrastructures (PKI) helps provide

key management for public key cryptography. Whereas Kerberos is designed for a

system in which two parties – the client and the Kerberos server or the server and the

Kerberos server – need to have a shared secret (the shared symmetric key), PKI only

requires that one party know the secret (the private key) while all other parties can use the

public key. This leads to a different system, with a focus on using a public/private key

pair, rather than a shared secret value, to tie a public key to a party’s identity. Whereas

Kerberos relies on a central Kerberos server that shares keys with all the clients and

servers on the network, PKI relies on a Certification Authority (CA) with a publicly

known public key. Instead of tickets that tie a client’s identity to a session key, PKI uses

public key certificates that can include an entity’s identity and its public key and that are

digitally signed by a trusted CA using the CA’s private key. The CA’s signatures ties the

entity’s name and public key together in the same manner that the Kerberos server’s

encryption of the ticket with the symmetric key it shares with the server does in the

Kerberos scheme – it allows other entities to verify that the CA is certifying that the

public key belongs to the entity whose name is in the certificate, and it prevents

untrustworthy entities from asserting bindings between attributes and clients (because

they would be unable to sign the certificate with the CA’s private key).

Because of the properties of public key cryptography, a single public key

certificate can be used more universally than a Kerberos ticket can be used. While a

Kerberos ticket can only be presented to the server under whose key it is encrypted, a

public key certificate can be presented to any other entity who also trusts the CA that

 21

issued and signed the certificate. Because the CA’s public key is commonly known

among those entities that trust its signature, trusting parties can check the signature and

verify that the user and the user’s public key have been bound by the CA. Thus, when

two entities wish to establish symmetric session keys while using PKI, they can each

present their respective certificates, verify the certificates to gain each others’ public

keys, and then use the public keys to encrypt and send or, in some protocols, establish, a

session key that they can use for later encryption.27 This process is often carried out

using Secure Sockets Layer (SSL), a handshake process that can, among other

capabilities, provide authentication of at least one of the devices’ public keys through

verification of its certificate (or, in some cases, chain of certificates) and establish shared

secret material for use in creating the symmetric keys for authentication and encryption

using the authenticated public keys.28

For SCADA networks, neither symmetric key management, nor PKI alone, is

sufficient. PKI alone would not work because many SCADA slave devices lack the

capacity to perform public key operations, at least in a reasonably efficient manner.

Alternatively, while symmetric key management alone could work in the short term,

concentrating on creating a specialized key management system made efficient for

symmetric key use could be counterproductive in the long term, as it would neglect to

take advantage of newer slave devices (with the ability to perform public key operations)

27 Housley, R., & Polk, T., (2001), Planning for PKI: Best Practice Guide for Deploying
Public Key Infrastructure. New York: John Wiley & Sons, Inc, 17-27 describes the basic
functioning of PKI certificates. Polk 43-68 describes the various constituents of PKI and
PKI architectures. Polk 69-105 describes X.509 certificates.

Smith & Marchesini, 249-267. also describes PKI.
28 Rescorla, 57-94 describes the basic SSL procedure.

 22

as they were inserted into the network. Setting up a system with a concentration on

symmetric key management would not only waste capacity for security, but could also

make an eventual transition to PKI more difficult. Therefore, this thesis looks for a

solution to SCADA key management that can implement a modified version of PKI that

would allow for symmetric key management for devices that lack the computational

capacity to carry out the asymmetric key operations.

There have been some efforts to combine PKI and Kerberos. KX.509, produced

by the University of Michigan, allows one to use a Kerberos ticket to create an X.509

certificate,29 and Kerberos Public Key Initialization uses PKI to authenticate clients to the

Kerberos server.30 However, neither of these schemes allow for a PKI structure in which

a phased withdrawal of symmetric key management could occur.

4.2 Work Related to Secure SCADA and SCADA Key Management:

 The work related to implementing cryptography in SCADA networks from which

this thesis arises is entitled “YASIR: A Low-Latency, High-Integrity Security Retrofit for

Legacy SCADA Systems.”31 The YASIR scheme provides a bump in the wire device

that allows for encryption and authentication of data using symmetric key cryptography.

Such cryptographic operations would require the use of a secure key management

protocol to maintain the symmetric keys required for such operations; however, the

YASIR scheme currently lacks a means for key management. This thesis seeks to

29 Information Technology Central Services at the University of Michigan (Oct. 10,
2005), KX.509: X.509 certificates via Kerberos, Retrieved May 30, 2008 from the World
Wide Web: http://www.kx509.org/ provides details.
30 Housley & Polk, 38-39 describes Kerberos Public Key Initialization.
31 Tsang, P. & Smith, S., (To appear August 2008), YASIR: A Low-Latency, High-
Integrity Security Retrofit for Legacy SCADA Systems. 23rd International Information
Security Conference (SEC 2008).�Springer-Verlag LNCS.

 23

provide such a key management protocol that could be used to make encryption and

authentication schemes like YASIR effective.

 Because this thesis is designed to address a need for symmetric key management

in power SCADA systems, a variety of closely-related key management work bears only

slight relevance. A great deal of research has been done on key management for sensor

networks. While such networks have some similarities to SCADA networks in that their

abilities to perform cryptographic operations are severely constrained by a lack of

computational resources, they also face challenges that are not faced by SCADA

networks. Sensor networks are not of a fixed size and must deal with nodes entering and

leaving the network and with the network growing to large sizes at various times.32 For

SCADA systems, on the other hand, “The structure of the network and its communication

channels will be well defined. Ad hoc communications are not required.”33 Thus, while

sensor network key management protocols, like that presented in “SMOCK: A Self-

contained Public Key Management Scheme for Mission-critical Wireless Ad Hoc

Networks,”34 address the issue of implementing key management in systems with

resource limitations, they primarily address issues relating to the unknown nature of

sensor networks that, because of the differences between the two types of systems, are

not relevant to SCADA.

 More relevant to SCADA systems are two papers that describe key management

schemes specific to SCADA. Beaver et al. outline a multi-level key management

32 He, W., Huang Y., Nahrstedt, K., & Lee, W., (2007), SMOCK: A Self-Contained
Public Key Management Scheme for Mission-critical Wireless Ad Hoc Networks
 Proceedings of the Fifth Annual IEEE International Conference on Pervasive
Computing and Communications, IEEE Computer Society, 1.
33 Dawson et al., Table 1.
34 He et al.

 24

architecture with a certification authority. Between substations, this scheme uses PKI

with specialized certificates, and between a substation and its slave devices it uses a hash

function applied to shared long-term keys that creates symmetric session keys shared

between the substation and the slave devices. Dawson et al. present a symmetric key-

based scheme that uses a key distribution center.

 Both of these protocols offer SCADA network-specific key management

protocols. They do not, however, allow for easy upgrade to PKI as SCADA systems are

upgraded. While either of the schemes suggested in these papers could provide a viable

short-term solution, implementing such a solution might be detrimental in the long run, as

it would prevent the use of the increasing resources in the network as the devices were

slowly upgraded. Both of these schemes also neglect to take advantage of the full

capabilities of the network, if the network includes devices that are able to perform public

key operations (Diagram 1 illustrates this wasted capacity over time), because both

protocols use shared keys for key management, even with devices capable of public key

cryptography. This thesis presents a scheme that would allow key management in the

current network while also allowing for future upgrade and while taking advantage of the

full capabilities of all the devices within the network.

 25

Diagram 1: This diagram illustrates how, if a symmetric key management protocol is used over time,
more and more slave devices with public key capacity will be added to the SCADA network, leading
to more and more wasted capacity for security within the network until the point in time at which the
system is switched over to PKI (or another system that takes advantage of public key capabilities).
As shown above, to optimize the amount of the security in the system, it is necessary to allow devices
that are capable of public key cryptography to use public key cryptography for key management.

5. Key Management Scheme

 The key management scheme presented here is based on the typical PKI key

management scheme, with some modifications to allow for its use with slave devices that

lack the capacity to perform asymmetric cryptography. PKI uses X.509 certificates

signed by a trusted CA to tie a public key to a device’s identity and to allow that device

to participate in an SSL handshake process – that is, presenting its certificate and using its

public key to establish a random value known as the master secret that can be used to

derive keying material, including symmetric session keys for use in authentication and

 26

encryption of data. To modify this scheme, the CA must add a long-term symmetric key,

known to the CA and the certificate-holding device, to the certificates of those slave

devices unable to perform public key cryptography. In order to prevent these keys from

being intercepted, these long-term symmetric keys in the slave devices’ certificates must

be encrypted with a symmetric key sent to the master device by the CA for the purpose of

decrypting these encrypted keys. If the slave device is unable to perform the asymmetric

key operations necessary to decrypt the master secret encrypted under a public key, this

allows the master device another option – it can decrypt the symmetric key in the slave

device’s certificate and encrypt the master secret using the symmetric key from within

the slave device’s certificate instead of using the public key in the slave device’s

certificate.

This section will go into the details of this scheme, describing the various actors

in the protocol and how they interact, outlining the details of how the extra symmetric

key can be inserted into the X.509 certificates, and explaining how a modified SSL

handshake (using the decrypted symmetric key rather than the slave device’s public key

to encrypt the master secret) would work.

5.1 Actors

 There are several actors in this protocol. The first is the master device. As

outlined in the previous section, the master device is assumed to have the computational

power of a modern computer and is, thus, able to perform both public and symmetric key

cryptography. As described previously, the master device and its keys are also assumed

to be secure, as they are located within a substation or other such facility. While a

 27

SCADA network topology consists of one master polling several slave devices, there can

be multiple master devices (with their own sets of slave devices) arranged hierarchically

on the network, with lines running from master stations to sub-master stations.35 While

such links do exist within the network, they will not be explicitly addressed in the

protocol portion of this thesis, as all master devices are able to perform public key

operations; thus, normal SSL with PKI can be used between master devices.

The second actor is the slave device. Slave devices can be located remotely, in

locations physically distant from the substation. As described in Section 3, slave devices

vary in their computational power; some are able to perform public key cryptography,

while others are limited to symmetric key operations because their computational

capacities render public key operations inefficient or impossible.

The final actor is the Certification Authority (CA). The CA certifies the public

keys belonging to the master devices and slave devices capable of public key

cryptography by producing and signing the devices’ certificates with its private key. The

CA also produces the symmetric keys stored in the certificates and the symmetric key

used for encrypting/decrypting the symmetric keys stored in the certificates. Thus, the

CA must be reliable, and its private key must be kept very secure. The CA should be

similar to that suggested by Beaver et al., in that it should have “sufficient computational

resources, be physically secure, and [have] a high quality random number generator,”36

and it should be located in a secured, supervised area, where the its private key can be

protected.37

35 Dawson et al., Section 2.
36 Beaver et al., 8.
37 Franklin, M., Mitcham, K, Smith, S., Stabiner, J., & Wild, O., (2005), CA-in-a-Box,
Public Key Infrastructure: EuroPKI 2005, �Springer-Verlag LNCS. describes the various

 28

 These separate actors all communicate with each other over several general

communication links. First, master stations can communicate with each other over the

data links that run between them. Second, master stations can communicate with the

slave devices to which they are connected over the serial lines connecting the SCADA

network. Third, slave devices can communicate with the master device to which they are

connected using these same serial lines. As outlined in the description of assumptions,

slave devices are assumed not to communicate directly with each other except in special

cases outside of the normal protocol. Finally, the CA can communicate with the master

device and the slave devices. Unlike the other communication channels, the CA

communicates with the devices over physical, out-of-band channels rather than over data

lines. The CA is responsible for generating and signing certificates based on public keys

generated by the devices and distributing the certificates among the devices. The CA is

also responsible for producing the symmetric keys used in the protocol. Along with

creating these keys, the CA must ensure that the symmetric keys stored in the certificates

are distributed to the appropriate devices along with the certificates, and that the key used

to encrypt the symmetric key in the certificates is transmitted to the master device. To

accomplish all of these tasks, public keys that need to be certified from the various

devices and the material the CA generates for the master and slave devices are

transported using the physical visits to the various devices – that is, the monthly

personnel visits to the slave devices suggested by David Whitehead or a physical visit to

the master or slave device by CA personnel.

requirements for a CA, the options for building a CA, and how an organization can develop
its own CA from commercial software.

 29

 These various actors and communication channels produce a simple network

model: various slave devices communicate with one master device, which communicates

with other master devices and the various slave devices while the Certification Authority

simultaneously communicates with all devices intermittently over physical, out-of-band

channels. This thesis will primarily address a subset of this model – the interactions

between slave devices, the CA, and one master device. As described previously in this

section, it will not address master device to master device key management.

5.2 Keys and Certificates

 To begin to secure these communication channels, the different actors need to

create and possess various keys (as outlined in Table 2) and certificates.

 30

Table 2: Summary of Keys

First, the Certification Authority must have a public and private key pair, with the public

key known to all the master devices and all the slave devices that are able to perform

asymmetric key cryptography and with the private key absolutely secure and unknown to

any other devices besides the CA itself. This key pair is used in a manner typical of PKI

– the CA uses it to sign certificates, tying other public keys to device names and

attributes, with the security of the signature dependent on the security of the CA’s private

key.

 31

Second, the master device must have a symmetric key for decrypting the keys

encrypted within the certificates of its slave devices that are unable to perform public key

operations, which will allow for the establishment of keying material if the slave device

is incapable of public key cryptography. This symmetric decrypting key is generated by

the CA and physically distributed to the master device through an out-of-band, physical

channel.

Third, each master and slave device needs an X.509 certificate signed by the CA.

All of these certificates must include the typical information found in an X.509 certificate

– identifying information, including the device’s common name, public key, and length

of time of validity (with the public key value containing a dummy number in a slave

device’s certificate if the slave device is incapable of public key cryptography). Those

certificates distributed to the slave devices, or at least those distributed to those slave

devices that are unable to perform public key operations (although for ease of

implementation it may be simpler to standardize all certificates), must also include a

symmetric key encrypted with the symmetric key the master device receives from the

CA. The slave devices that are incapable of public key cryptography also need to know

the unencrypted form of the symmetric key contained, in encrypted form, in their

certificates. The symmetric keys within the certificates would, therefore, be distributed

to the slave device along with the certificate over the out-of-band channel. As will be

described in more detail in the following section, this allows the master device, when it

receives a certificate from a slave device unable to perform public key operations, to

decrypt the symmetric key in the certificate the slave device presents and use that

symmetric key (rather than the slave device’s public key) to encrypt the master secret for

 32

establishing keying material for a session key. The symmetric key in the certificate is

able to take the place of the slave device’s public key because, after decryption takes

place, both the master device and the slave device have knowledge of the key and no

adversary should know it.

X.509 allows for information outside of the basic information required for

certificate generation to be included in a certificate through the use of extensions.

Extensions can either be standard and defined by X.509 (like the BasicConstraints

extension which appears as the first extension under X509v3 extensions in Diagram 2), or

they can be non-standard and user defined38. While it is generally better to use standard

extensions as they are “widely supported by commercial products,”39 because the

extension containing the encrypted symmetric key is used by only a subset of slave

devices within the specific SCADA network implementing this slightly modified PKI, it

is possible to add a private extension to the certificates to hold the symmetric key. An

example of such an added private extension can be seen as the second extension under

X509v3 extensions in Diagram 2. In this example, a Netscape Comments-type private

extension was added (Netscape Comments allow for a variety of data types to be included

in an extension, including an encrypted key value), and it contains an encrypted

symmetric key (which is not shown in the example, because the encrypted key appears as

unprintable binary data).

 To allow for such certificates to be potentially integrated with other commercial

systems, a case that could arise, for example, if a master device were to communicate

with a non-SCADA system using the same CA, it is necessary to mark the added private

38 Summarized from Housley & Polk 79-98.
39 Housley & Polk, 80.

 33

extension as non-critical. If a certificate has a critical extension that a device does not

recognize, the device will automatically reject the certificate; however, if the extension is

marked non-critical and the device does not recognized the extension the device will

simply ignore the extension and not necessarily reject it.40

Certificate:

 Data:
 Version: 3 (0x2)
 Serial Number: 13 (0xd)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: CN=ManyasThesis, ST=New Hampshire,
C=US/emailAddress=manya@dartmouth.edu, O=Dartmouth
 Validity
 Not Before: May 29 10:43:41 2008 GMT
 Not After : May 29 10:43:41 2009 GMT
 Subject: C=US, O=Dartmouth, OU=CS,
CN=SlaveDevice/emailAddress=manyas@dartmouth.edu
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:b8:d4:a7:7d:78:3c:10:84:e9:5a:b7:55:bd:5c:
 5b:0e:46:8f:41:cd:f9:82:f3:04:23:d2:d2:26:50:
 c4:e2:04:9d:e8:16:96:04:d7:6a:d1:04:66:cc:bd:
 09:1f:c4:77:6c:39:65:aa:1a:79:c4:43:e7:de:0d:
 d3:09:d6:ca:d9:2b:d8:92:73:a3:ab:08:69:0d:cc:
 f1:dc:26:8a:b4:96:28:3c:b3:70:49:52:a9:b3:df:
 54:a6:a3:c6:04:2c:e0:82:b7:15:21:93:e8:45:89:
 85:69:73:b8:47:b9:f7:d6:5e:d5:b0:eb:ba:fb:ee:
 44:8d:37:b6:5a:9e:c1:a0:3b
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:

 ENCRYPTED SYMMETRIC KEY (UNPRINTABLE BINARY)
 Signature Algorithm: md5WithRSAEncryption
 63:7b:59:84:0c:19:93:4c:a7:4a:e3:86:5e:a3:38:bf:e3:fb:
 e4:36:46:9d:72:5c:60:d5:1d:bb:89:ca:4b:b1:5f:7d:d1:f3:
 8a:23:ab:79:a8:52:3a:e5:11:ff:74:b0:c4:c8:93:3f:42:98:
 f3:b8:24:34:ce:e1:81:ff:ae:57:23:4e:13:4a:1a:87:39:f6:
 b8:ed:2e:75:9d:62:99:53:09:93:18:90:b2:f2:e7:6a:b3:d7:
 29:04:bb:97:11:3c:02:e2:91:4d:61:64:8c:3d:1c:10:11:f6:
 bc:2c:0f:de:f7:90:48:7d:bc:1e:c0:17:31:57:6d:a4:a2:b2:
 9a:8e

Diagram 2: Example of an X.509 certificate with an added encrypted symmetric key (seen
under X509v3 extensions as the Netscape comment type field – the encrypted symmetric key
would appear as a line of binary)

40 Housley & Polk, 80 describe the criticality flag in X.509 certificates.

 34

This is the desired behavior in this system. If the certificates are used in the specialized

system, the devices will use the encrypted symmetric key extension as necessary. If the

certificates are used outside of the system, the other devices will ignore that extension

field, but, assuming the slave or master device is capable of public key operations, they

will be able to perform a normal SSL handshake or other PKI-based operation with the

device. This allows for both the utilization of the maximal capacity within the SCADA

network and potential ease of integration with other networks and future upgrades.

Master devices and slave devices capable of public key cryptography also require

the public/private key pair that goes along with the certificate. The master device and

slave devices with the proper computational capacities create their own public/private

key pairs in order to prevent any other device from knowing the private keys. The

devices’ public keys are then transported to the CA using physical means of

transportation. The CA authenticates the public keys as belonging to the master or slave

devices through physical, out-of-band measures (e.g. authenticating personnel bringing

the public keys using ID cards). For each public key the CA authenticates, it creates and

signs a certificate that ties the public key to the master or slave device from which it

arrived. Certificates are then distributed to the devices using physical, out-of-band

channels.

Diagram 3 illustrates the final network model, showing the master device, the CA,

the two types of slave devices, the various communication paths, and the resources, keys,

and capabilities each device has.

 35

Diagram 3: This diagram shows the network configuration and the various capacities, keys, and
certificates each device has.

This establishes the basic model that will be used in the key management protocol for key

distribution and freshness, as outlined in the next section.

5.3 Key Distribution and Freshness

 As described in Section 2, one of the main aspects of key management is key

distribution in order to maintain key freshness. In the model described in the previous

section, keys are distributed in two ways – physically and over data lines.

Symmetric keys from the CA, along with the certificates certifying that they are

tied to a particular device, are physically moved from the CA’s location to the various

slave devices. The security of this move depends on the trustworthiness of personnel and

the physical channel used for transportation and is not addressed in this thesis. These

 36

physically distributed keys, however, cannot be changed on a short-term regular basis.

As described in the assumptions section, remote slave devices are not necessary easily

reachable and are only visited on a (potentially) monthly basis. Using the keys within the

certificates to encrypt data, therefore, is not a viable option, as they would be used

repeatedly and would rapidly lose their freshness. Instead, it is necessary to create,

exchange, and use shorter-lived keying material to create symmetric session keys for use

in encrypting data.

It is also necessary to use shorter-lived keying material with slave devices that are

able to use public key cryptography. Public key encryption operations are much more

computationally costly than symmetric key operations, so it is more efficient to use the

public keys to exchange keying material that can be used to create a symmetric session

key and then use that symmetric session key for encryption. The procedure often utilized

to establish the material used to create symmetric session keys for encryption and

authentication using public keys and PKI, is SSL (this, among other functionalities). SSL

is a handshake process that takes place between a client, a device that is requesting a

service, and a server, a device that is providing the service. In the case of the SCADA

network, the master device plays the role of the client, and the slave device plays the role

of the server. Diagram 4 shows a simplified version of the typical SSL process applied to

a SCADA master device and a slave device that can perform public key operations.

 37

Diagram based on a diagrams of the simplified SSL handshake found in Rescorla, page 60 and page 98. Process based on the SSL
handshake described in Rescorla pages 61-88 and pages 96-97, 108-112 .

Diagram 4: This diagram illustrates a simplified version of the SSL handshake between a SCADA
master device and a SCADA slave device that is able to perform public key operations.

First, the master device sends the slave device the first handshake message, called

the ClientHello message. This message alerts the slave device to the fact that the master

device wishes to establish new keying material. The ClientHello message also allows the

master device to send the slave device its preferences for the settings to be used during

the handshake exchange, including the cryptographic algorithms that it prefers be used

for encryption and authentication. Finally, the ClientHello message includes a random

 38

value, chosen by the master device, that both devices will later use in creating session

keys in order to prevent replay attacks (attacks in which an adversary, without knowledge

of the keys involved, repeats a message used during an earlier exchange and passes it off

as part of a later exchange).

 Second, the slave device sends the master device the ServerHello message. The

ServerHello message is similar to the ClientHello message. It establishes the settings that

will be used for communication, including finalizing the encryption and authentication

algorithms, and includes a random value that both the slave and master device will later

use in computing session keys. After sending the ServerHello message, the slave device

sends the X.509 certificate it received from the CA. Because the X509 certificate

contains the slave device’s public key and because, in this case, the slave device is

capable of public key cryptography, sending the certificate to the master device provides

the master device with the means to encrypt messages to the slave device using public

key encryption. Once the slave device sends its certificate to the master device, it sends

the master device the CertificateRequest handshake message to request that the master

device send its certificate so that the slave device can verify the master device’s identity.

Finally, the slave device indicates that it is finished with this segment of the handshake

by sending a ServerHelloDone handshake message.

 When the master device receives the slave device’s CertficateRequest message,

the master device sends the slave device its X.509 certificate. Once the master device has

received the slave device’s certificate, it is able to verify that the slave device’s public

key actually belongs to that slave device by verifying the signature on the certificate

using the CA’s public key. When the master device has verified the authenticity of the

 39

slave’s public key, the master device encrypts the random value that will serve as the

master secret with slave device’s public key and sends it to the slave device in the

ClientKeyExchange message (as described previously, the master secret is the secret

material that, combined with the random values from the ClientHello message and

ServerHello message, is run through a key derivation algorithm to create, among other

things, the session key shared by the master and slave devices for use in encrypting and

decrypting data and the shared session key used for authenticating messages). After the

ClientKeyExchange message is sent, the master device sends the CertificateVerify

handshake message, a message consisting of the handshake messages signed using the

private key corresponding to the private key the master device included in its certificate,

proving that the master device actually possesses the public/private key pair and that the

master device is, in reality, the party bound to the public key in the certificate. The

master device then creates hashes using the master secret and the handshake messages

and sends the hashes to the slave device in the Finished message so that the slave device

can confirm that the exchange was not tampered with.

 After receiving the encrypted master secret from the master device in the

ClientKeyExchange message, the slave device decrypts the master secret using the

symmetric key contained within its certificate (that it received, unencrypted, from the

CA). The slave device also verifies the master device’s X.509 certificate, and uses the

public key found in the certificate to check the signature in the CertificateVerify

handshake message, in order to verify the master device’s identity. The slave device then

checks the hashes in the Finished message it received from the master to confirm that the

handshake was not tampered with and ends the basic handshake by sending a final

 40

Finished message containing hashes created using all the handshake messages it received

(including the final Finished message from the master device) and the master secret to the

master device to again confirm that the handshake was not tampered with.41

 At the end of this handshake, both the master device and the slave device have a

shared secret (the master secret), and potentially session keys (derived from that shared

secret and the random values passed in the ServerHello and ClientHello messages) that

they can use to encrypt data traveling over the serial line between them. An adversary

listening in the middle of the exchange would be unable to create the same session key,

because one component necessary to create the keying material (the master secret) only

traveled over the link in encrypted form. As described previously, because of the random

values, the adversary would also be unable to repeat previously sent handshake messages.

When the handshake completes, each side has also authenticated the other side through

the use of the X.509 public certificates. Thus, SSL allows for both sides to end up with

secure symmetric session keys for encryption and authentication.

 A modified version of the typical SSL handshake is necessary in order to produce

the same results for slave devices that are unable to perform public key cryptography.

There are two major areas in which the handshake differs. First, the master device is

unable to encrypt the master secret using the slave device’s public key, and, second, the

slave device is unable to verify the master device’s identity through the use of the master

device’s X.509 certificate and the VerifyCertificate handshake message.

 The slave device cannot perform the asymmetric key operations. Therefore,

when the master device sends the ClientKeyExchange message, encrypting the master

41 Description of basic SSL exchange summarized from Rescorla, 57-88. Description of
client authentication aspects summarized from Rescorla 96-98 and 108-112.

 41

secret using the slave device’s public key would not allow the slave device to decrypt the

message and gain access to the master secret. Instead, the master device can extract the

encrypted symmetric key from the extension in the slave device’s certificate, decrypt it

using the symmetric key the CA sent to the master device (with which the CA also

encrypted the key in the certificate) and use the now-decrypted symmetric key to encrypt

the master secret for the ClientKeyExchange. Diagram 5 illustrates a simplified version

of the modified SSL process for slave devices that lack the capacity to perform public

key operations. The changes from the normal SSL handshake are shown in bold and are

highlighted by boxes.

 42

Diagram based on a diagram of the simplified SSL handshake found in Rescorla, page 60. Process based on the SSL handschake
described in Rescorla pages 61-88.

Diagram 5: This diagram illustrates a simplified version of the SSL handshake between a SCADA
master device and a SCADA slave device that is unable to perform public key operations (changes
from the normal SSL handshake shown in bold and surrounded by boxes).

As it is possible to see in Diagram 5, the handshake is nearly the same with slave

devices that are unable to perform public key operations as it is with devices that have the

capacity for such operations. There are only three major differences. The first difference

can be seen in Step 2 of the handshake in Diagram 5. Whereas slave devices that are able

to perform public key operations include whatever preferences they have for

cryptographic algorithms in the ServerHello message, the slave devices that are unable to

 43

perform asymmetric key operations indicate in the ServerHello message that they are

unable to use public key functions.

This message alerts the master device to the fact that the slave device is unable to

perform public key cryptography. Therefore, when the master device sends the master

secret to the slave device in the ClientKeyExchange message, the master device does not

encrypt the value using the slave device’s public key; instead, it reverts to symmetric key

cryptography to maintain the value’s secrecy. This second difference between the

handshakes can be seen in Step 5 of the handshake in Diagram 5. Instead of using the

slave device’s public key to encrypt the master secret for use in the ClientKeyExchange

message, the master device extracts the encrypted symmetric key from the extension in

the slave’s certificate, decrypts it using the symmetric key it received from the CA for

decrypting the symmetric keys in the certificates, and uses this decrypted symmetric key

to encrypt the master secret for the ClientKeyExchange. As in normal SSL, this allows

both the master device and the slave device to gain knowledge of the master secret

without an adversary being able to intercept the secret value. The master and slave

devices are then able to use this master secret, along with the random values from the

ClientHello and ServerHello messages, to derive session keys for encryption and

authentication. The use of these random values again prevents an adversary from

performing replay attacks, and the client and server are left with the ability to derive

secure session keys from the shared master secret.

 The third difference can be seen in how this modified handshake deals with the

problem that arises in verifying the master device’s identity. While the master device can

still verify the slave device’s identity using the slave device’s certificate, the slave device

 44

is unable to perform the public key operations necessary to verify the master device’s

identity using the master device’s certificate and the CertificateVerify message.

Therefore, as can be seen in Diagram 5 (compared to Diagram 4) a slave device that is

unable to perform public key cryptography does not send the CertificateRequest

handshake message to the master device and, therefore, does not receive the master

device’s X.509 certificate or the CertificateVerify handshake message. This is because

the slave device would be unable to check the signature on the certificate or the

handshake message, so receiving such data would only waste time and bandwidth.

Instead, the slave device indirectly verifies the master device’s identity through the

master device’s knowledge of the symmetric key, which is needed to decrypt the

symmetric key in the slave device’s certificate. Because only the master device should

know the key needed for this decryption operation, any adversary would be unable to

obtain the decrypted version of the symmetric key in the slave device’s certificate and,

therefore, would be unable to encrypt the master secret under the proper value. The

encryption of the master secret using the key obtained from the certificate, combined with

the Finished handshake message created from the master secret (and, therefore, proving

knowledge of the encrypted value) proves the identity of the master device. Thus, at the

end of this second type of handshake, both the master device and slave device have been

able to authenticate each others’ identities, and both have knowledge of the master secret

that can be used to derive session keys for encrypting and authenticating data. Thus, the

combination of these two handshakes allows both sides to authenticate each others’

identities and to end up with secure symmetric session keys for encryption and

 45

authentication, regardless of whether or not the slave device is able to perform public key

cryptography.

5.4 Initializing Devices

 To add a new device to the network, the device produces a public/private key pair,

if it is able to do public key cryptography, and the CA issues a certificate for the device,

certifying that the public key belongs to the device. The certificate includes an encrypted

symmetric key that the master device can extract if the device is unable to do public key

cryptography. The certificate and, if the device is a slave device that is unable to do

public key cryptography, the symmetric key are then physically loaded onto the new

device, either at the production facility or, if the system is being put into place using

devices that have already been put into the field, by CA personnel.42

When the master device wishes to establish a session key with a new device, it

goes about doing so in the same way it would with an established device, and the signed

certificate vouches for the new device when it enters the network. When a new master

device is added to the network, it is also issued a symmetric key for decrypting the

symmetric keys in the certificates of the slave devices with which it communicates.

Thus, new devices can be added to the network, or the proper materials to create this

protocol can be added to devices already in an existing SCADA network

5.4 Revoking Keys/Certificates

42 CA idea suggested by Patrick Tsang, PhD student in the Dartmouth Computer Science
Department, personal communications, May 28, 2008.

 46

 As described in previous sections, it is only necessary to revoke keys and

certificates for the slave devices. If a master device’s key or certificate is compromised,

this indicates that security problems are larger than those arising from cryptographic

compromise. To revoke a slave device’s certificate, the master device keeps a Certificate

Revocation List that keeps track of those certificates that have been revoked, and does

not accept certificates on that list. This will prevent the master device from accepting a

certificate from a slave device whose long-term symmetric key (contained within its

certificate) or private key has been compromised and whose certificate has been revoked.

A certificate should be revoked and added to the Certificate Revocation List as

soon as the master device becomes aware of the compromise of a slave device. This

leaves the risk that a slave device will become compromised without the master device

being aware of it occurring. Such an issue would have to be handled by attempting to

maximize detection of compromise, perhaps through the detection of unusual traffic

patterns or of protocol disturbances. The details of such a system, however, will have to

be left to future work.

5.5 Bandwidth Considerations

 As outlined in Section 3, it is assumed that there is limited bandwidth available

for the key management process; however, it is also assumed that there are certain

periods in which it would be possible to send key management data. This protocol could

fit this assumption by not having the master device establish keying material/session keys

when it wishes to send data but, rather, at a pre-planned time that could be scheduled into

the usage patterns of the network. Thus, it could be possible to use this protocol to get

 47

around bandwidth limitations if such usage patterns were confirmed and pinpointed.

Actually determining a means to find, confirm, and locate such patterns, however, is left

to future work.

5.6 Slave Device to Slave Device Key Management

 As mentioned previously, there might be some special cases in which two slave

devices regularly have a need to communicate and, therefore, should be provided with a

special instance of direct key management. If both devices are capable of public key

cryptography, they can establish secret keying material in the same manner as the master

device and a slave device capable of asymmetric cryptography. Because both devices

would have fully functioning public key certificates, no additional material or

modifications to the protocol would be necessary. This is one of the advantages of using

a modified version of PKI; it would allow for increased scalability if it became necessary

to add large numbers of slave to slave device links and if the slave devices were all able

to perform public key cryptography (a case that might arise if the network topology

changed as the devices were modernized).

 If only one of the devices in the special case is incapable of asymmetric

cryptography, the two devices would perform the same handshake performed between the

master device and a slave device that is incapable of public key operations, with the slave

device that can perform public key cryptography initiating the process and playing the

role of the master device. To set up this special case, it would be necessary for the CA to

create an additional symmetric key for decrypting keys within certificates and an

additional certificate (for the slave device unable to perform public key cryptography)

 48

with an encrypted symmetric key in the certificate’s extension. This certificate, and the

symmetric key that was encrypted and included within it, would be distributed to the

slave device unable to perform asymmetric key cryptography, and the decrypting key

would be distributed to the slave device able to carry out public key operations. The

distribution of the keys and certificate would use the same out-of-band channels as

normal key and certificate distribution; however, the symmetric keys used would be

different from those used in master-slave device key management, as this would prevent

the compromise of master-slave device communications if slave-slave device

communications were compromised. Once the additional certificates and keys were

established, the handshake would proceed normally, with the slave device capable of

public key operations playing the role of the master device.

 If, in the special case, both slave devices are unable to perform public key

cryptography, it would be necessary for the CA to create an additional certificate for each

of the two devices, with each certificate containing the same symmetric key, encrypted

with the same, new, decryption key. Again, the symmetric keys would have to be

different from those used for master-slave device communications to prevent the

compromise of slave-slave device keys from compromising master-slave

communications. The CA would then distribute the certificates, the symmetric key from

within the certificate and the decryption key to each of the two devices. One of the

devices would then be designated to play the role of the master device, and the two

devices would carry out a variation on the normal SSL handshake. Because neither

device would be able to perform public key operations, after receiving each others’

certificates in the handshake, the devices would extract the encrypted symmetric key,

 49

decrypt it, and verify it against the symmetric key they received from the CA. This

would take the place of checking the signature on the certificate. To confirm that the

slave device playing the role of the master device also knew the symmetric key, the

CertificateVerify message would include a HMAC with the shared symmetric key,

instead of a signature using the private key from of the public/private key pair. The slave

device playing the role of the master device would also encrypt the master secret using

the shared symmetric key from the certificate, instead of using the other slave device’s

public key. This would allow two slave devices that were both unable to perform public

key operations to authenticate each others’ identities and establish a shared secret when

necessary.

As these three cases show, although this key exchange protocol does not include

slave-slave communication channels, it would be possible to set up such channels in the

special cases where they might be absolutely necessary.

6. Performance Differences

 Looking at the two handshakes presented in the previous section, it is possible to

identify the specific operations unique to each handshake. The performance differences

associated with these different operations show how modifying the SSL handshake

allows slave devices with more limited computational capabilities to participate in the

key management process.

In proof-of-concept code created to illustrate the handshake between a master

device and a slave device with a computational capacity that prevents it from performing

public key operations, the slave device has to perform one necessary symmetric key

 50

operation that a slave device able to perform public key operations would not have to

perform; it has to decrypt the encrypted master secret it is sent by the master device.43 In

the case of the proof-of-concept code, this decryption is performed using DES in cipher

feedback mode; however, in actual implementation, it could be done using whichever

symmetric key operation best fit the specific SCADA system’s use of authentication and

encryption (as described in Section 6: Future Work). In this section, however, when this

operation is referenced, it will refer to the DES cipher feedback decryption used in the

proof-of-concept code. Alternatively, the normal SSL-style handshake, as seen in

Diagram 4, necessitates that the slave device perform two public key verifications (one of

the signature on the master device’s certificate and one of the signature on the

CertificateVerify handshake message) and an asymmetric key decryption (of the master

secret encrypted under the slave device’s public key) that do not take place in the

handshake with a slave device unable to perform public key operations. The difference

in the demands placed on slave devices with the capacity for public key cryptography and

those without the capacity for public key cryptography are summarized in Table 3:

43 To receive a copy of the proof-of-concept code, email
manya.k.sleeper@alum.dartmouth.org. The proof-of-concept presents a simplified
prototype of the handshake process, and includes one extra symmetric key operation on
the slave device’s side for ease of programming that would not be included in an actual
handshake.

 51

Table 3: Summary of Handshake Distinctions

It is possible to show why a computationally weak slave device would be unable

to carry out the requirements for the public key-based handshake, yet would be able to

carry out the requirements for the symmetric key-based handshake and to show that a

computationally stronger slave device would be able to carry out the requirements for the

public key-based handshake. To do so, it was necessary to calculate how long it would

take weak and strong slave devices to carry out each of the two sets of unique handshake

requirements.

Determining how long it would take for a computationally weak SCADA device

to perform each of the sets of unique handshake operations was done by timing the slave

device’s symmetric key decryption of the master secret in the proof-of-concept code,

 52

timing an RSA verification operation44, and timing an implementation of a public key

decryption of the same master secret that the slave device decrypts in the proof-of-

concept code.45 Because the proof-of-concept code was run on a computer with a

3391.654 MHz CPU, and because David Whitehead suggested that weak SCADA

devices can have processors with 20 MHz CPUs46, it was necessary to normalize the

timing data, which was done by multiplying the time by the CPU ratio. After

normalizing the data for weak SCADA devices, the timing results were as follows in

Table 4.

44 The exact operation timed was the verification of the slave device’s certificate by the
master device in the proof-of-concept code, as, in the proof-of-concept code, the slave
device does not verify the master device’s certificate. However, as both the master and
slave device possess the same format of certificate in the protocol, and perform the same
verification operation, timing this verification operation should have provided data that
was representative of the verification that would occur if the slave device verified the
master device’s certificate.
45 To obtain these results, the code was run on a 32-bit, Unix machine with a 3391.654
MHz CPU running Fedora. Timing was done using the C function getrusage(), with 20
repetitions for each test, and a loop of a thousand trials for each repetition for symmetric
key decryption (in order to gain enough time to get a result), all of which were averaged
afterwards. Repeated symmetric key decryption using OpenSSL functions also required
two additional operations (the initialization of the decryption context and a malloc) each
time a decryption was performed, that would not be required as part of a non-repeated
decryption. To correct for this, the two operations were also repeated one thousand times
and timed; that time was then subtracted from the total time of the thousand repetitions of
decryption and the two operations. Results of 0 (or very close to 0) were assumed to be
faulty data and were removed from the data set. Symmetric key decryption was
performed using DES in cipher feedback mode, and public key verification and
decryption was performed using RSA with a 1024 bit key.
46 D. Whitehead, personal communications, May 6, 2008.

 53

Table 4: Normalized Times for Unique Handshake Operations

As can be seen in Table 4, public key operations take significantly more time than

symmetric key operations, and the overhead that would be added to a computationally

weak SCADA device, if it attempted to take part in a public key based handshake, would

be considerable. The total differences between a computationally weak SCADA device

taking part in a symmetric key-based handshake and a public key-based handshake and a

computationally strong SCADA device with the capacity for public key operations

(assumed to be comparable to the machine the timing tests were run on) taking part in a

public key based handshake, can be seen in Table 5.

 54

Table 5: Total Time Differences for the Two Handshakes and Weak and Capable
SCADA Devices

As seen in Table 5, the public key operations that are prohibitive for weak SCADA

devices (adding 957.93027ms of overhead) are possible for more capable SCADA

devices (in this case, the device would be able to perform the handshake with only

5.64875 ms extra time). This shows how the modified SSL-based protocol allows for the

maximum level of security by taking advantage of the capabilities of the computationally

stronger devices in the network, while providing the computationally weaker devices

with an option that is not prohibitively expensive in terms of time.

 55

7. Future Work

 There are three major directions future work on further developing this key

management system could take. First, to make such a protocol applicable to actual

SCADA networks, it would be necessary to develop an implementation of the handshake

that could function on SCADA devices. This would also involve determining which

symmetric cipher would be best for encrypting the key within the certificate and for

encrypting the master secret encrypted with the key removed from the certificate. It

would also necessitate figuring out how to deal with the cipher-specific issues necessary

for implementation.

 Second, to allow this key management protocol to be used in actual power

SCADA systems, it would be necessary to determine how the various components of the

protocol would fit into the human infrastructure of the power grid. Various roles would

have to be defined, and power grid employees would have to be placed in charge of such

tasks as transporting new symmetric keys to the slave devices and determining if slave

devices had been compromised. All these roles would have to fit into the existing

structure of the power grid, adding as little additional overhead as possible and allowing

for as few mistakes as possible. Additional work would have to be done to develop the

infrastructure needed and to determine how it could merge with the existing power grid

organization.

 Finally, as mentioned in Section 3, this thesis does not fully address how this key

management protocol would overcome bandwidth limitations, although it assumes that

there exist identifiable times in which key management data could be sent because of

predictable use patterns. Additional work would have to be carried out to confirm that

 56

such patterns exist in the use of SCADA serial lines and to determine how to identify the

periods in which it would be best to send key management data to avoid overloading at-

capacity data lines.

8. Conclusion

 It is necessary to increase power grid security without replacing all the devices

within the grid, and, therefore, it is necessary to develop a key management protocol that

can allow for key management for SCADA slave devices that are unable to perform

public key cryptography. However, in creating a key management system for SCADA

networks, it is not necessary to sacrifice the capacity of those devices in the network that

are able to perform public key operations. As Section 6 outlined, slave devices of

different computational capacities can take part in different handshakes and, while doing

so, achieve different levels of security. To take advantage of such differences in the

capabilities of devices within SCADA networks, it is necessary to use a system, like the

one outlined in this thesis, that allows for symmetric key-based key management while

simultaneously putting in place a structure that permits devices that can perform public

key cryptography to perform at their full capacities. Such a system would provide the

highest degree of security that the system is capable of and, therefore, would provide an

added benefit over systems that force devices with the capacity for public key operations

to rely on symmetric key cryptography for key management.

Acknowledgements:

 57

 I would like to thank my advisor, Professor Sean Smith for helping me with

research and writing and for reading my many drafts. I would also like to thank

Massimiliano Pala, Patrick Tsang, Sergey Bratus, and Ashwin Ramaswamy for helping

me with the issues that arose over the course of writing this thesis and creating my proof-

of-concept code, and I would like to thank Jennifer Heinen for proof-reading services and

grammatical support.

