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For the capacity constraint, first observe that if.u; �/ 2 E, thencf .�; u/ D

f .u; �/. Therefore, we havef 0.�; u/ � cf .�; u/ D f .u; �/, and hence

.f " f 0/.u; �/ D f .u; �/ C f 0.u; �/ � f 0.�; u/ (by equation (26.4))

� f .u; �/ C f 0.u; �/ � f .u; �/ (becausef 0.�; u/ � f .u; �/)

D f 0.u; �/

� 0 :

In addition,

.f " f 0/.u; �/

D f .u; �/ C f 0.u; �/ � f 0.�; u/ (by equation (26.4))

� f .u; �/ C f 0.u; �/ (because flows are nonnegative)

� f .u; �/ C cf .u; �/ (capacity constraint)

D f .u; �/ C c.u; �/ � f .u; �/ (definition ofcf )

D c.u; �/ :

To show that flow conservation holds and thatjf " f 0j D jf j C jf 0j, we first
prove the claim that for allu 2 V , we have
X

�2V

.f " f 0/.u; �/ �
X

�2V

.f " f 0/.�; u/

D
X

�2V

f .u; �/ �
X

�2V

f .�; u/ C
X

�2V

f 0.u; �/ �
X

�2V

f 0.�; u/ : (26.5)

Because we disallow antiparallel edges inG (but not inGf ), we know that for
each vertexu, there can be an edge.u; �/ or .�; u/ in G, but never both. For a
fixed vertexu, let’s defineV1.u/ D f� W .u; �/ 2 Eg to be the set of vertices with
edges fromu, andV2.u/ D f� W .�; u/ 2 Eg to be the set of vertices with edges
to u. We haveV1.u/ [ V2.u/ � V and, because we disallow antiparallel edges,
V1.u/\V2.u/ D ;. By the definition of flow augmentation in equation (26.4), only
vertices inV1.u/ can have positive.f " f 0/.u; �/, and only vertices inV2.u/ can
have positive.f " f 0/.�; u/. Starting from the left-hand side of equation (26.5),
we use this fact and then reorder and group terms, giving
X

�2V
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.f .�; u/ C f 0.�; u/ � f 0.u; �//
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In equation (26.6), we can extend all four summations to sum over V , since each
additional term has value0. (Exercise 26.2-1 asks you to prove this formally.) With
all four summations overV , instead of just subsets ofV , we get equation (26.5).

Now we are ready to prove flow conservation forf " f 0 and thatjf " f 0j D

jf j C jf 0j. For the latter property, letu D s in equation (26.5). Then, we have

jf " f 0j D
X

�2V

.f " f 0/.s; �/ �
X
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D jf j C jf 0j : (26.7)

For flow conservation, observe that for any vertexu that is neithers nor t , flow
conservation forf andf 0 means that the right-hand side of equation (26.5) is0,
and thus

P

�2V .f " f 0/.u; �/ D
P

�2V .f " f 0/.�; u/.

Augmenting paths

Given a flow networkG D .V; E/ and a flowf , an augmenting pathp is a
simple path froms to t in the residual networkGf . By the definition of the resid-
ual network, we may increase the flow on an edge.u; �/ of an augmenting path
by up tocf .u; �/ without violating the capacity constraint on whichever of.u; �/

and.�; u/ is in the original flow networkG.
The shaded path in Figure 26.4(b) is an augmenting path. Treating the residual

networkGf in the figure as a flow network, we can increase the flow through each
edge of this path by up to4 units without violating a capacity constraint, since the
smallest residual capacity on this path iscf .�2; �3/ D 4. We call the maximum
amount by which we can increase the flow on each edge in an augmenting pathp

theresidual capacityof p, given by
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cf .p/ D minfcf .u; �/ W .u; �/ is onpg :

The following lemma, whose proof we leave as Exercise 26.2-7, makes the above
argument more precise.

Lemma 26.2
LetG D .V; E/ be a flow network, letf be a flow inG, and letp be an augmenting
path inGf . Define a functionfp W V � V ! R by

fp.u; �/ D

(

cf .p/ if .u; �/ is onp ;

0 otherwise:
(26.8)

Then,fp is a flow inGf with valuejfpj D cf .p/ > 0.

The following corollary shows that if we augmentf by fp, we get another flow
in G whose value is closer to the maximum. Figure 26.4(c) shows the result of
augmenting the flowf from Figure 26.4(a) by the flowfp in Figure 26.4(b), and
Figure 26.4(d) shows the ensuing residual network.

Corollary 26.3
Let G D .V; E/ be a flow network, letf be a flow in G, and letp be an
augmenting path inGf . Let fp be defined as in equation (26.8), and suppose
that we augmentf by fp. Then the functionf " fp is a flow in G with value
jf " fpj D jf j C jfpj > jf j.

Proof Immediate from Lemmas 26.1 and 26.2.

Cuts of flow networks

The Ford-Fulkerson method repeatedly augments the flow along augmenting paths
until it has found a maximum flow. How do we know that when the algorithm
terminates, we have actually found a maximum flow? The max-flow min-cut theo-
rem, which we shall prove shortly, tells us that a flow is maximum if and only if its
residual network contains no augmenting path. To prove thistheorem, though, we
must first explore the notion of a cut of a flow network.

A cut .S; T / of flow network G D .V; E/ is a partition ofV into S and
T D V � S such thats 2 S and t 2 T . (This definition is similar to the def-
inition of “cut” that we used for minimum spanning trees in Chapter 23, except
that here we are cutting a directed graph rather than an undirected graph, and we
insist thats 2 S andt 2 T .) If f is a flow, then thenet flowf .S; T / across the
cut .S; T / is defined to be

f .S; T / D
X

u2S

X

�2T

f .u; �/ �
X

u2S

X

�2T

f .�; u/ : (26.9)


