
Out-of-Core Distribution Sort in the FG Programming Environment

Priya Natarajan�
Thomas H. Cormen�
Dartmouth College

Department of Computer Science
fpriya, thcg@cs.dartmouth.edu

Elena Riccio Strange�

A9.com
laneyd@gmail.com

Abstract—We describe the implementation of an out-of-core,
distribution-based sorting program on a cluster using FG, a
multithreaded programming framework. FG mitigates latency
from disk-I/O and interprocessor communication by overlap-
ping such high-latency operations with other operations. It does
so by constructing and executing a coarse-grained software
pipeline on each node of the cluster, where each stage of the
pipeline runs in its own thread. The sorting program distributes
data among the nodes to create sorted runs, and then it merges
sorted runs on each node. When distributing data, the rates
at which a node sends and receives data will differ. When
merging sorted runs, each node will consume data from each
of its sorted runs at varying rates. Under these conditions, a
single pipeline running on each node is unwieldy to program
and not necessarily efficient. We describe how we have extended
FG to support multiple pipelines on each node in two forms.
When a node might send and receive data at different rates
during interprocessor communication, we use disjoint pipelines
on each node: one pipeline to send and one pipeline to receive.
When a node consumes and produces data from different
streams on the node, we use multiple pipelines that intersect
at a particular stage. Experimental results show that by using
multiple pipelines, an out-of-core, distribution-based sorting
program outperforms an out-of-core sorting program based
on columnsort—taking approximately 75%–85% of the time—
despite the advantages that the columnsort-based program
holds.

Keywords-multithreaded programming framework; out-of-
core sorting; latency; FG.

I. INTRODUCTION

In out-of-core problems, the dataset is so large that it
exceeds the size of the main memory, and so it resides on
one or more disks. Several algorithms in the literature for
solving out-of-core problems (see the survey by Vitter [1])
have similar structures. They make multiple passes over the
data, where each pass entails high-latency operations such
as disk I/O and possibly interprocessor communication. In
order to amortize the high cost of transferring data, these
programs move data in blocks. In this paper, we consider
the platform of a distributed-memory cluster in which each
node can run multiple threads.

In order to process massive datasets, we often need to
sort them. Various out-of-core sorting methods appear in

�This work was supported in part by National Science Foundation Grant
IIS-0326155 in collaboration with the University of Connecticut and in part
by National Science Foundation Grant EIA-98-02068.

�Work performed while Elena Riccio Strange was at Dartmouth College.
Previous work appears under the name Elena Riccio Davidson.

the literature, and many of these methods are distribution
based. Typically, distribution-based algorithms proceed in
three or four phases. The first phase samples the input data
and chooses P �1 splitters, where P is the number of nodes
in the cluster. The second phase, given the splitters, partitions
the input into P sets S0; S1; : : : ; SP �1 such that each sort
key1 in Si is less than or equal to all the sort keys in SiC1;
set Si resides on the disk of node i of the cluster. The third
phase sorts each partition, and an optional fourth phase load-
balances the output among the P nodes of a cluster. Even in
the presence of well selected splitters, a distribution-based
algorithm generates I/O and communication patterns that
vary depending on the data to be sorted. To improve effi-
ciency, when we implement a distribution-based algorithm,
we should overlap I/O, communication, and computation as
much as possible. The FG programming framework makes
it easy to overlap such operations. In this paper, we describe
how we implemented a distribution-based sorting program
using FG.
Brief introduction to FG: The FG2 programming en-

vironment [2]–[6] uses software pipelines to mitigate the
high latency inherent in interprocessor communication and
in accessing the outer levels of the memory hierarchy. As
Figure 1 illustrates, FG advances buffers, corresponding to
blocks, through the pipeline. While high-latency operations
are in progress, CPUs are often free to perform other func-
tions, so that operations may overlap. With FG’s pipeline
structure, when one stage of a pipeline yields to perform a
high-latency operation on one buffer, other pipeline stages
can gain the CPU to work on different buffers.

Each stage in an FG pipeline runs in its own thread, and so
stages run asynchronously to overlap their work with other
stages. When a stage needs a buffer to work on, it accepts a
buffer from its predecessor in the pipeline. When it is done
working on the buffer, the stage conveys the buffer to its
successor in the pipeline. The typical parallel program that
uses FG runs one copy of a single pipeline on each node in
a cluster.
Extensions to FG: In some programs, a pipeline stage

that performs interprocessor communication accepts and

1We assume that we are sorting records, where each record consists of
a sort key and possibly some additional data.

2FG is short for ABCDEFG, which is in turn short for Asynchronous
Buffered Computation Design and Engineering Framework Generator. We
pronounce FG as “effigy.”

stage 1

node 0

node 1

stage 2 stage 3

stage 1 stage 2 stage 3

Figure 1. A copy of a software pipeline running on each of two nodes of
a cluster. The pipeline consists of three stages and processes data in two
buffers, indicated by black rectangles. At the moment shown, the copy on
node 0 has buffers in stages 1 and 2, and the copy on node 1 has buffers
in stages 2 and 3.

conveys buffers at the same rate. Such a stage repeatedly
accepts a buffer from its predecessor stage as input, performs
interprocessor communication, and conveys the buffer to its
successor stage in the pipeline. The communication stage
sends data from the buffer and receives data into the buffer.
If the communication is balanced, then the amount of data
this stage sends equals the amount of data it receives every
time. With balanced communication, the rate at which data
enters the stage from its predecessor stage equals the rate
at which data exits the stage to its successor stage. In this
case, we can convey to the successor the same buffer that
the stage accepted from its predecessor.

Sometimes, however, communication is unbalanced: the
rate at which data is sent does not always equal the rate at
which data is received. With unbalanced communication, a
pipeline stage would have to accept and convey buffers at
different rates. For example, if a communication stage sends
more data from a buffer than it receives into the buffer, then
this stage will need to convey buffers to its successor at
a slower rate than it accepts buffers from its predecessor.
Conceptually, buffers begin to pile up within the stage.
Conversely, if this stage sends less data than it receives, then
this stage will need to convey buffers at a faster rate than it
accepts them. Conceptually, this stage needs to acquire new
buffers in order to have some to convey. In either case, it
would be difficult to convey to the successor stage the same
buffer that entered.

This paper describes how we extended FG to support
pipelines in which stages accept and convey buffers at
different rates. We augmented FG in two ways: support for
multiple disjoint pipelines and support for multiple pipelines
that intersect at a particular stage. Multiple disjoint pipelines
help us to overlap communication with other operations,
thereby mitigating latency, when communication is unbal-
anced. Multiple intersecting pipelines help us to overlap
operations, again mitigating latency, when data is consumed
from different streams at differing rates, such as when
merging streams of data. These extensions to FG arose from
the design requirements of an out-of-core, distribution-based
sorting algorithm for a cluster. In a prior sorting algorithm
for a cluster [7], which was based on out-of-core columnsort,
all interprocessor communication was balanced, and so the

single-pipeline model sufficed. In contrast, the distribution-
based sort has unbalanced communication, and it merges
sorted runs.

The distribution-based algorithm has one advantage and
two disadvantages compared with the columnsort-based al-
gorithm:

� Both algorithms make multiple passes over the data,
where each pass reads each record to be sorted once
from one of the disks in the cluster and writes
each record once to one of the cluster’s disks. The
distribution-based algorithm makes only two passes
to the columnsort-based algorithm’s three, and so the
columnsort-based algorithm performs approximately
50% more disk I/O.

� In each pass of the distribution-based algorithm, some
nodes might read or write differing volumes of data,
and therefore some nodes might read or write more
than the average volume of data. In the columnsort-
based algorithm, all nodes read and write exactly the
same volume of data. Thus, the I/O time consumed by
the most heavily used disk in a pass might be greater in
the distribution-based algorithm than in the columnsort-
based algorithm.

� The distribution-based algorithm’s I/O and communi-
cation operations are determined only dynamically, as
the algorithm’s execution unfolds, thereby making it
difficult to prefetch data. The columnsort-based algo-
rithm’s I/O and communication operations are known
in advance. Thus, the columnsort-based algorithm is
more amenable to overlapping I/O, communication, and
computation than is the distribution-based algorithm.

The question is whether the disadvantages of the
distribution-based algorithm are enough to outweigh its
lesser I/O volume. Experimental results on a cluster show
that the distribution-based algorithm runs faster than the
columnsort-based algorithm in most cases. Therefore, we
can conclude that the disadvantages of the distribution-based
algorithm do not dominate its one advantage.

The remainder of this paper is organized as follows. Sec-
tion II introduces linear pipelines in FG, and Section III sum-
marizes the columnsort-based algorithm, which uses only
a single linear pipeline, copied on each node. Section IV
describes how we extended FG to support multiple disjoint
pipelines and multiple intersecting pipelines, which provide
the structure for the implementation of the distribution-based
sort outlined in Section V. Section VI presents experimental
results on a cluster, showing that with the new features of
FG, the distribution-based sort fares well compared with
the columnsort-based method. Section VII discusses related
work, and Section VIII offers some concluding remarks.

II. SINGLE LINEAR PIPELINES IN FG

FG’s original release restricted all programs that used FG
to be written using only a copy of a single linear pipeline

stage 1

node 0

node 1

stage 2 sinkstage 3

stage 1 stage 2 stage 3 sink

source

source

Figure 2. The pipeline of Figure 1, expanded to a standard FG pipeline
comprising a source, a sink, and three other stages running on two nodes.
Where a buffer, indicated by a black rectangle, appears inside a stage, the
stage is currently working on that buffer. Buffers in queues appear below
the arrows between stages. The arrow from the sink to the source represents
how FG recycles buffers.

on each node. In this section, we introduce some concepts
associated with an FG pipeline, and we discuss some details
about programming in FG.
Pipelines in FG: As Figure 2 shows, an FG pipeline is

composed of stages. FG maps each stage to its own thread.
Doing so allows the stages to run asynchronously, so that
stages performing high-latency operations can overlap their
work with other stages, especially on multicore processors.
Because the buffers that traverse the pipeline correspond to
blocks for transferring data, the buffer size typically equals
the block size for data transfer (as in I/O or communication).

FG places a queue of buffers between each pair of
consecutive stages in the pipeline, so that a stage conveys a
buffer to its successor by placing the buffer into the queue
between the stage and its successor. The stage can then
immediately accept the next buffer from the queue between
it and its predecessor, and then it can start working on that
buffer. If the queue feeding into a stage is empty and the
stage tries to accept a buffer from its predecessor, the accept
operation blocks and this stage’s thread will yield. Once a
buffer enters this queue, the thread for this stage will once
again become ready to run.

FG adds two stages to every pipeline: a source stage at
the start and a sink stage at the end. The source stage injects
buffers into the pipeline by conveying them to the first stage
following the source. Each time that the source emits a
buffer into the pipeline, it begins a new round. The number
of rounds a computation requires can greatly exceed the
number of buffers. Therefore, the sink conveys each buffer
that reaches it back to the source stage so that the buffer
can be recycled. In this way, only a small pool containing a
fixed number of buffers needs to be allocated, and the total
memory consumed by buffers fits within the physical RAM.

As Figure 2 shows, the typical parallel program that uses
FG runs one copy of a single pipeline on each node in a
cluster. Figure 2 and the figures that follow show pipelines
on only two nodes, but in general we can have any number
of nodes, each running its own copy of the pipeline.
Programming with FG: FG transforms a series of

programmer-defined functions written in C/C++ into one
or more pipelines of asynchronous stages that operate on

source read sort comm. permute sinkwrite

Figure 3. The pipeline structure of the four-pass version of out-of-core
columnsort. Each node runs a copy of this pipeline during each pass. Buffers
are not shown. The exact operation of the sort, communicate, and permute
stages varies among the four passes.

buffers. To implement each pipeline stage, the program-
mer writes a straightforward function containing only syn-
chronous calls. FG runs the stages asynchronously, via calls
to standard POSIX pthreads functions [8], and it manages the
buffers. Although FG was originally designed for clusters,
we can obtain additional parallelism when threads can run
concurrently on multiple cores. An early paper on FG [2]
shows that programs that use FG can be as fast as, or even
faster than, hand-tuned programs that call pthreads functions
directly.

Although FG does provide a framework to overlap high-
latency operations with other operations, it does not pro-
vide the mechanisms that carry out high-latency operations.
The programmer chooses these mechanisms from among
those available. Because a program using FG runs mul-
tiple threads, these mechanisms must be thread safe. For
example, if any stage calls MPI functions for interprocessor
communication, the programmer should link in a thread-safe
implementation of MPI.

III. OUT-OF-CORE COLUMNSORT

Using only the features present in the original release
of FG, we were able to implement an out-of-core sorting
algorithm, described by Chaudhry and Cormen [7] and based
on Leighton’s columnsort algorithm [9].

Our implementation of out-of-core columnsort mirrors the
earlier treatment [7], which we summarize here. Columnsort
configures its records as a tall, thin matrix, and it sorts the
records into column-major order. Columnsort takes eight
steps, where each odd-numbered step sorts every column
individually. Each even-numbered step performs a specific,
fixed permutation on the matrix.

A relatively simple four-pass implementation of out-of-
core columnsort groups together each pair of consecutive
steps into a single pass. In each pass, each node of the
cluster runs a copy of the same pipeline. Figure 3 shows the
pipeline’s structure, which is similar across all four passes.
As each buffer traverses the pipeline, the read stage reads a
column of the matrix from the disk into the buffer, and the
sort stage sorts internally on each node to accomplish an
odd-numbered step. The communicate and permute stages
accomplish the corresponding even-numbered step, and the
write stage writes a column to the disk. The exact nature of
the sort, communicate, and permute stages varies from pass
to pass, according to known characteristics of the columns
entering the pass and to the permutation performed in the
even-numbered columnsort step.

In order to achieve a three-pass implementation, steps 5–8
of columnsort, which map to the latter two passes in the
four-pass implementation, coalesce into a single pass. The
key observation is that in the four-pass implementation, the
communicate, permute, and write stages of the third pass,
together with the read stage of the fourth pass, just shift each
column down by the height of half a column. By replacing
these four stages by a single communicate stage, we can
eliminate one pass.

The three-pass implementation, which we call “csort”
from here on, has three important properties. First, as men-
tioned in Section I, the disk-I/O and communication patterns
are predetermined. That is because csort is oblivious to the
data values, except for steps that sort internally within each
node. Thus, it is relatively easy to structure the implementa-
tion to overlap disk I/O, communication, and computation.
Second, every communication step is balanced. That is
because the communication steps correspond to the highly
regular permutations of the even-numbered steps, such as
transposing a matrix or shifting down by half a column.
Indeed, all interprocessor communication in the implementa-
tion occurs via the MPI calls MPI_Sendrecv_replace,
MPI_Alltoall, and matching pairs of MPI_Send and
MPI_Recv with equal data sizes specified. Third, in each
pass, each node reads the same volume of data from disk
and writes the same volume of data to disk. Thus, all nodes
read and write exactly the average volume of data.

IV. HOW FG SUPPORTS MULTIPLE PIPELINES

In order to accommodate stages that accept and convey
buffers at different rates, such as when unbalanced com-
munication occurs, we have extended FG. The extensions
support multiple pipelines that are disjoint and multiple
pipelines that intersect. This section discusses these new FG
features in more detail.
Managing multiple disjoint pipelines: Figure 4 abstracts

how we use multiple disjoint pipelines to solve the problem
of a stage sending more or less data than it receives, as
discussed in Section I. Each node has two distinct pipelines.
The send pipeline acquires data into a buffer, processes the
buffer, and then sends the data in the buffer to the various
nodes of the cluster. The receive pipeline receives into a
buffer the data sent by each of the send stages running on
the nodes, processes the buffer, and then saves the data in the
buffer. The details of the acquire, process, and save stages
are unimportant here. What matters is that the pace at which
buffers progress through the two pipelines in the same node
may differ, according to the rate at which each node sends
data and the rate at which each node receives data.

The only way in which the send and receive pipelines
interact is that the send pipeline may send data via interpro-
cessor communication to the receive pipeline. Each of the
two pipelines on a node has its own source and sink, its own
number of buffers, and its own buffer size. Although data

node 0

processsource acquire send sinksend pipeline

processsource sinkreceive pipeline receive save

node 1

processsource acquire send sinksend pipeline

processsource sinkreceive pipeline receive save

Figure 4. Disjoint pipelines running on each node, shown for just two
nodes. The send pipeline has a send stage, which sends data from buffers
to various nodes. The receive pipeline has a receive stage, which receives
data sent by the various send stages. The number of buffers and their sizes
(represented by different-sized black rectangles) can differ between the two
pipelines on each node. The sink recycling buffers back to the source is
not shown explicitly.

may move from a buffer within a send pipeline to a buffer
within a receive pipeline, each buffer is tied to a specific
pipeline.
Managing multiple intersecting pipelines: The situation

for multiple pipelines that intersect at a common stage is
more complicated than for disjoint pipelines. If FG deter-
mines that a particular stage object belongs to more than
one pipeline, then it treats these pipelines as intersecting
at that common stage. FG creates only one thread for the
common stage, which can accept buffers from any of its
predecessor stages on any of the pipelines it belongs to.

Because the common stage has multiple predecessors, in
order to accept a buffer, it must specify which pipeline to
accept from. Every buffer is tied to a particular pipeline;
buffers cannot jump from one pipeline to another.

Figure 5(a) abstracts how we use multiple intersecting
pipelines on a node to merge several small, sorted runs
of data into a single large, sorted output sequence. Input
comes into the merge stage—the common stage—from the
vertical pipelines, and output goes from the merge stage into
the horizontal pipeline. Each vertical pipeline has a stage
that acquires a buffer containing a section of an individual
sorted run, feeding into the merge stage. The merge stage
accepts empty buffers from the horizontal pipeline’s source
stage, filling them with data that came in along the vertical
pipelines, and once it has filled a buffer, it sends the buffer
along the horizontal pipeline for further processing.

As with multiple disjoint pipelines, pipelines that inter-
sect can have differing numbers and sizes of buffers. For
example, in Figure 5(a) the buffer sizes could differ between
the vertical and horizontal pipelines. Buffers in the vertical
pipelines might be relatively small, since there may be many
of them. Although the sorted runs in the vertical pipelines are
small compared with the output sequence, each sorted run
is many times the size of the vertical pipeline buffers. There
is only one horizontal pipeline, however, and so its buffers
can be much larger than those in the vertical pipelines.

The merge stage operates as follows. It repeatedly chooses

sink

processsource sinkmerge

sink sink sink…

acquire …

source …

acquire

source

acquire

source

acquire

source

(a)

processsource sinkmerge

sink

…

acquire

source

(b)

Figure 5. Multiple intersecting pipelines on a given node. These pipelines
merge several small, sorted runs of data traveling the vertical pipelines into
a single, large sorted sequence traveling the horizontal pipeline. Buffers
and arrows connecting the respective sink and source stages are not shown.
The merge stage, which is the common stage in the intersecting pipelines,
accepts small buffers from the vertical pipelines and merges them into
larger buffers along the horizontal pipeline, where the buffers undergo
further processing. (a) The conceptual view with multiple vertical pipelines.
(b) How the vertical pipelines are implemented when the acquire stages are
designated as virtual. Each box represents a single thread, and each arrow
represents a buffer queue.

the smallest value not yet chosen from any of the buffers that
it has accepted along a vertical pipeline. It then copies this
value into the next available position in the output buffer that
it has accepted along the horizontal pipeline. Once an output
buffer fills, the merge stage conveys it along the horizontal
pipeline for further processing, and then the merge stage
accepts a new, empty buffer from the horizontal pipeline’s
source stage. Whenever the merge stage has consumed all
the values from an input buffer along a vertical pipeline,
it conveys this spent buffer to the sink along that particular
vertical pipeline, where it will be recycled back to the source.
The merge stage then accepts the next buffer from the same
sorted run along the same vertical pipeline. Of course, once
a vertical pipeline sends its last buffer, the merge stage
should no longer try to accept a buffer along that pipeline,
nor should it consider values from that pipeline’s run when
making decisions about merging.

Each of the vertical pipelines, and the horizontal pipeline,
operates at its own rate. Although the vertical pipelines
all have similar structure, they need not work in lockstep
with each other. The rate at which a given vertical pipeline
operates depends on the rate at which the merge stage
consumes data from that vertical pipeline’s buffer, which
in turn depends on how the merging proceeds. The merge
stage also fills each horizontal pipeline buffer at a rate that
likely differs from the rate at which it consumes any of the
vertical pipeline buffers.

Virtual stages and virtual pipelines: Observe that in
Figure 5(a), each of the vertical pipelines has the same
structure. A given node could be asked to run hundreds
of such vertical pipelines. Because FG creates one thread
per stage, including the source and sink, FG would try to
create hundreds or even thousands of threads per node when
building these intersecting pipelines.

Alas, most current systems cannot handle hundreds of
threads. They either grind to a halt or simply disallow more
threads to be created after reaching a limit.

We overcame this problem with virtual stages. The pro-
grammer can designate multiple, identical stages in separate
pipelines as virtual. Instead of creating one thread for each of
these stages, FG creates a thread for only one of the stages.
The remainder of the corresponding stages share this thread.
Pipelines containing any such stage are virtual pipelines.

In the example of Figure 5(a), the programmer could
designate the acquire stages as virtual. Figure 5(b) shows
the result: if there are k vertical pipelines, FG will create
only one thread for the acquire stages rather than k threads.

FG economizes in other ways with virtual pipelines.
Whenever FG detects that pipelines are virtual, it automat-
ically makes the source and sink stages for these pipelines
virtual as well. Furthermore, as Figure 5(b) shows, if k

identical stages are designated as virtual, then instead of
creating k individual queues feeding into these stages, FG
creates just one queue.

V. OUT-OF-CORE DISTRIBUTION SORT

This section describes how we designed and implemented
an out-of-core distribution sort using FG’s multiple disjoint
and multiple intersecting pipelines. We call this program
“dsort.” As mentioned in Section I, dsort entails two passes
over the data, following a preprocessing phase. The pre-
processing phase determines how the first pass partitions
the data among the nodes. After the first pass, each node
contains several sorted runs. The second pass merges the
sorted runs to create a single sorted sequence and then
permutes the sorted records across the cluster to perform
load-balancing and to create striped output.

By “striped output,” we mean that it appears in the order
defined in the Parallel Disk Model [10]. The records reside
in fixed-size blocks, which are assigned in round-robin order
to the disks in the cluster. Both dsort and csort create striped
output.
Selecting splitters: The first pass partitions N records

to be sorted among the P nodes such that each record in
node i has a sort key less than or equal to the keys of all
records in node i C 1, for i D 0; 1; : : : ; P � 2. In order to
decide which node each record belongs to, we need to select
a set of P � 1 key values, known as splitters. Splitters are
the multiway analogue of the pivot value when partitioning
during quicksort. Ideally, the splitters should partition the N

records into P partitions of N=P records each. In practice,

node 0

permutesource read send sinksend pipeline

sortsource sinkreceive pipeline receive write

node 1

permutesource read send sinksend pipeline

sortsource sinkreceive pipeline receive write

Figure 6. The pipeline structure of pass 1 of dsort, shown for two nodes.
The structure is similar to that of Figure 4. Buffers and sink-to-source
connections are not shown.

we do not achieve such perfectly balanced partitions, but we
can get close almost all the time.

The preprocessing step finds the splitters using the tech-
nique of oversampling, as done by Blelloch et al. [11] and
by Seshadri and Naughton [12]. To guard against heavily
unbalanced partition sizes when keys are equal, we extend
them to make each key unique while deciding where to send
each record; the extended keys never actually become part
of any record. In our experiments, all partition sizes were at
most 10% greater than the average.
Pass 1: Partitioning and distribution: Pass 1 partitions

and distributes the records among the nodes according to
the splitters that have been selected and broadcast. Figure 6
shows the pipeline structure of pass 1. Each node distributes
its records using interprocessor communication, and the
number of records that a node sends at any one time almost
certainly differs from how many records it receives. Hence,
we use separate send and receive pipelines, as in Figure 4,
but with the following stages renamed: acquire becomes
read, process in the send pipeline becomes permute, process
in the receive pipeline becomes sort, and save becomes write.
In each case, we have just made the action more specific.
Buffer sizes in the send and receive pipelines are equal.

The send pipeline works as follows. The read stage reads
a buffer of records from the disk, which it then conveys to
the permute stage. The permute stage uses the splitters and
extended keys to rearrange the records in the buffer so that
all records belonging to the same partition are contiguous; it
uses an auxiliary buffer (a feature that FG provides) so that
the permutation need not be performed in-place. The buffer
then travels to the send stage, which doles out the records
of each partition to the respective target nodes.

In the receive pipeline, the receive stage repeatedly re-
ceives records sent by send stages into a temporary buffer.
It copies received records into a pipeline buffer until the
pipeline buffer fills, at which time it conveys the pipeline
buffer to the sort stage and accepts a new, empty pipeline
buffer. The sort stage simply sorts the records (according to
the original, non-extended keys) using an auxiliary buffer,
and it conveys them to the write stage, which writes the
buffer to disk. Each buffer written contains a sorted run.

sink

sendsource sinkmerge

sink sink sink…

read …

source …source source source

writesource sinkreceive

read read read

node 0

sink

sendsource sinkmerge

sink sink sink…

read …

source …source source source

writesource sinkreceive

read read read

node 1

Figure 7. The pipeline structure of pass 2 of dsort, shown for two nodes.
The structure is a combination of those in Figures 4 and 5. Buffers and
sink-to-source connections are not shown.

Pass 2: Merging, load-balancing, and striping: At the
end of pass 1, we have sorted runs of records, which we
need to merge into longer sorted output sequences. If that
was all we had to do, then the structure in Figure 5 would
suffice, with the stage labeled “process” writing the sorted
sequences out to local disks.

We need to do more, however. Because the partition
sizes created during pass 1 are not necessarily all equal
to N=P , we need to load-balance the records across nodes.
Furthermore, we need to stripe the output when writing to
disk. We omit the details of how we compute which node
each record goes to after merging, and we focus instead on
how we perform the interprocessor communication. Figure 7
shows how. After the merge stage fills a buffer, that buffer
travels to a send stage, which disperses the records in the
buffer to various nodes. Just as in pass 1, the rate at which
each node sends records differs from the rate at which the
node receives records. Hence, we use separate pipelines for
sending and receiving.

VI. EXPERIMENTAL RESULTS

In this section, we summarize our experiments with dsort
on a cluster, comparing dsort’s performance to that of csort.

The cluster is a Beowulf-class system in which we used 16
nodes. Each node has two 2.8-GHz Intel Xeon processors,
4 GB of RAM, and an Ultra-320 SCSI hard drive. The nodes
run RedHat Linux 9.0 and are connected by a 2-Gb/sec
Myrinet network. We use the C stdio interface for disk I/O.
For interprocessor communication, we use ChaMPIon/Pro,
a thread-safe, commercial MPI implementation. (We could
have instead chosen MPICH2 [13].)

Each experiment sorts a total of 64 gigabytes of data,
distributed evenly among the 16 nodes. We ran experiments
with two different record sizes: 16 bytes for a total of 4
gigarecords, and 64 bytes for a total of 1 gigarecord. All
results reported here are for the best choices of buffer sizes.
Each result represents the average of three runs; running
times varied only slightly within each group of three.

We compared dsort and csort with various key distribu-
tions: uniform random, all keys equal, standard normal, and

(a)

7.28
4.87

6.73 6.82

5.01

5.01

4.89 5.02

5.02

5.02

4.88 5.06

17.31

14.90

16.51 16.91

9.32

6.17
7.41 8.38

4.93

4.84
4.53

4.73

14.33

11.16
12.09

13.18

0

2

4

6

8

10

12

14

16

18

20

Uniform
random

 All equal Std normal Poisson

T
im

e
(m

in
ut

es
)

dsort pass2

dsort pass1

dsort sampling

csort pass3

csort pass2

csort pass1

(b)

4.73 4.72 4.71 4.67

4.97 5.02 4.99 4.97

5.08 4.97 4.95 5.06

14.77 14.70 14.64 14.69

6.99 6.49
7.43

6.34

4.97
4.81

4.73
4.79

12.03
11.38

12.24
11.28

0

2

4

6

8

10

12

14

16

Uniform
random

All equal Std normal Poisson

T
im

e
(m

in
ut

es
)

dsort pass2

dsort pass1

dsort sampling

csort pass3

csort pass2

csort pass1

Figure 8. Total and per-pass running times of dsort and csort on various
input distributions of 64 GB of data on 16 nodes for (a) 16-byte records
and (b) 64-byte records. For each distribution, the left column represents
data for dsort and the right column represents data for csort, with pass
numbers going bottom to top. The number within each rectangle shows the
running time for that pass, and the number at the top of each column gives
the total time for all passes. Because these amounts are negligible, numbers
corresponding to dsort’s sampling phase are not shown.

Poisson with � D 1. As Figure 8 shows, dsort beat csort
in each case, taking time in the range 74.26%–85.06% of
csort’s time. The figure also illustrates that dsort’s advantage
of having one fewer pass outweighs its disadvantages of
having unbalanced I/O and communication patterns. We also
compared dsort and csort for input distributions designed to
elicit highly unbalanced communication in pass 1 of dsort,
and even under these conditions, dsort fared well; space does
not permit us to detail these results here.

Unfortunately, we were restricted to input file sizes of only
4 GB per node due to available disk space in our cluster.
Although a dataset of size 64 GB might seem “small,” given
many modern cluster configurations, we believe that our
results would also extend to larger inputs. In other words, the
dataset size is a limitation of neither dsort nor FG. Indeed,
we are arranging to run dsort and csort on a cluster with
nodes that have more disk space available.

VII. RELATED WORK

In this section, we discuss other programming models
that are similar to FG, and we compare dsort with some
distribution-sort implementations.

Programming models related to FG: FG came about as
a framework for implementing algorithms for the Parallel
Disk Model. Its closest relatives are the TPIE project and
the <stxxl> library.

TPIE [14] provides a set of structures, implemented as
C++ classes, for manipulating streams of disk-resident data.
Although TPIE does provide classes for merging and distri-
bution (the inverse of merging), it cannot support pipeline
structures as general as the multiple pipelines that FG
supports, and TPIE programs cannot run in parallel on a
cluster or even with shared memory.

<stxxl> [15] replicates some of the functionality of the
C++ Standard Template Library [16, Part III]. It provides
classes for vectors, stacks, and queues, as well as a small
number of algorithms, including sorting, all with built-in
support for data that resides on parallel disks on a single
node. <stxxl> now also supports pipelining [17] and
allows constructs that resemble FG’s fork-join and intersect-
ing pipelines. Asynchronous nodes within a pipeline seem
to provide a buffer-passing mechanism between successive
nodes.

To some degree, FG resembles dataflow programming
(see, for example, the survey by Johnston, Hanna, and
Millar [18]), where stages in FG correspond to dataflow
operations connected by queues holding data. FG and tradi-
tional dataflow programming differ primarily in granularity:
dataflow programming tends to be fine grained, compared
with FG’s coarse-grained approach. Whereas dataflow pro-
gramming applies to data already in memory, FG is designed
for high-latency access to data from other nodes or from the
outer levels of the memory hierarchy.

Other distribution-sort implementations: One of the
pioneering and successful works in the area of out-of-core,
distribution-based sorting is NOW-Sort [19]. Although dsort
and NOW-Sort share the same two-pass design, NOW-Sort
assumes that the splitters are known in advance and does not
output the final sorted result in PDM ordering. Moreover,
current cluster configurations render the results reported by
NOW-Sort obsolete.

In more recent work, Rahn, Sanders, and Singler [20]
describe CANONICALMERGESORT, an <stxxl>-based
distributed-memory implementation of the parallel multiway
merging approach described by Varman et al. [21]. CANON-
ICALMERGESORT achieves perfect load-balancing after par-
titioning the data, but it does not stripe the final output across
the nodes of the cluster. Furthermore, depending on the
input and machine parameters, the algorithm might require
more than two passes. In their paper, Rahn, Sanders, and
Singler report results of using CANONICALMERGESORT to
sort many gigabytes and terabytes of data, using hardware
that differs significantly from the hardware that we used to
run dsort. We have contacted the authors for their implemen-
tation so that we may be able to make a fair comparison.

VIII. CONCLUSIONS

When we started this project, we expected results in line
with the earlier results [7], in which csort prevailed due
to the advantages that we listed in Section I. Much to our
surprise, dsort ran faster.

By extending FG to support situations in which data is
consumed and produced at different rates, we were able
to overlap disk I/O, communication, and computation suf-
ficiently to overcome the way in which dsort depends on
key values. Multiple disjoint pipelines support unbalanced
communication, and multiple intersecting pipelines support
stages that consume data from one or more pipelines and
emit data into one or more pipelines at varying rates.
Moreover, each stage and each pipeline is fairly simple
to program; FG assumes the burden of assembling them
properly.

An obvious question would be how much faster dsort
runs with multiple pipelines on each node compared with an
implementation restricted to single, linear pipelines on each
node. Although we have not investigated this issue yet, we
are developing such an implementation. The design of dsort
using only linear pipelines entails extensive bookkeeping on
the programmer’s part for stages that perform interprocessor
communication, as well as the merge stage. The results will
help us test the claims about FG’s multiple pipelines that
we made in the previous paragraph in terms of both dsort’s
performance and that of the programmer’s coding burden.

As mentioned in Section VI, we would like to try running
dsort on larger inputs. Furthermore, we believe that the
extensions to FG that we have discussed in this paper would
be suitable for the design of out-of-core algorithms other
than sorting; we are actively soliciting suggestions for such
algorithms.

ACKNOWLEDGMENTS

We thank Tim Tregubov for his assistance in setting up
the cluster that we used for our experiments. Doug McIlroy,
Laura Toma, and anonymous referees provided valuable
comments and suggestions.

REFERENCES

[1] J. S. Vitter, “External memory algorithms and data structures:
Dealing with MASSIVE DATA,” ACM Computing Surveys,
vol. 33, no. 2, pp. 209–271, Jun. 2001.

[2] T. H. Cormen and E. R. Davidson, “FG: A framework
generator for hiding latency in parallel programs running on
clusters,” in Proceedings of the 17th International Confer-
ence on Parallel and Distributed Computing Systems (PDCS-
2004), Sep. 2004, pp. 137–144.

[3] E. R. Davidson, “FG: Improving parallel programs and paral-
lel programming since 2003,” Ph.D. dissertation, Dartmouth
College Department of Computer Science, Aug. 2006.

[4] E. R. Davidson and T. H. Cormen, Asynchronous Buffered
Computation Design and Engineering Framework Generator
(ABCDEFG): Tutorial and Reference, Dartmouth College
Department of Computer Science, available at http://www.
cs.dartmouth.edu/FG/.

[5] ——, “Building on a framework: Using FG for more flex-
ibility and improved performance in parallel programs,” in
19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2005), Apr. 2005.

[6] ——, “The FG programming environment: Reducing source
code size for parallel programs running on clusters,” in
Second Workshop on Productivity and Performance in High-
End Computing (P-PHEC), Feb. 2005.

[7] G. Chaudhry and T. H. Cormen, “Oblivious vs. distribution-
based sorting: An experimental evaluation,” in 13th Annual
European Symposium on Algorithms (ESA 2005), ser. Lecture
Notes in Computer Science, vol. 3669. Springer, Oct. 2005,
pp. 317–328.

[8] IEEE, “Standard 1003.1-2001, Portable operating system in-
terface,” http://www.unix.org/version3/ieee std.html, 2001.

[9] T. Leighton, “Tight bounds on the complexity of parallel
sorting,” IEEE Transactions on Computers, vol. C-34, no. 4,
pp. 344–354, Apr. 1985.

[10] J. S. Vitter and E. A. M. Shriver, “Algorithms for parallel
memory I: Two-level memories,” Algorithmica, vol. 12, no.
2/3, pp. 110–147, Aug. and Sep. 1994.

[11] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton,
S. J. Smith, and M. Zagha, “An experimental analysis of
parallel sorting algorithms,” Theory of Computing Systems,
vol. 31, pp. 135–167, 1998.

[12] S. Seshadri and J. F. Naughton, “Sampling issues in parallel
database systems,” in 3rd International Conference on Ex-
tending Database Technology (EDBT ’92), ser. Lecture Notes
in Computer Science, A. Pirotte, C. Delobel, and G. Gottlob,
Eds., vol. 580. Springer-Verlag, March 1992, pp. 328–343.

[13] MPICH2 home page. http://www.mcs.anl.gov/research/
projects/mpich2/.

[14] TPIE home page. http://www.madalgo.au.dk/Trac-tpie/.
[15] R. Dementiev, STXXL Tutorial, Jun. 2006, available from

stxxl.sourceforge.net.
[16] B. Stroustrup, The C++ Programming Language, 3rd ed.

Addison-Wesley, 1997.
[17] A. Beckmann, R. Dementiev, and J. Singler, “Building a

parallel pipelined external memory algorithm library,” in
23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2009), May 2009.

[18] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in
dataflow programming languages,” ACM Computing Surveys,
vol. 36, no. 1, pp. 1–34, Mar. 2004.

[19] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler,
J. M. Hellerstein, and D. A. Patterson, “High-performance
sorting on networks of workstations,” in SIGMOD, 1997.

[20] M. Rahn, P. Sanders, and J. Singler, “Scalable distributed-
memory external sorting,” 2009, available at http://arxiv.org/
abs/0910.2582.

[21] P. J. Varman, S. D. Scheufler, B. R. Iyer, and G. R. Ricard,
“Merging multiple lists on hierarchical-memory multiproces-
sors,” Journal of Parallel and Distributed Computing, vol. 12,
no. 2, pp. 171–177, Jun. 1991.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

