The Need for Dynamic Spectrum Distribution
The Need for Dynamic Spectrum Distribution

- **Large number** of small wireless networks now coexist
 - Dynamical demands, local wireless service
The Need for Dynamic Spectrum Distribution

- **Large number** of small wireless networks now coexist
 - Dynamical demands, local wireless service

- Obtaining spectrum is difficult
 - Unlicensed band → too crowded! 😞
 - Licensed band → long-term usage, pricy! 😞

GoogleWiFi Network
The Need for Dynamic Spectrum Distribution

- **Large number** of small wireless networks now coexist
 - Dynamical demands, local wireless service

- Obtaining spectrum is difficult
 - Unlicensed band → too crowded! 😞
 - Licensed band → long-term usage, pricy! 😞

- Dynamic spectrum distribution with spatial reuse

GoogleWiFi Network
“eBay in the Sky”
“eBay in the Sky”

Dynamically distribute spectrum via *auctions*
- Auctioneer auctions currently unused spectrum periodically
- Bidders bid for spectrum to match their needs
“eBay in the Sky”

Dynamically distribute spectrum via *auctions*

– Auctioneer auctions currently unused spectrum periodically
– Bidders bid for spectrum to match their needs

• Key requirements:
 – Maximize spectrum distribution efficiency
 • Enabling spectrum reuse
 – Resist bidder cheating
A Closer Look at Bidder Cheating
A Closer Look at Bidder Cheating

• Individual cheating
 – Change bid to gain unfair advantage
 – Solution: truthful spectrum auction designs
 • VERITAS [zhou08], TRUST[zhou09], [jia09]...
A Closer Look at Bidder Cheating

• Individual cheating
 – Change bid to gain unfair advantage
 – Solution: truthful spectrum auction designs
 • VERITAS [zhou08], TRUST[zhou09], [jia09]…

• Collusion
 – Cheat in groups, improving the group’s utility
 – Popular in large-scale networks
 • Example: P2P networks
 – Few studies in dynamic spectrum auctions
Our Contributions

• Understand the impact of bidder collusion in dynamic spectrum auctions

• Propose a collusion-resistant design for large scale spectrum auctions
Outline

• Is bidder collusion a serious threat to spectrum auction?

• How to address bidder collusion?

• Evaluation

• Conclusion and future works
(Truthful) Spectrum Auctions 101
(Truthful) Spectrum Auctions 101

- Must enable spatial reuse
• Must enable spatial reuse
• Must enable spatial reuse
• VERITAS: A representative truthful spectrum auction
• Must enable spatial reuse
• **VERITAS**: A representative truthful spectrum auction
(Truthful) Spectrum Auctions 101

- Must enable spatial reuse
- **VERITAS**: A representative truthful spectrum auction
- Allocation
 - Bid-dependent greedy allocation
(Truthful) Spectrum Auctions 101

- Must enable spatial reuse
- **VERITAS**: A representative truthful spectrum auction
- Allocation
 - Bid-dependent greedy allocation
• Must enable spatial reuse
• **VERITAS**: A representative truthful spectrum auction
• Allocation
 – Bid-dependent greedy allocation
• Pricing
 – **Critical neighbor**: for bidder i, if i bids lower than its critical neighbor, then i cannot win the auction; otherwise it wins.
An Illustrative Collusion Example

Channel

A

B

$5

C

$4

D

$3

$1

$5
An Illustrative Collusion Example

- Winner-Critical Neighbor (WCN) Collusion
 - B identifies critical neighbor C
 - B pays C to bid lower
 - B wins and pays ONLY $1
 → Improve (B, C)'s group utility
An Illustrative Collusion Example

- **Winner-Critical Neighbor (WCN) Collusion**
 - B identifies critical neighbor C
 - B pays C to bid lower
 - B wins and pays ONLY $1

\rightarrow *Improve (B, C)'s group utility*
An Illustrative Collusion Example

- **Winner-Critical Neighbor (WCN) Collusion**
 - B identifies critical neighbor C
 - B pays C to bid lower
 - B wins and pays ONLY $1

 \[
 \rightarrow \text{Improve (B, C)'s group utility}
 \]

\[
\text{Price(B)} = $1
\]
Impact of WCN Collusion

- Impact on auction revenue
 - 4000 bidders, 100 random rounds, WCN collusion
Impact of WCN Collusion

• Impact on auction revenue
 – 4000 bidders, 100 random rounds, WCN collusion

Single Collusion group
Impact of WCN Collusion

- Impact on auction revenue
 - 4000 bidders, 100 random rounds, WCN collusion

Single Collusion group
Impact of WCN Collusion

- Impact on auction revenue
 - 4000 bidders, 100 random rounds, WCN collusion

Single Collusion group

Multiple Collusion groups

![CDF Graph]

Normalized revenue loss (in log scale)

Up to 50% revenue loss!
• Is bidder collusion a serious threat to spectrum auction? – Yes, small-size bidder collusion is a huge threat

How to address bidder collusion?

• Evaluation

• Conclusion and future works
Our Methodology
Our Methodology

• **Prevention** rather than detection
 – ‘Needle in a hay’: hard to detect small size collusion group
 – Prevention \equiv nullify collusion gain \Rightarrow no gain, no collusion
Our Methodology

- **Prevention** rather than detection
 - ‘Needle in a hay’: hard to detect small size collusion group
 - Prevention \equiv nullify collusion gain \Rightarrow no gain, no collusion

- **Soft prevention** rather than hard prevention
 - Hard prevention \Rightarrow unbounded revenue loss
 - Soft prevention \equiv prob.(successful collusion) $< p$
Our Methodology

- **Prevention rather than detection**
 - ‘Needle in a hay’: hard to detect small size collusion group
 - Prevention \equiv nullify collusion gain \Rightarrow no gain, no collusion

- **Soft prevention rather than hard prevention**
 - Hard prevention \Rightarrow unbounded revenue loss
 - Soft prevention \equiv prob.(successful collusion) $< p$

- **Soft prevention while enabling spectrum reuse**
 - Existing designs assume “all conflict” or “none conflicts”
 - Need new design
Athena Spectrum Auctions
Athena Spectrum Auctions

Enabling spectrum reuse
Athena Spectrum Auctions

Enabling spectrum reuse

- Form bidder segments
- Bidders in each segment do not conflict
Athena Spectrum Auctions

- Enabling spectrum reuse
 - Form bidder segments
 - Bidders in each segment do not conflict

- Diminishing collusion gain
Athena Spectrum Auctions

- Enabling spectrum reuse
 - Form bidder segments
 - Bidders in each segment do not conflict

- Diminishing collusion gain

...
Athena Spectrum Auctions

- **Enabling spectrum reuse**
 - Form bidder segments
 - Bidders in each segment do not conflict

- **Diminishing collusion gain**
 - Tackle collusion within a segment
 - Use collusion-resistant design (tCP) to choose potential winners in each segment
Athena Spectrum Auctions

- **Enabling spectrum reuse**
 - Form bidder segments
 - Bidders in each segment do not conflict

- **Diminishing collusion gain**
 - Tackle collusion within a segment
 - Use collusion-resistant design (tCP) to choose potential winners in each segment
Athena Spectrum Auctions

Enabling spectrum reuse
- Form bidder segments
- Bidders in each segment do not conflict

Diminishing collusion gain
- Tackle collusion within a segment
 - Use collusion-resistant design (tCP) to choose potential winners in each segment
- Tackle collusion across segments
 - Add *randomness* to winning segment selection
Enabling spectrum reuse

- Form bidder segments
- Bidders in each segment do not conflict

Diminishing collusion gain

- Tackle collusion within a segment
 - Use collusion-resistant design (tCP) to choose potential winners in each segment

- Tackle collusion across segments
 - Add randomness to winning segment selection
Divide

Conquer

Combine
Detailed Design

- Divide bidders into segments
- Bidders in each segment do not conflict
- Partition is bid-independent
Detailed Design

Divide

Conquer

Combine

Segment 1

Segment 2

Segment 1

Segment 2

...
Detailed Design

- For each segment i, select potential winners using a uniform price p_i
- tCP method1: make p_i insensitive to bid changes within segment i
 → no gain for intra-segment collusion

1: [goldberg03]
Detailed Design

- Estimate each segment’s revenue
- Choose winning segments based on estimated revenue
- Add randomness in revenue estimation to diminish the impact of inter-segment collusion
Detailed Design

- Divide
 - Estimate each segment’s revenue
 - Choose winning segments based on estimated revenue
 - Add randomness in revenue estimation to diminish the impact of inter-segment collusion

- Conquer
 - Combine

Segment 1

Segment 2

Segment 1

Segment 2

Final winners & prices

Estimated Revenue $

Estimated Revenue $
Summary

Divide
- Spatial reuse by bid-independent partition

Conquer
- Addressing collusion within segment

Combine
- Addressing collusion across segments
Athena’s collusion resistance

- \((t, p)\)-truthfulness: with probability \(\geq p\), no collusion group of \(\leq t\) bidders can improve group utility by collusion
 - Athena achieves \((t, p)\)-truthfulness, \(p\) depends on \(t\) and the #winners in the smallest segment
Fine-Tuning Athena

• **Segment sizes** affect the choice of the pricing scheme in ‘Conquer’ in order to maximize revenue given \((t, p)\)
 - Uniform segment sizes
 - Non-uniform segment sizes
 - Carefully select segments running tCP and their configurations

• Athena’s revenue bound
 - When all segments run tCP, the distance of Athena’s revenue to the optimal is a function of \(t, p, \text{and segment sizes}\)
• Is bidder collusion a serious threat to spectrum auction? – Yes, small-size bidder collusion is a huge threat

• How to address bidder collusion?

• Evaluation

• Conclusion and future works
Evaluating Athena
• **Challenge:** bidder behaviors are hard to model
Evaluating Athena

- **Challenge:** bidder behaviors are hard to model
- **Solution:** Combine theory and experiments
 - Theory proof for *any* bids;
 - Experiment with *typical* bid patterns;
Evaluating Athena

- **Challenge:** bidder behaviors are hard to model
- **Solution:** Combine theory and experiments
 - Theory proof for *any* bids;
 - Experiment with *typical* bid patterns;

- **Case study 1:** Effectiveness on resisting collusion
 - Can Athena diminish collusion group gain?
Evaluating Athena

- **Challenge**: bidder behaviors are hard to model
- **Solution**: Combine theory and experiments
 - Theory proof for *any* bids;
 - Experiment with *typical* bid patterns;

- **Case study 1**: Effectiveness on resisting collusion
 - Can Athena diminish collusion group gain?

- **Case study 2**: The cost of collusion resistance
 - How much revenue Athena needs to sacrifice for collusion-resistance?
 - Compare to VERITAS (truthful auctions)
Athena’s Collusion Resistance
Athena’s Collusion Resistance

• Experimental result \((t = 2, p = 0.9)\)
 – WCN collusion as an example

![Graph showing CDF of utility gain of each collusion group with two lines representing Athena and VERITAS.](image)
Athena’s Collusion Resistance

- Experimental result \(t = 2, \ p = 0.9 \)
 - WCN collusion as an example

![Graph showing CDF of utility gain of each collusion group with Athena and VERITAS comparing to no incentive, no collusion scenario.](image)
The Cost of Collusion-Resistance

Normalized revenue loss = \(1 - \frac{\text{Revenue}}{\text{VERITAS revenue}} \)
The Cost of Collusion-Resistance

Normalized revenue loss = 1 - \(\frac{\text{Revenue}}{\text{VERITAS revenue}} \)

CDF

Normalized revenue loss

Athena(2, 0.8)
Athena(2, 0.9)
The Cost of Collusion-Resistance

Normalized revenue loss = 1 - \frac{Revenue}{VERITAS revenue}

10\% - 20\% revenue loss
The Cost of Collusion-Resistance

Normalized revenue loss = 1 - \(\frac{\text{Revenue}}{\text{VERITAS revenue}} \)
Conclusion and Future Works
Conclusion and Future Works

- **Small-size** collusion is harmful
 - Huge revenue degradation
 - Complex interference constraints amplify the impact
Conclusion and Future Works

- **Small-size** collusion is harmful
 - Huge revenue degradation
 - Complex interference constraints amplify the impact

- **Athena**: efficient collusion-resistant spectrum auction design
 - Utilizes *randomization* to diminish the collusion gain, enabling reuse
 - Customizable collusion-resistance
Conclusion and Future Works

• **Small-size** collusion is harmful
 – Huge revenue degradation
 – Complex interference constraints amplify the impact

• Athena: efficient collusion-resistant spectrum auction design
 – Utilizes **randomization** to diminish the collusion gain, enabling reuse
 – Customizable collusion-resistance

• Future work
 – Extend to multi-channel request
 – Explore the optimal segment formation
• Thanks!

For more information, please visit:
http://link.cs.ucsb.edu/project/mercury.html
BACK-UP SLIDES
For all \((t, p)\)
Comparing to Posted Price

- Assuming no bidders collude due to the awareness of the design’s collusion resistance

\[
\text{Normalized revenue loss} = 1 - \frac{\text{Revenue}}{\text{VERITAS revenue}}
\]

10% ~ 100% revenue loss