3D Beamforming for Wireless Data Centers

Weile Zhang+, Xia Zhou, Lei Yang*, Zengbin Zhang, Ben Y. Zhao and Haitao Zheng

University of California, Santa Barbara, USA
+Xi’an Jiaotong University, Xi’an, China
*Intel Labs, Hillsboro, USA

HotNets 2011
Challenges in Data Centers

- Measurements show that many applications generate short-lived traffic bursts across racks → Sporadic congestion

Possible Solutions
- Add wired links/switches for capacity
 - Extremely high cost
- Change data center architecture
 - High complexity in wiring + labor cost
Wireless Data Centers

• Augmenting data center with wireless links
• 60 GHz wireless technology
 – 7 GHz unlicensed band → multi-Gbps data rate
 – Fast signal attenuation → short transmission range
• Key benefit: Flexible link configurations
60GHz Beamforming

• Extend transmission range by concentrating energy in desired direction

Omni antenna

Directional antenna

• Achievable using horn antenna or antenna array

• But there are limitations
Limitation #1: Link Blockage

• Transmissions easily blocked by small obstacles
 – Wave length of 60 GHz signal is only \(5\text{mm}\)
 – Any obstacle larger than \(2.5\text{mm}\) can block the signal!

• Must use multi-hop forwarding
 – Particularly harmful due to antenna rotation overhead
Limitation #2: Radio Interference

- Beam interferes with racks in its direction
 - Exacerbated by dense rack layouts
 - Signal leakage makes it worse
 - Result: very few links can be active at the same time

How do we address these limitations?
3D Beamforming

Reuse existing hardware, low maintenance cost!

A
B
C

Reflector
Absorber

HotNets 2011
3D Beamforming

- Reuse existing hardware, low maintenance cost!

Benefits over 2D Beamforming
- Extended connectivity
- Reduced interference
A Closer Look at Reduced Interference

Horn antenna

Antenna array

2D

3D
Impact on Data Centers

• Case study
 – Rack-based layout (160 racks, SIGCOMM’11)
 – Bi-directional link w/ data rate ≥ 5.53 Gbps

• Observations

 Connect any two racks via a **single hop**

 75% of them can be on **concurrently**!

 94% of links can be on concurrently when using ≤ 2 hops

 More than half w/ data rate > 10 Gbps! (0.5 Tbps to the network)

Similar observations hold for container-based layout
Impact on Data Centers

• Case study
 – Rack-based layout (160 racks, SIGCOMM’11)
 – Bi-directional links w/ data rate ≥ 5.53 Gbps

• Observations

 Connect any two racks via a single hop

 Create a highly flexible network with data rates closed to wired networks

 More than half w/ $10+$ Gbps data rate! (0.5 Tbps to the network)

Similar observations hold for container-based layouts
Long-Term Implications

• Flexible traffic scheduling
 – Point-to-point link, eliminating cable constraints

• Easy rack movement/replacement
 – Quick calibration of beam direction

→ Moving towards full wireless data centers
Deployment Challenges

• Placing racks/reflectors
 – Raised floor
 – Use existing metal surface
 – Use cable trays to cover wiring

• Rotating antenna to meet traffic dynamics
 – Horn antenna: a few seconds
 – Antenna array: 50ns

• Connection management
 – Coordinating TX and RX
 – Scheduling concurrent links
 – Diagnosing network faults
Conclusion

• 3D beamforming as a new wireless primitive for wireless in data centers
 – Extends the reach of wireless links and reduces interference
 – Solves key limitations of today’s 60GHz links

• Still, challenges ahead towards fully-wireless data centers
 – Physical and network management
 – Experimental testbed
Thank you!