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ABSTRACT
Most of today’s mobile devices come equipped with both cellu-
lar LTE and WiFi wireless radios, making radio bundling (simul-
taneous data transfers over multiple interfaces) both appealing and
practical. Despite recent studies documenting the benefits of radio
bundling with MPTCP, many fundamental questions remain about
potential gains from radio bundling, or the relationship between
performance and energy consumption in these scenarios.

In this study, we seek to answer these questions using extensive
measurements to empirically characterize both energy and perfor-
mance for radio bundling approaches. In doing so, we quantify
potential gains of bundling using MPTCP versus an ideal protocol.
We study the links between traffic partitioning and bundling perfor-
mance, and use a novel componentized energy model to quantify
the energy consumed by CPUs (and radios) during traffic manage-
ment. Our results show that MPTCP achieves only a fraction of the
total performance gain possible, and that its energy-agnostic design
leads to considerable power consumption by the CPU. We conclude
that not only there is room for improved bundling performance, but
an energy-aware bundling protocol is likely to achieve a much bet-
ter tradeoff between performance and power consumption.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques, Model-
ing techniques; C.2.3 [Network Operations]: Network manage-
ment

Keywords
Radio Bundling; Energy Consumption; Throughput Performance

1. INTRODUCTION
Connectivity options for mobile devices have dramatically evolved

in the last decade. First, for today’s mobile devices, multiple wire-
less interfacese.g. cellular, WiFi and Bluetooth, are the norm,
not the exception. Second, cellular LTE is not only widely de-
ployed, but offers peak download rates that match or surpass mod-
ern WiFi speeds. In a world of ever-increasing demands for im-
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proved network performance, these factors make the concept ofra-
dio bundlingboth practical and highly appealing.

A flow using radio bundling transfers data simultaneously over
multiple wireless networks [1, 2, 19, 25, 35, 26], and works best
at locations where WiFi and LTE performance is comparable. To-
day’s mobile data access is dominated by public or outdoor loca-
tions, where WiFi cannot match the performance of residential/pri-
vate environments due to range limitations and uncontrolled con-
tention between public WiFi users. Our own measurements across
five US cities shows that smartphones’ outdoor WiFi throughput
varies significantly between 0.21Mbps and 14.5Mbps, while LTE
throughput at the same locations mostly range between 1Mbps to
as high as 16Mbps. Another measurement study has shown that the
median LTE throughput is 4-5 times higher than that of WiFi while
the performance of the 3G family largely lags behind LTE [20].

While it is tempting to draw early conclusions about the efficacy
and practicality of radio bundling for mobile devices, many funda-
mental questions remain. First, what are the performance limits of
radio bundling under constraints of realistic environments? What is
themaximumbenefit that can be provided by bundling on today’s
devices, assuming we had an ideal transport protocol to take ad-
vantage of available bandwidth? Second, what are the energy costs
of achieving that performance gain, given the increasing power de-
mands of today’s mobile applications? What role, if any, does traf-
fic management and the CPU play in the energy profile of radio
bundling protocols? Answers to these fundamental questions will
shed light on the true relationship between energy consumption and
bundling performance, and enable us not only to understand the
performance and energy profile of current protocols, but to predict
the behavior of future protocols.

The goals of our work sets it apart from prior work in several
ways. First, where we seek to understand the fundamental limits
of radio bundling, prior work on radio bundling consistently rely
on experiments with MPTCP [30] as the default transport proto-
col. These studies provide a single data point in the performance
vs. energy tradeoff space. And since MPTCP was not designed for
wireless interfaces or considering energy constraints, these results
often underestimate the potential benefits of bundling. Second, we
seek to build a detailed and accuratecomponentizedenergy model
for mobile devices, which would allow us to attribute energy con-
sumption to specific components like the CPU. This is critical to
a true understanding of the CPU’s role in energy consumption in
bundling scenarios. Finally, given the close relationship between
energy consumption and performance, we consider it critical to
characterize energy and performance on full protocol implemen-
tations on actual mobile devices.
Measurement Methodology. Our measurement study includes
three key steps.First, we instrumented multiple LTE-capable An-



droid smartphones to operate simultaneously on both LTE and WiFi
networks, and developed an Android application that enables data
transfers using bundling. We performed measurements at 63 out-
door locations in 5 US cities, characterizing energy and network
performance for both radio bundling and single radio methods.Sec-
ond, for both bundling and single radio methods, we developed ac-
curate power models to characterize total and individual contribu-
tions of both the dual-core CPU and network interfaces (WiFi and
LTE). Finally, we performed detailed analysis to identify critical
issues in implementing smartphone radio bundling,e.g. traffic par-
titioning. We also implemented and compared a protocol-level so-
lution (MPTCP [30]) against an application-level solution on both
energy and network performance.

We summarize our key findings below.

• Performance: We empirically characterize energy and performance
of radio bundling protocols in the wild, and compare two differ-
ent bundling implementations (optimal bundling that maximizes
throughput and MPTCP). Bundling always outperforms single ra-
dio access methods (e.g.,best radio, radio switching) in network
throughput. More importantly, performance gain varies signifi-
cantly across different RF environment conditions, and is sensitive
to the relative throughput between WiFi and LTE links.

• Energy Consumption: We provide the first detailed power model
on radio bundling that characterizes contributions of individual
components (dual-core CPU and two radio interfaces). Bundling
dual radios increases instantaneous power draw, but total energy
is lowered by reduction in transfer times. More importantly, we
show that the CPU can be a key contributor to energy consump-
tion, and must be carefully considered in any energy-aware bundling
solution. When modeling energy consumption in bundling proto-
cols, our energy profiler achieves<8% error rate, compared to
17% in the state of the art [22].

• Performance vs. Energy Tradeoff: Finally, our measurements and
analysis shows that performance gains from bundling are heavily
dependent on traffic partitioning algorithms, and naive approaches
can actually perform worse than single radio operations. Most im-
portantly, MPTCP achieves only between 40%-85% of the total
gains possible from bundling, and incurs a considerable energy
cost in its CPU utilization. Clearly, there is both a need and an op-
portunity to design an energy-aware radio bundling protocol with
an improved energy-performance tradeoff.

Limitations and Future Work. Our measurement study has
several limitations that we plan to address in future work.First, be-
cause bundling is rarely used today, we only study its performance
from a single user perspective without considering its network-level
impact in case of wide adoption. We believe that our results can
stimulate development and adoption of bundling systems, and build
the groundwork for studies of network impact.Second, we did not
consider network service costs, which can affect a user’s decision
on bundling and limit the amount of data transfer on LTE. We plan
to investigate how bundling performs subject to this constraint in
a separate study.Finally, while our methodology is general, our
study focused on the two most popular Android phone models. We
believe conclusions from our energy and performance analyses are
indicative of typical smartphones today, and we are planning to ex-
pand our study to other phone/OS models.

The rest of our paper is organized as follows. First, we de-
scribe in Section 2 our methodology for enabling radio bundling,
as well as our two implementations for traffic partitioning (optimal-
throughput and MPTCP). Next in Section 3, we describe in detail
our novel energy model for decomposing energy consumption be-
tween the CPU and network interfaces, and validate it using experi-

mental measurements. In Section 4, we describe our data collection
and dataset. This is followed by detailed analysis of performance
and energy consumption in Sections 5 and 6. Finally, we describe
related work in Section 7 and conclude (Section 8).

2. ENABLING & OPTIMIZING BUNDLING
Our goal is to empirically examine the performance of smart-

phone radio bundling at scale. In this section, we highlight the two
key components of radio bundling,turning on both radios simul-
taneouslyandpartitioning traffic between the two radios. We also
describe our Android experimentations that evaluate radio bundling
with different traffic partitioning approaches.

2.1 Turning on Both Radios
By default, modern smartphone operating systems (Android, iOS,

and Windows Mobile) do not allow simultaneous use of cellular
and WiFi networks. Even when the cellular connection is set to
“always enabled,” a smartphone will always automatically stop for-
warding data packets to the cellular interface when it establishes a
WiFi connection.

Using Android phones, we overcome this restriction by leverag-
ing a small set of undocumented Android APIs,i.e. core API calls
implemented in theConnectivityManagerclass. The key is an API
call that forces the cellular network to remain on even after a WiFi
connection is made. Using these APIs, we reconfigured the An-
droid operating system to split the routing table and forward data
traffic to both WiFi and cellular radio interfaces. Depending on
which source IP address they use, packets are forwarded through
either the WiFi interface or the cellular interface.

On top of this modification, we developed an Android applica-
tion that enables bundling-based data transfers using parallel HTTP1

connections over both WiFi and LTE. We use the Apache HTTP
Java library to open HTTP connections, since it allows us to specify
a local network interface when opening an HTTP connection. We
create two threads to manage the two parallel HTTP connections.
To download (or upload) files concurrently on both interfaces, we
set one local address to the cellular network IP and the other to the
WiFi network IP. We partition HTTP downloads (or uploads) on
the granularity of bytes, by specifying the start and end points of
the requested segment in the HTTP header. To monitor each trans-
fer, we also add an extra monitoring thread that continuously logs,
every 100ms, LTE and WiFi signal strength, CPU frequency and
usage; we also record downloaded (and uploaded) bytes by run-
ning two paralleltcpdumpcommands that listen to the two radio
interfaces respectively. Later in §3 we show that these traces are
used to project energy consumption of the data transfer.

2.2 Traffic Partitioning
The second component is partitioning data traffic between the

two radio interfaces. This can be implemented as a stand-alone
scheduler, or integrated into the transport protocol. In our experi-
ments, we use the stand-alone scheduler to evaluate bundling with
the optimal traffic partitioning that maximizes throughput, and com-
pare it to MPTCP, which embeds traffic partitioning in TCP.
Optimal. The stand-alone scheduler determines the amount
of data to transfer on each radio. The simplest approach is to
equally partition the transfer amount between the two radios. But
the data transfer ends when the weaker radio finishes its transmis-
sion. Instead, to maximize bundling throughput, an optimal sched-

1The majority of mobile applications and streaming services (e.g.
YouTube and Netflix) use HTTP [21, 24].



uler should partition traffic such that both radios finish their as-
signed transfer at the same time.

Using the bundling application described in the above, we can
emulate bundling with optimal traffic partitioning. Specifically, in
each measurement we transfer a large chunk of data on each radio,
and record the corresponding packet traces. We then “play-back”
these traces based on the traffic partitioning algorithm till the total
downloaded (or uploaded) bytes from both radios reaches the target
transfer size. This play-back analysis enables us to identify, for
each data transfer, the throughput (and delay) performance as well
as the energy drain. We will discuss this further in §4.1.
MPTCP. An alternative is to integrate traffic partitioning into
the transport layer protocol. Existing works [14, 22] have studied
MPTCP [30] as a method to using multiple radios simultaneously.
MPTCP is a transport layer protocol for multipath communications.
It partitions data transfer on the fly by observing each radio’s buffer
status. In §5 and §6 we compare the performance and energy of
MPTCP to those of optimal bundling described in the above.

To do so, we must first port MPTCP to smartphones. While prior
efforts have ported MPTCP to two Android phone models [3], both
models are outdated and do not support LTE. Instead, we were able
to port MPTCP to the popular Galaxy Note phone by configuring
the phone to Android 4.0.4, Linux kernel 3.0.8 and instrumenting
all the required changes to realize MPTCP. To support data transfer
in MPTCP, we set up an HTTP server on port 8080 because cellular
carriers (AT&T in our case) remove all TCP header options on port
80. Finally, we note that recent measurement study [14] has shown
that the choice of the radio for the primary subflow,i.e. the radio
to turn on first, can affect MPTCP performance. However, there
is no existing mechanism on how to choose this radio optimally.
Thus, for our experiments we follow the default configuration in
the original MPTCP implementation [3].

3. AN ACCURATE ENERGY MODEL
Another goal of our study is to understand the energy drain of

radio bundling and radio selection. In this section, we describe
the methodology we used to capture the energy drain of each data
transfer using either radio bundling or selection.

3.1 Key Features
Accurately measuring the energy drain of radio bundling on phones

in the wild is challenging. One option is to use a power meter (as
in [14]). However, such an approach suffers two drawbacks: (a)
the power meter is difficult to carry in field experiments and (b)
it can only report the energy drain of the entire phone. Instead,
we develop an accurate power model that captures the energy drain
of critical phone components used in radio bundling,i.e., the CPU
and network interfaces, during each data transfer. Using this model,
we can accurately project energy consumption of each data trans-
fer from the CPU log and packet trace. Our projection achieves an
error rate of<8%, compared to 17% reported by [22].

Compared with previous works studying radio bundling or radio
selection, our proposed energy model includes two key new fea-
tures that significantly boost the model’s accuracy.
Accurately Accounting for CPU Drain. In all of the recent
work on modeling power draw of cellular network interfaces (e.g.,
[7, 20, 23, 29]) and MPTCP [22], none identified the portion of
the power consumed by the CPU during data transfers,i.e. from
interrupt handling and network stack processing. As we will show
in our experiments, the CPU power draw accounts for a significant
portion of the total energy consumption during data transfers (up to
39% for radio bundling and even 80% for WiFi-only), and hence

not modeling the CPU power drain during data transfer can lead to
significant error in power modeling2.

We develop accurate power models for the dual-core CPU and
WiFi and LTE interfaces for the phones used in our experiments.
These models allow us to not only accurately derive the total energy
drain of data transfers but also study the energy-throughput trade-
offs of radio bundling versus using a single radio. Our model val-
idation below shows that incorporating CPU power modeling im-
proves energy estimation error of data transfers to be within 8.3%.
Incorporating Signal Strength. A recent work [15] showed that
the power draw of cellular and WiFi interfaces is significantly af-
fected by the wireless signal strength. But, none of the recent work
on radio selection or bundling [22] took into consideration the im-
pact of wireless signal strength on the accuracy of power modeling.
In contrast, we develop accurate signal-strength-aware power mod-
els for LTE and WiFi for the phones used in our experiments and
use them in our study of energy drain of data transfers in the wild.

3.2 Model Details
CPU Power Modeling. To capture the CPU power draw dur-
ing data transfers we first developed a power model for the dual-
core CPUs used in the two smartphones. In training the model, we
used the power meter to measure the power draw of the CPU under
different frequencies with only one core turned on, while running
microbenchmarks. We then repeated the process with both cores
turned on. Table 2 in Appendix A shows the CPU power draw at
100% CPU utilization for both phones under a range of frequen-
cies. Single-core results are shown with Core1 turned off.

To use the CPU model in data transfer experiments, we logged
the frequencies of the two cores as well as each core’s utilization
once every 100ms during data transfers. Then in post-processing,
we predicted the CPU power over each 100ms time interval based
on the logged CPU frequency and utilization,i.e. as the power draw
at that frequency under 100% utilization weighted by its actual uti-
lization. Finally, we summed up the energy consumed by the CPU
in each 100ms bin to arrive at the total CPU energy consumption
for the entire data transfer.
WiFi and LTE Power Modeling. WiFi and LTE interfaces have
multiple power states (see Appendix A) and the power draw and
duration at each state and state transitions are affected by the wire-
less signal strength in significant ways [15]. To develop signal-
strength-aware WiFi and LTE power models for our phones, we
followed the procedure in [15]. Specifically, in training the models,
we connected the phone to the power meter and ran data trans-
fer microbenchmarks. While the power meter collects the power
profile, we also recorded the traffic via tcpdump alongside signal
strength values via Android APIs as well as core frequencies and
the CPU utilization. We varied the signal strength received by the
phone by adjusting the distance between the phone and the AP for
WiFi experiments and changing the location of the phone for LTE
experiments. In post-processing, we synchronized the power pro-
file from the power meter, tcpdump and signal strength traces. We
derived the power draw by the radio interface(s) by subtracting the
CPU power from the total power. We inferred the different power
states of LTE and WiFi following the procedure in [20, 15] and
derived the various parameters of the signal-strength-aware power
state machine for each interface (see Appendix A).

To use the power models to estimate the power draw by different
interfaces during data transfer experiments, we collectedtcpdump
data and signal strength traces on each interface during data trans-
fers. Then in post-processing, we drove our power state machines

2In fact, the authors of [22] reported 17% error in power modeling.



Table 1: Average prediction error of total energy on Galaxy S III
Transfer Size (MB) 0.5 1 2 4 5
Error under

WiFi 5.5% 4.0% 7.2% 8.1% 5.4%
LTE 7.6% 1.0% 8.1% 2.6% 3.0%

Bundling 7.0% 1.7% 3.0% 3.9% 8.3%

using our tcpdump traces, and recorded the total energy consumed
by each interface as it transitions between its power states.

3.3 Model Validation
We validated the above CPU/WiFi/LTE power models as fol-

lows. We use the same app as used in our measurement experiments
to perform 0.5MB, 1MB, 2MB, 4MB, and 5MB data transfers, un-
der WiFi only, LTE only, and bundling the two, respectively, at 10
random locations on the two measurement phones. During each
download (or upload), the power meter is connected to the phone
to read the actual power draw, and the CPU frequencies, tcpdump
and signal strength traces are collected. We calculate the accuracy
of the power models by comparing the predicted total energy drain
against that of the power meter reading.

Table 1 shows the results for Galaxy SIII phones. The results
for Galaxy Note are similar and omitted. We observe that the aver-
age prediction errors vary between 4–8.1%, 1–8.1%, and 1.7–8.3%,
under the three radio scenarios respectively.
Difference from Existing Power Models. Our power mod-
els for individual radios differ from those in [20]. One key cause
is the difference in phones used in the measurement: [20] used
an HTC phone (Qualcomm Snapdragon S2 MSM8655 SoC, An-
droid 2.2.1 OS) while we use two newer models: Samsung Galaxy
Note (Qualcomm Snapdragon S3 MSM8660 SoC, Android 4.0.4
OS) and Samsung Galaxy SIII (Snapdragon S4 MSM8960 SoC,
Android 4.0.4 OS).The other cause is the newer LTE deployment.
For example, an author of [20] has confirmed with us they now
also observe zero tail power for LTE on their HTC phone (which
was 1000mW in [20]), same as in our LTE model (Table 3).

4. DATA COLLECTION
Before presenting the results of our throughput and energy anal-

ysis, we first describe the underlying data collection process that
allow us to explore and compare radio bundling and selection effi-
ciently. We then describe the resulting dataset used for our analysis.

4.1 Efficient Data Collection
To evaluate radio bundling/selection, we seek to compare six dif-

ferent options in radio usage:LTE-only, WiFi-only, Best Radio[13]
(i.e. using the better radio),Radio Switching[25], MPTCP, and
Bundling(with optimal data partitioning).

To do so, we face two immediate challenges.First, we need to
ensure a fair, consistent comparison across all six options. One
might use six collocated smartphones, one for each option, to per-
form data transfer simultaneously. This, however, introduces local
traffic contention in both LTE and WiFi networks that pollutes the
results. An alternative is to sequentially test each option in isola-
tion, which can also introduce discrepancy due to temporal varia-
tions in both signal quality and network traffic.Second, it is impor-
tant to understand the impact of transfer file size, which has been
shown to largely affect the MPTCP performance [22, 14]. Yet ex-
perimenting with individual file sizes is extremely time consuming
and faces the same temporal discrepancy problem.
Coupling Measurements with Replay Analysis. We address
these challenges by combining sequential measurements with packet

trace “replay” analysis. Specifically, we perform multiple rounds
of data transfer experiments in each location. In each round of ex-
periments, we configure the smartphones to operate in one of the
three modes sequentially (“Bundling”, “MPTCP”, “single-radio”)
and record detailed packet traces. For “single-radio” we use two
identical and collocated smartphones, each with only one radio on
and performing data transfer (download or upload) of sizexMB

in total. For “MPTCP” we turn on both radios and perform data
transfer ofxMB in total. For “Bundling” we turn on both radios
and run our bundling application to download (or upload)xMB

on each individual radio3. For our study, we chosex = 5MB

so that the maximum transfer size is5MB. For all the experi-
ments/locations, we observed that the three sequential experiments
were separated by at most5s-10s. This time lag is small and thus
the variation in network traffic condition should be small. We also
examined signal strength variability during our experiments to con-
firm that signal strength patterns for both radio interfaces remained
nearly identical across the three experiments.

Next, we perform “replay” analysis on the collected packet traces,
from which we derive throughput and energy performance at vary-
ing transfer sizes. Given a target file transfer sizey (y ≤ 5MB),
we identify the corresponding segment of packet traces by termi-
nating the “replay” at the time point where the total transfer reaches
y. Applying the same methodology, we characterize performance
of radio switching [25] and radio selection [13] by determining the
target file transfer size on each radio accordingly. For these two op-
tions, we consider their ideal realization that maximizes the average
throughput. That is, we assume they all make the optimal decision
on the choice of radio or traffic partitioning between the two radios.
For Best Radio we compare the average throughput of WiFi-only
and LTE-only and pick the radio with the better throughput. For
Radio Switching we monitor the instantaneous throughput of both
radios continuously to make the optimal switching decision. We
use the switching overhead measured by [25].

4.2 Dataset
Our efforts produced data transfer measurements at 63outdoor

locations in 5 US cities, Boston (MA), Chicago (IL), Lafayette
(IN), Miami (FL), Santa Barbara (CA), between March and Octo-
ber 2013. Our experiments used two Android phones: Galaxy Note
and Galaxy SIII4. Among all the measurement locations, 32 loca-
tions were using Galaxy Note and 31 using Galaxy SIII. At each
location, we performed 6 rounds of data transfer measurements, 3
for download and 3 for upload. This produced a total of 378 mea-
surement instances where each instance contains the packet traces
for all six radio usage options.

All measurement locations had LTE cellular services and pub-
lic WiFi connections,i.e. outdoor malls, coffee shops and cam-
pus networks. We used the AT&T LTE network in all the exper-
iments. While both phones support 802.11a/b/g/n in 2.4GHz and
5GHz, we found that all WiFi connections in our experiments used
802.11b/g/n in 2.4GHz. We performed all experiments with only
our measurement applications running and no applications running
in the background.
Representing RF conditions. Our measurements at locations
across multiple cities allow us to evaluate radio bundling/selection

3The extra data transfer for “Bundling” is to ensure that we can
always emulate bundling with optimal traffic partitioning.
4While there are differet varieties of Android LTE-capable phones,
our experiments used the above two smartphones because at the
time of our experiments they were the twomost popular Android
phonesand their radio chipsets were the twomost used chipsets
among all LTE-capable Android phones [4].
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 0

 0.2

 0.4

 0.6

 0.8

 1

10-2 10-1 100 101 102R
at

io
 o

ve
r 

Id
ea

l B
un

dl
in

g

Relative WiFi/LTE Throughput Ratio

Best Radio Switching

(b) Online selection vs. Bundling, avg throughput
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(c) MPTCP vs. Bundling, avg throughput
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(d) Static selection vs. Bundling, tail Throughput
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(e) Online selection vs. Bundling, tail Throughput
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(f) MPTCP vs. Bundling, Tail Throughput

Figure 1: Comparing the five radio usage options with Bundling in termsof average and tail throughput. The result is shown as the ratio of
throughput over Bundling RX for option X vs. the relative WiFi/LTE throughput q.

under different RF conditions. We capture these conditions in terms
of the relative qualityof the two radios. That is, we compute the
average throughput of WiFi and LTE, and define the relative qual-
ity as q = thptWiFi

thptLTE
. For example,q = 10−2 means that WiFi

throughput is 100x weaker than LTE, andq = 102 means that WiFi
is 100x faster than LTE in average.

Next, we perform detailed analysis on this dataset to understand
the throughput and energy performance of radio bundling over ra-
dio selection and MPTCP.

5. THROUGHPUT ANALYSIS
We now present our analysis on bundling throughput. Our goal

is to understand whether radio bundling provides large advantages
in data throughput over radio selection, and if so, where the gain
comes from. In addition, we also seek to identify whether today’s
bundling implementation,i.e. MPTCP, can fulfill this potential.
Throughput (or Delay) Metrics. For this, we evaluate the
six radio usage options based on two throughput metrics. The
first metric isaverage throughput, computed as the total transfer
amount divided by the total transfer time. The second metric is
tail throughput, computed as the bottom 10 percentile value of the
instantaneous throughput during the data transfer, where the instan-
taneous throughput is computed every100ms. Essentially, the av-
erage throughput directly reflects the overall download (or upload)
delay, while the tail throughput reflects the maximum instantaneous
delay in each direction.

Using the dataset described in §4, we compare the five radio us-
age options (LTE-only, WiFi-only, Best Radio, Radio Switching,
MPTCP) to Bundling (with optimal data partitioning) in terms of
the normalized ratio over Bundling:

RX =
THOUGHPUTX

THOUGHPUTbundling

, (1)

whereX is one of the five options. As mentioned in §4, we apply
sequential measurements with replay data analysis such that the
comparison across different options is fair and consistent. We mix
the results of the two smartphones as well as download and upload
scenarios because they lead to the same pattern inRX .

5.1 Bundling vs. Radio Selection
We first compare Bundling to static radio selection,i.e. LTE-

only and WiFi-only, and online radio selection,i.e. Best Radio and

Radio Switching. In Figure 1 we plot theRX results againstq, the
relative WiFi/LTE quality, for both the average and tail through-
put. We have tested different data transfer sizes between 512K and
5MB, and found that they led to similar trends (discussed later in
§5.3 and Figure 3). For brevity we only show the results for 5MB.
Improvement over Static Radio Selection. Figure 1(a) shows
that in terms of average throughput, theRX of the two static radio
selection options are both strongly correlated withq, i.e.RLTE−only ≈
1

1+q
andRWiFi−only ≈

q

1+q
. This is because the throughput of

Bundling is pretty much the sum of the LTE radio throughput and
the WiFi throughput.

On the other hand, Figure 1(d) shows that in terms of tail through-
put, the gain of Bundling is much more evident and displays a
larger variance overq. For example, the gain can reach more than
19x when LTE is 5-10x stronger than WiFi. This is because dur-
ing data transfer, each individual radio often experiences temporal
variations in signal quality,e.g. due to channel fading or interfer-
ence. Even after averaging over 100ms, the corresponding “instan-
taneous” throughput trace can still contain deep holes. Bundling,
on the other hand, can effectively suppress these deep holes by us-
ing both radios simultaneously.
Improvement over Online Radio Selection. For Best Ra-
dio that always picks the stronger radio for data transfer, theRX

of average throughput is the upper bound of WiFi-only and LTE-
only: RX ≈ max( 1

1+q
, q

1+q
). In this case, Bundling is the most

beneficial (i.e. with 2x throughput gain) when the two radios have
similar throughput (q = 1). In terms of tail throughput, the gain of
Bundling can be significant (>10x) regardless ofq. This is because
Best Radio still uses the same radio for the entire data transfer who
can experience deep fades over time.

When it comes toRadio Switchingwhich selects the stronger
radio on the fly, the gain of Bundling can reach 5x for average
throughput and 10x for tail throughput (see Figure 1(b)(e)). This
is somewhat surprising since Radio Switching should perform bet-
ter than Best Radio. We found that this is due to the overhead of
Radio Switching. As shown by [25], the minimum time to switch
from cellular to WiFi is 1212ms and from WiFi to cellular 196ms,
during which data transmission is disabled. As a reference, we also
compared Bundling to instantaneous Radio Switching,i.e. zero
switching delay, and found that Bundling still achieves up to 2x
throughput gain.



Source of Bundling Gain. Our results show that radio Bundling
can significantly boost smartphone throughput. Next we dig deeper
in our results to understand the key triggers for such improvement.
Specifically, we seek to understand whether Bundling can fully uti-
lize both radios. One concern is that Bundling could negatively
affect the performance of each single radio,e.g. due to CPU com-
petition or radio interference.

To answer this question, we compare each radio’s individual
throughput with and without bundling using our measurements on
WiFi-only, LTE-only and Bundling5. Our results (omitted for brevity)
confirm that for both WiFi and LTE radios, throughput remains
similar with and without bundling. This shows that at least for
two popular Android phones [5, 6], bundling LTE and WiFi ra-
dios does not negatively impact each radio’s performance. That
is, the throughput achieved by Bundling is the sum of each radio’s
throughput operating in isolation.

We suspect that the observed radio independence is due to two
factors. First, the carrier frequencies of LTE (700/1700MHz) and
WiFi (2.4GHz) are widely separated, so the two co-located radios
do not physically interfere with each other.Second, modern smart-
phones have two CPU cores, and multi-threaded applications such
as our bundling application minimize CPU contention by spreading
load across cores. We confirm this via observing the CPU utiliza-
tion on the two cores (Core 0 and Core 1) of Galaxy Note and
Galaxy SIII phones. Specifically, we observe that for all the exper-
iments without bundling, Core 0 is utilized while Core 1 is rarely
used. Yet during bundling, Core 1’s utilization increases largely
while that of Core 0 remains unaffected.

5.2 Bundling vs. MPTCP
Figure 1(c) and (f) compare MPTCP to Bundling with optimal

traffic partitioning. In terms of average throughput, MPTCP is able
to achieve 50%-80% of the optimal bundling performance. The
gap is slightly larger for tail throughput. A more detailed analysis
on the traces reveals that the performance gap is mostly caused by
the fact that MPTCP often “sacrifices” its throughput to maintain
fairness between MPTCP and non-MPTCP clients. For example,
if one radio path becomes congested, MPTCP immediately lowers
the data transfer on this path more than that of conventional TCP
designs. Thus, the current MPTCP design is unable to fully utilize
both radios during bundling.

We also observe that compared to radio selection, MPTCP is
insensitive to the relative RF condition between WiFi and LTE.
This comes from the fact that MPTCP can utilize two radios si-
multaneously who compensate each other during deep fades. How-
ever, when the difference between LTE and WiFi radios is large
(q < 10−1 and q > 101), online radio selection outperforms
MPTCP largely. This is partially because our online radio selec-
tion assumes optimal choice of radio to use while MPTCP uses a
sub-optimal traffic partitioning algorithm.
Importance of Traffic Partitioning. To further understand the
impact of traffic partitioning on Bundling performance, we repeat
our analysis using three sub-optimal traffic partitioning algorithms:

• Even: It simply partitions the data transfer into two equal parts,
one for each radio.

• Naive: It first sends a small amount of data,e.g. 100KB6 on the
two radios to estimate their throughputs. It then partitions data
based on the ratio of the two throughput values.

5As discussed earlier in §4, while these measurements take place
sequentially, we only consider data where the signal strength pat-
tern remains similar across all three measurements.
6We tried 200KB and 300KB and they led to similar results.
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Figure 2: Impact of traffic partitioning in bundling implementation.

• Noisy: It assumes anoisyestimate of the average throughput for
each radio over time, and uses this metric to estimate the transfer
amount for each interface. For this, we add zero-mean Gaussian
noise on the actual average throughput and set its standard devia-
tion to be 2% (and 50%) of the actual average throughput.

Figure 2 compares the above algorithms and MPTCP to the Bundling
with optimal traffic partitioning. We make three key observations.
First, algorithms like “even” that do not consider the current radio
quality perform poorly. In fact it is often worse than single radio
methods.Second, the bundling performance is sensitive to errors in
projecting each radio’s throughput. Among Naive, Noisy-2% and
Noisy-50%, Naive performs the worst because it uses the instanta-
neous throughput measured in the first 400-600ms to estimate the
average throughput over time, leading to the largest prediction er-
ror. For 90% of the measurement instances, Noisy-2% achieves at
least 85% of the optimal bundling throughput, while Noisy-50%
achieves at least 70%. This again demonstrates the importance of
accurate throughput estimation in implementing bundling. Finally,
by partitioning traffic on the fly based on buffer status, MPTCP lies
in between Naive and Noisy-50%. Thus, there is definitely room
for further improvement.

5.3 Impact of Data Transfer Size
We also carry out our throughput analysis under transfer data size

between 512KB to 5MB. We chose these file sizes because recent
measurement studies have shown that smartphone traffic is dom-
inated by large media flows that consist of data chunks of 1MB
or larger [21]. For example, typical YouTube files are divided
in blocks of size 512KB, while Netflix transfers blocks of either
1.8MB or 5.2MB in size [12].

Figure 3 plots, for the five transfer sizes between 512KB and
5MB, the CDF ofRX (for average throughput) across all the mea-
surement instances. We observe similar trends in tail throughput
and thus omit the results for brevity. For both MPTCP and the
four configurations of radio selection, the statistics ofRX remain
consistent across all transfer sizes. The values ofRX are slightly
higher for 512KB and 1MB transfers, but quickly converge as the
transfer size grows. This is mostly because TCP slow start prevents
the bundling link to be fully utilized and the effect is much more
visible for small transfers.

5.4 Summary of Results
Overall, our results indicate that the gain of radio Bundling over

radio selection and MPTCP is consistent across transfer sizes above
512KB. Thus, Bundling, with optimal traffic partitioning, can con-
sistently boost throughput (and delay) for most smartphone me-
dia applications that demand high throughput. The bundling gain
comes from two factors,radio independence, i.e. the LTE and WiFi
operate independently from each other, andoptimal traffic parti-
tioning that accurately projects radio throughput over time in order
to fully utilize both radios.

6. ENERGY ANALYSIS
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Figure 3: CDF of the ratio of throughput over Bundling RX for option X (LTE-only, WiFi-only, Radio Switching, Best Radio, and MPTCP) for five
different file sizes: 0.5MB, 1MB, 2MB, 4MB, 5MB.
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(c) WiFi-only, Download
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Figure 4: A sample plot of power draw of Bundling, LTE-only and WiFi-on ly in terms of WiFi radio, LTE radio and CPU for a random measur ement
location while downloading/uploading 5MB. We stack the power draw of the three components to illustrate both the individual contributions and the
total power draw value during each transfer. The spikes of LTE and WiFi energy tails do not appear in these figures because they were averaged out
in each 100ms interval.

Our measurements in §5 show that bundling LTE and WiFi ra-
dios can largely boost smartphone throughput. Yet one may wonder
whether such improvement comes with a heavy cost in energy con-
sumed by activating one additional radio. In this section, we per-
form a detailed analysis of energy consumption on radio bundling
using the energy model described in §3. Different from existing
models [20, 22], our model separates the energy consumed by CPU
and WiFi/LTE radios. This not only improves accuracy of energy
estimation (error rate< 8% compared to 17% in [22]), but also
allows fine-grained analysis of radio bundling and selection.

We present results on both instantaneous power draw and total
energy drain per transfer for five radio usage options: LTE-only,
WiFi-only, Best Radio, MPTCP, and Bundling (with optimal data
partitioning). We are unable to examine Radio Switching because
there is no available implementation for real-time switching be-
tween LTE and WiFi7. We leave this to future work. The log-
ging needed for energy estimation was collected along with all the
throughput measurements.

6.1 Componentized Power Draw
To provide context for our discussion on the total energy con-

sumption per transfer, we first study how different smartphone com-

7To the best of our knowledge, the Android version of radio switch-
ing [25] only applies to 3G/WiFi and is not available publically.

ponents contribute to energy consumption. Using the energy pro-
filer described in §3, we break down energy consumption into three
major components related to bundling:WiFi radio, LTE radioand
CPU. We then extract the instantaneous power draw (energy con-
sumption in each 100ms slot) per component during each data trans-
fer. We do not include any result on screen energy cost since the
data transfer can be done with screen on or off. Figure 4 presents
a sample power draw result for bundling with optimal traffic par-
titioning, LTE-only and WiFi-only, obtained by transferring 5MB
data using a Galaxy Note phone at a randomly chosen location.

Next we analyze the three components in details.
LTE vs. WiFi Radio. Across our experiments with both phones
we found that the LTE radio consumes at least 50% of the total
power draw (see Figure 5(a) that plots the normalized contribution
of the LTE radio). On average, it consumes 5+ times more power
than the WiFi radio. For example, in the download example of Fig-
ure 4, the LTE radio takes 1.5W power draw while WiFi takes only
0.25W, and for uploads, LTE takes 2.2W while WiFi uses 0.75W.
Therefore,LTE is the heaviest energy drainer across the three com-
ponents.This observation aligns with existing works [15, 20].
CPU Contribution. For both dual-core smartphones, CPU con-
sumes a significant amount of energy. Figure 5(b) plots the CDF
of the normalized CPU energy cost over all the measurement in-
stances. We mix the results of the two smartphones since they
are similar. Overall, the median value is 20% for LTE-only and
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Figure 5: Contribution of LTE radio, CPU and LTE tail to the overall ene rgy drain.

 0

 1

 2

 3

 4

10-2 10-1 100 101 102

B
un

dl
in

g 
E

ne
rg

y 
C

os
t

Relative WiFi/LTE Throughput Ratio

WiFi-only LTE-only

(a) Energy Cost over LTE-only & WiFi-only

 0

 1

 2

 3

 4

10-2 10-1 100 101 102
B

un
dl

in
g 

E
ne

rg
y 

C
os

t
Relative WiFi/LTE Throughput Ratio

Best Radio

(b) Energy Cost over Best Radio

 0

 1

 2

 3

 4

10-2 10-1 100 101 102

B
un

dl
in

g 
E

ne
rg

y 
C

os
t

Relative WiFi/LTE Throughput Ratio

MPTCP

(c) Energy Cost over MPTCP

Figure 6: Energy cost of radio bundling over LTE-only, WiFi-only, Best Radio, as well as MPTCP across all measurement instances.

MPTCP, 23% for Bundling, and rises to 60% for WiFi-only, while
the maximum value can reach 80% for WiFi-only. To the best of
our knowledge, this is thefirst field measurement over many lo-
cations that shows data transfers can consume significant CPU en-
ergy, using popular multi-core smartphones. More importantly, our
result shows thatan accurate energy model must not ignore the
CPU contribution.

We also observe that bundling’s CPU power draw is approxi-
mately the sum of those of WiFi-only and LTE-only.This can be
explained by our measurements on CPU utilization (in §5.1). When
only a single radio is active, CPU Core 0 is utilized while Core 1
is rarely used. During bundling, Core 1 becomes active while Core
0’s utilization remains unaffected.
Radio Energy Tail. Both LTE and WiFi radios stay in moderate
power state for a period of time after the data transfer finishes [27].
This is the tail state and lasts 11s for LTE and 210ms for WiFi [20].
The power draw displays sudden spikes (of length 40ms) during the
tail state. They are averaged out by the 100ms display interval and
thus not visible in Figure 4.

As shown by Figure 5(c), our key finding here is thatthe en-
ergy contribution of these tails, especially the LTE tail, depends on
transfer size. For small files (≤1MB), the LTE tail contributes to up
to 60% of energy in the bundling mode (with a median of 25-35%).
As the data size increases, the contribution reduces to no more than
30% (with a median of 10%)8.

6.2 Energy Consumption per Transfer
Next we study the total energy consumption of a data transfer,

by first comparing bundling to radio selection and then to MPTCP.
We use the metric of thenormalized energy cost of bundling over
non-bundling:

CostX =
ENERGYBundling

ENERGYX

(2)

whereX is a non-bundling strategy. IfCostX > 1, then bundling
consumes more energy than strategyX.
Bundling vs. Radio Selection. Figure 6(a)(b) plot the value
of CostX vs. the ratio of WiFi and LTE average throughput, for
5MB transfers. Later we will show the impact of transfer size in

8As discussed in §3, this result, coming from the new LTE deploy-
ment, differs from [20] which observed a much larger energy tail.

Figure 7. We mix the results of the two phones as well as download
and upload scenarios since they are similar.

We make three key observations.First, bundling consumes less
energy compared with LTE-only, despite turning on the extra WiFi
radio. This is because bundling improves the transfer throughput
so that the transfer ends earlier. As a result, the energy saving due
to reduced transmission time compensates the extra power draw
of the WiFi radio. To further illustrate this, we plot in Figure 8
bundling’s energy cost as a function of its throughput gain (inverse
of the throughput ratioRX defined in §5). We see that in general
the energy cost scales inversely with the throughput gain.

Second, compared to WiFi-only, bundling’s energy cost fluctu-
ates around 1 when the WiFi-radio is weaker, but increases to more
than 2 when the WiFi radio achieves higher throughput than the
LTE radio. Again this is due to the fact that bundling’s throughput
gain over WiFi-only is higher when WiFi is weaker. The resulting
shortened transfer time effectively reduces energy drain despite the
fact that bundling turns on the energy-hungry LTE radio (Figure 8).

Finally, the energy cost over Best radio follows a bimodal curve:
it equals to the cost over LTE-only when the WiFi radio is weak and
jumps to that of WiFi-only once the WiFi radio becomes stronger
than the LTE radio.

Overall, these results show that the energy consumption of radio
bundling is on par with that of radio selection. Although bundling
uses an extra radio and thus consumes more power draw (radio+CPU),
its throughput improvement reduces data transfer time and effec-
tively compensates the increase in power draw.
Bundling vs. MPTCP. Next we compare the energy consump-
tion of optimal bundling and MPTCP. We note that by partitioning
traffic at the transport layer, MPTCP only uses one HTTP connec-
tion while optimal bundling uses two parallel HTTP connections,
one for each radio.

Figure 7(c) plots the bundling energy cost over MPTCP for 5MB
data download. Interestingly, the value fluctuates between 0.4 and
1.6, indicating that MPTCP can sometimes save energy! This is
unexpected since our throughput results in §5 shows that bundling
always outperforms MPTCP in throughput, so MPTCP must run
longer to complete the transfer. After studying the energy traces
carefully, we find that the key cause is that bundling consumes more
CPU energy by maintaining two parallel HTTP connections with
two threads, which activates two CPU cores. MPTCP, on the other
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Figure 7: CDF of bundling energy cost over LTE-only, WiFi-only, Best Radio, and MPTCP for different file sizes.
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Figure 8: Bundling’s energy cost vs. its throughput gain.

hand, only manages a single thread and runs in a single core. We
confirm this by comparing the CPU power draw of the two modes.
So while MPTCP turns on both radios like bundling, its reduction in
CPU usage can lead to savings in the overall energy consumption.
As shown in Figure 8, this saving becomes visible when bundling’s
throughput gain is small,i.e. between 1 and 2, but gets wiped out
as bundling’s throughput gain increases.
Impact of Data Transfer Size. We repeated the above energy
analysis for different data transfer sizes: 512KB, 1MB, 2MB, 4MB,
and 5MB. Figure 7 plots the CDF of energy cost across all the
measurements. Overall, the values of energy cost remain consis-
tent across these data transfer sizes, except for the cost of bundling
over WiFi-only. This is because the impact of LTE energy tail
rises as the transfer size becomes smaller. Compared to WiFi-only,
bundling’s extra LTE energy tail becomes a significant overhead in
energy. Yet even for small transfers of 512KB, bundling consumes
at most 4.5x energy over WiFi-only (with a median of 2.5).

6.3 Summary of Results
Our analysis on energy consumption shows that bundling, by us-

ing two radios, has a higher instantaneous power draw than sin-
gle radio methods. Yet such increase in power draw is effectively
compensated by the shortened data transfer time (due to bundling’s
throughput gain). As a result, bundling achieves a similar total en-
ergy consumption per transfer compared to LTE-only and at most
3.5x more energy than WiFi-only and Best Radio (due to the high
energy cost of the LTE radio).

MPTCP and bundling achieve similar energy consumption since
they both use two radios simultaneously. However, MPTCP, by us-
ing a single thread implementation, reduces CPU usage and thus
CPU power draw. This often turns into energy savings per data
transfer. This result suggests that one must account for the CPU
contribution when evaluating and designing radio bundling. We
are able make this observation because our energy model can ac-
curately project the energy consumed by CPU and radio interfaces
separately.
Designing Energy-efficient Bundling. Our goal in this paper
is to understand the energy cost behind bundling’s throughput im-
provement. Thus we target an optimal bundling design that maxi-
mizes throughput without considering energy consumption. How-
ever, we believe that the insights from our study will be valuable in

the design of an energy-aware radio bundling protocol with an im-
proved energy-performance tradeoff. We leave this to future work.

7. RELATED WORK
Multi-Radio Usage. Existing works have studied how to se-
lect the best network for each flow when multiple networks are
available [8, 9, 10, 34]. A recent survey summarizes techniques on
multi-radio aggregation [17]. To select the best interface for each
application, existing works have considered application require-
ments [18, 13] and energy [25]. Recent works have studied concur-
rent use of 3G/WiMAX and WiFi radios on laptops [30, 19, 35, 36]
and smartphones [35, 33]. [35] considers bundling WiFi/WiMAX,
while [33] proposes to offload TCP ACKs from WiFi to 3G to im-
prove TCP performance. There are also two Android apps that use
both cellular 3G/4G and WiFi interfaces [1, 2].

Our work leverages insights from existing studies, but differs sig-
nificantly from them by measuring and characterizing energy and
performance of bundling smartphone LTE/WiFi radios at many lo-
cations. To our best knowledge, this is the first empirical study on
this subject. Finally, our work also provides the first detailed, vali-
dated power model on various components during radio bundling.
MPTCP. Recent works have evaluated MPTCP throughput and
energy performance. [26] studied MPTCP handover between 3G/WiFi
on a Nokia N950 smartphone and measures energy consumption at
one location. Chen et al. [12] analyzed MPTCP performance for
different flow sizes using laptops. Deng et. al [14] studied flow-
level MPTCP performance under different traffic patterns. They
ran MPTCP on a laptop that sends flows to two tethered smart-
phones and measured energy using a power meter. Lim et al. [22]
proposed a power model for MPTCP and examined MPTCP energy
consumption for different file sizes. The error rate of the proposed
power model is 17%.

Our work differs from these prior works in three key aspects.
First, we target bundling with optimal traffic partitioning to ex-
plore the full benefit of bundling over radio selection. We also
examine whether MPTCP can fulfill the bunding gain. Second,
we ported MPTCP to smartphones and performed measurements at
scale. Third, we developed an accurate energy model that captures
the contribution of individual components (CPU and radio inter-
faces). Our energy model achieves an error rate of 8%.
Smartphone Energy Characterization. Prior works have ex-
amined smartphone energy consumption in a single radio operation
mode [11, 32, 37, 23, 28, 29]. Recent work also developed specific
power models for WiFi, 3G, GSM, and LTE [7, 15, 20, 31, 16].
Our study leverages insights from these existing studies on power
measurements and profiles. The unique contribution of our work
is to develop (and verify) detailed power models for both CPU and
individual radio components that apply to both radio bundling and
single radio operations. Our work considers the two of today’s most
used Android phone models, and reveals power usage patterns that
differ significantly from prior works.



8. CONCLUSION
In this paper, we re-assess the relationship between energy con-

sumption and performance in smartphone radio bundling scenarios.
Instead of characterizing bundling performance with MPTCP, we
study the more general problem of maximal performance gain in
ideal scenarios. Our results show that MPTCP achieves only a por-
tion of the total performance gain possible. In addition, we build
an accurate componentized power model that identifies the signif-
icant role mobile CPUs play in energy consumption. Most impor-
tantly, our study demonstrates a clear tension between network per-
formance and power consumption (from both radio transmissions
and traffic partitioning at the CPU).

There are two key takeaways from our study. First, an energy-
agnostic MPTCP achieves only a fraction of the possible perfor-
mance gains in a radio bundling scenario. Second, given our in-
sights into the role of CPU in power consumption for radio bundling
systems, there is ample room for a new bundling protocol that pro-
vides a better tradeoff between performance and energy consump-
tion.

Appendix A: Details of the Power Models
Dual-Core CPU Power Model. Table 2 shows the power model
for the dual-core CPUs on the two phones used in our study,i.e.,
the power draw when the two cores are at different combinations of
frequencies, derived by following the procedure described in §3.

Table 2: Dual-core CPU power model for Galaxy Note and Galaxy
SIII, sampled on 6 frequencies for each core. The unit of power is mW.

Galaxy Note

Core0 (Mhz)
Core1 (Mhz)

0 384 594 810 1026 1242 1512
384 263 363 440 577 677 907 1129
594 322 366 492 629 655 966 1184
810 470 574 629 710 729 1047 1273
1026 562 670 729 810 847 1132 1365
1242 781 903 958 1051 1132 1262 1480
1512 781 1117 1177 1269 1354 1476 1680

Galaxy SIII

Core0 (Mhz)
Core1 (Mhz)

0 384 594 810 1026 1242 1512
384 296 744 766 818 873 977 1047
594 359 766 814 866 921 1036 1103
810 411 818 866 918 973 1080 1154
1026 455 873 921 977 1029 1136 1217
1242 555 981 1029 1084 1140 1199 1277
1512 633 1062 1106 1158 1221 1273 1351

LTE and WiFi Power Models. The LTE interface on smart-
phones has four power states. The power states and their transitions
are shown in Figure 9(a): (1)IDLE: The interface is in idle states
when the User Equipment (UE) does not send or receive any data. It
consumes little power and periodically wakes up to check whether
there are incoming data buffered at the network. (2)CR:When the
UE sends or receives any data, the interface enters the Continuous
Reception (CR) state and consumes high power. (3)Short DRX:
After the UE finishes data transfer and becomes idle for 200ms,
the interface enters the Short DRX state, consumes little power but
wakes up frequently to check for incoming traffic. (3)Long DRX:
The interface enters this state after staying in Short DRX for 400ms
without receiving any data. Long DRX is similar to Short DRX ex-
cept that the wakeup interval becomes longer. Finally, if the UE
stays in Long DRX for 11s without receiving any data, the inter-
face returns to the IDLE state; otherwise, any data transfer in Short
or Long DRX states will trigger the interface to enter the CR state.

Table 3: Parameters of signal-strength-aware power models for WiFi
and LTE on Galaxy Note and SIII. The unit of Tx/Rx/Tail power is mW.

WiFi

RSSI (dBm)
Galaxy Note Galaxy SIII

Tx Rx Tail Tx Rx Tail
-50 373.7 214.6 185.0 333.0 262.7 185.0
-60 862.1 292.3 185.0 444.0 281.2 185.0
-70 906.5 292.3 185.0 518.0 314.5 185.0
-80 869.5 358.9 185.0 662.3 373.7 185.0
-90 884.3 314.5 185.0 643.8 355.2 185.0

The duration of WiFi tail for both phones is 210ms.
Galaxy Note LTE

Power(mW) Duration(ms) Periodicity(ms)
LTE promotion 950.0 300 N/A

Short DRX 947.2 36 100
Long DRX 932.4 40 320

LTE tail base 0 11000 N/A
DRX in IDLE 780.7 25 1280

Galaxy SIII LTE
Power(mW) Duration(ms) Periodicity(ms)

LTE promotion 1200.0 300 N/A
Short DRX 788.1 41 100
Long DRX 788.1 45 320

LTE tail base 0 11000 N/A
DRX in IDLE 569.8 32 1280

Note LTE SIII LTE
RSRP (dBm) Tx (mW) Rx (mW) Tx (mW) Rx (mW)

-90 2160.8 1391.2 2264.4 1280.2
-100 2312.5 1646.5 2275.5 1535.5
-110 1861.1 1949.9 2282.9 2327.3

(a) LTE (b) WiFi
Figure 9: WiFi and LTE state machines for Galaxy Note and SIII.

Figure 10 plots the LTE power states on Galaxy SIII in a 100KB
download under good signal strength (-90dBm).

The WiFi interface also has four power states: Tx, Rx, Tail, and
Idle (Figure 9(b)). The interface is in the Idle state when there
is no traffic, and enters the Tx (Rx) state when it starts sending
(receiving) data. After data transfer, the interface stays in the Tail
state for 210ms before returning to the Idle state. The interface
consumes very little power in the Idle state, moderate power in the
Tail state, and high power in the Tx and Rx states.

For both LTE and WiFi interfaces, the power draw and duration
at each state and state transitions are affected by the wireless sig-
nal strength [15]. We derive all the parameters in the power state
machines for the WiFi and LTE interfaces for the Galaxy Note and
Samsung Galaxy SIII phones, shown in Table 3.
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Figure 10: LTE Power states on Galaxy SIII
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