Configuration of a TM

- Recall: TM = 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})\)

 \((\text{States, InputAlph, TapeAlph, Transitions, StartState, AccState, RejState})\)

- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}\)

- A configuration of a TM specifies three things
 - Current state
 - Tape contents
 - Head position

Configurations

- A configuration is a string \(uvq\) in \((\Gamma \cup Q)^*\).
- It means
 - The TM is in state \(q\)
 - The tape contains \(uv\) followed by \(\infty\) blanks
 - The head is over the first character of \(v\).

- The configuration is accepting if \(q = q_{acc}\).
Successor of a configuration

• Suppose \(u, v \in \Gamma^* \) and \(a, b \in \Gamma \) and \(q \in Q \).
• The successor of the configuration \(uaqbv \) is
 – \(uacrv \), if \(\delta(q,b) = (r,c,R) \)
 – \(uracv \), if \(\delta(q,b) = (r,c,L) \).
• Special case: The successor of \(qbv \) is
 – \(crv \), if \(\delta(q,b) = (r,c,R) \)
 – \(rcv \), if \(\delta(q,b) = (r,c,L) \).
• Special case: If \(q \in \{ q_{\text{acc}}, q_{\text{rej}} \} \), then \(uqv \) has no successor.

Yielding

• If configuration \(C_2 \) is a successor of \(C_1 \),
 we say “\(C_1 \) yields \(C_2 \)”.
• Note: TM is deterministic, so a configuration either yields a unique configuration or yields nothing.

TM computation formalized

• Consider TM \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}}) \)
• We say \(M \) accepts \(x \in \Sigma^* \) if
 – \(\exists \) sequence \(C_0, C_1, ..., C_t \) of configurations of \(M \) s.t.
 – \(C_0 = q_0x \)
 – \(C_{i-1} \) yields \(C_i \) (for all \(i, 1 \leq i \leq t \))
 – \(C_t \) is an accepting configuration
• When does \(M \) reject \(x \)? Two choices:
 – Require \(M \) to enter reject state
 – Leave this definition as is (i.e., can’t accept \(\Rightarrow \) reject)

Deciders vs Recognizers

• Two types of TMs for lang \(L \) over alphabet \(\Sigma \)
• Deciders
 – If \(x \in L \), then accept.
 – If \(x \notin L \), then reject.
 – Never “loop”, i.e., always halt for any \(x \in \Sigma^* \).
• Recognizers
 – If \(x \in L \), then accept.
 – If \(x \notin L \), either reject or “loop”.
• Note: “loop” \(\Rightarrow \) failure to halt; not repetition
Deciders vs Recognizers
• Clearly, every decider is a recognizer.
• Call a language
 – Decidable if there is a decider TM for it
 – Turing-recognizable if there is a recognizer TM for it
• Every decidable language is Turing-recognizable
• Converse is false:
 – ∃ undecidable languages that are Turing-recognizable
 – Can’t prove this today, but eventually…

Multitape Turing Machines
• Like a TM except that it has k tapes, for some fixed k. Therefore, it has k heads, one per tape.
• In one step, the TM
 – reads k tape symbols which determine its next state,
 – writes back k symbols, one on each tape,
 – moves heads left/right independent of each other.
• Transition function $\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R\}^k$
• E.g., $\delta(q_6, a, b, a) = (q_{14}, c, b, f, R, L, L)$. $k = 3$

Computation of a multitape TM
• Start with input followed by ∞ blanks on tape 1 and only blanks on tapes 2, 3, …, k.
• Start with all heads being at left ends of their respective tapes.
• Run TM; accept/reject as usual.
• Think how you might accept the language of palindromes using a 2-tape TM.

Palindromes using 2-tape TM
• “On input w,
 – Scan input on tape 1; put head at right end.
 – Scan tape 1 right-to-left; copy input onto tape 2.
 (At this point, tape 2 holds w^R.)
 – Move head 2 to left end of tape 2.
 – Scan tapes 1 and 2 left-to-right, check for equality.
 – Accept if $w = w^R$, reject otherwise.”
• This is an implementation description, rather than a formal description, of the TM.
Multitape = Single-tape

- Proof uses very important idea of simulation.
- Let M be a k-tape TM, for some fixed k.
- We shall build a (single-tape) TM M' that will simulate M, i.e.,
 - accept if and only if M accepts,
 - reject if and only if M rejects.

Proof of multitape = single-tape

- M' formats its tape to represent all k tapes of M.
- E.g., with $k = 3$, $\Gamma = \{a,b,c,_\}$:
 Tape 1: $c a c c b a b _ _ _ …$ Head on third char
 Tape 2: $a a a b _ _ _ …$ Head on first char
 Tape 3: $c b a b _ _ _ …$ Head on fourth char
- Thus, each char in Γ has a “marked” version.

Proof of multitape = single-tape

- Figure out: a TM can do insert-and-shift-right.
- Start by transforming tape from w (input) to
 Tape: $\# w _ _ _ \# \# \#$ (first char of w marked)
- Suppose
 Tape: $\# c a C c b a b _ _ A a a b _ _ c b a B _ _ #$
 $\delta(q_0 \ c \ a \ b) = (q_2 \ c \ b \ c \ L \ R)$
- Then transform tape to
 Tape: $\# c A c c b a b _ _ B a a b _ _ c b a c _ _ #$