Recap: P and NP

- $P = \{L \subseteq \Sigma^*: L$ is decided by a TM in polynomial time$\}$
- $NP = \{L \subseteq \Sigma^*: L$ is decided by a NDTM in polynomial time$\}$
- In CS 25 you (essentially) learnt techniques to show that various languages $\in P$.
- How do we show that a language $\in NP$?

The Hamiltonian Path Problem

- Input: A graph $G = (V, E)$
- Question: Does G have a Hamiltonian path?
- Definition: A Hamiltonian path of G is a path that covers all vertices of G.
- To turn this into a language, define $HAMPATH = \{\langle G \rangle: G$ is a graph that has a Hamiltonian path$\}$.

The Vertex Cover Problem

- Input: A graph $G = (V, E)$ and an integer $k > 0$
- Q: Does G have a vertex cover of size $\leq k$?
- Definition: A vertex cover of G is a subset of V that covers (i.e., “touches”) every edge in E.
- To turn this into a language, define $VC = \{\langle G, k \rangle: G$ is a graph that has a vertex cover of size $\leq k$\}.
Proof that HAMPATH ∈ NP

• “On input ⟨G⟩, where G = (V, E) is a graph:
 1. Let n = |V|.
 2. Guess a permutation v₁, v₂, ..., vₙ of V.
 3. For i = 1 to (n-1):
 3.1. If {vᵢ, vᵢ₊₁} ∉ E, then REJECT.
 4. ACCEPT.”

• Clearly polynomial time.
• Uses nondeterminism in step 2.

Proof that VC ∈ NP

• “On input ⟨G, k⟩, where G = (V, E) . . . :
 1. Guess a subset C = {v₁, v₂, ..., vₖ} of V.
 2. For each edge {u, v} ∈ E:
 3.1. If u ∉ C and v ∉ C, then REJECT.
 3. ACCEPT.”

• Clearly polynomial time.
• Uses nondeterminism in step 1.

Do we need to guess?

• We showed that HAMPATH, VC ∈ NP.

• Their (nondeterministic) algorithms used the power to guess in a crucial way.

• Enumerating all guesses
 – all permutations, in case of HAMPATH
 – all k-sized subsets, in case of VC
 could take exponential time (w.r.t. input size).

More examples of NP problems

• SATISFIABILITY, a.k.a. SAT:
 – Input: A formula, i.e., the AND of a set of Boolean clauses, e.g.
 • x₁ ∨ ¬x₂ ∨ x₃
 • ¬x₁ ∨ ¬x₂
 • x₄ ∨ x₂ ∨ x₅ ∨ ¬x₇ ∨ x₁
 – Question: Is the formula satisfiable? I.e., is there a TRUE/FALSE assignment to the xᵢ’s that makes the formula true?
• Note: Every clause must be satisfied.
Proof that $\text{SAT} \in \text{NP}$

- $\text{SAT} = \{\langle \phi \rangle : \phi$ is a satisfiable formula$\}$
- “On input $\langle \phi \rangle$,
 1. Guess a Boolean value (TRUE/FALSE) for each variable that occurs in ϕ.
 2. If the guessed values satisfy all the clauses of ϕ, then ACCEPT, else REJECT.”
- Deterministic algorithm? Enumerating all guesses could take $2^{O(n)}$ time, where $n = |\langle \phi \rangle|$.

More examples of NP problems

- The SUBSET-SUM problem:
 - Input: A finite set of integers S and a target integer t.
 - Question: Is there a subset $T \subseteq S$ such that the sum of the elements of T equals t?
- Again, clearly in NP: just guess a subset and verify that it sums to t.

Polynomial-time reductions

- We’ve now seen several problems that are in NP but don’t seem to be in P:
 - HAMPATH, VC, SAT, SUBSET-SUM
- We shall see: if we could somehow solve one of these problems in P-time, we could solve all of them in P-time.
- How? Via P-time reductions.
 - i.e., reductions that run in polynomial time.

Mapping reductions

Our P-time reductions will be mapping reductions
Reduction $A \rightarrow B$ will look like
 “On input x:
 - Perform some computation to produce $y = f(x)$
 - Output y”

Essential property of f: $x \in A \Leftrightarrow f(x) \in B$
The computation (i.e., f) “maps” A to B
NP-completeness

- A language L is said to be *NP-complete* if
 1. $L \in \text{NP}$
 2. Every language in NP can be P-time reduced to L.

- In other words, the power to solve L gives us the power to solve *everything* in NP!
 - Here “solve” means “solve in polynomial time.”

- In still other words, if $L \in \text{P}$ then P = NP.

What it means to be NP-complete

- Suppose we’ve proven (somehow) that a language L is NP-complete.

- This *suggests* that L can’t be decided in P-time.
 - Because, if L could be decided thus, then so could every problem in NP…
 - …such as these one thousand problems that generations of brilliant computer scientists have been unable to solve…

- Suggests, but *does not prove*.

How to prove NP-completeness

- A language L is said to be *NP-complete* if
 1) $L \in \text{NP}$
 2) Every language in NP can be P-time reduced to L.

- Suppose we’ve proven (somehow) that SAT is NP-complete. We wish to prove that VC is, too.

- Prove (1). For (2), just reduce SAT to VC!
 Any NP language $\rightarrow \text{SAT} \rightarrow \text{VC}$

NP-completeness of VC

- We’ve already proven (1) $\text{VC} \in \text{NP}$

- For (2), we’ll use several steps:
 - First, we reduce SAT to 3SAT.
 - Then, we reduce 3SAT to IND-SET.
 - Finally, we reduce IND-SET to VC.
 - Each of these reductions will run in polynomial time.
SAT \rightarrow 3SAT

- 3SAT is just like SAT, except that each clause in the formula is required to have exactly 3 literals.
 - \(x_1 \lor \neg x_2 \lor x_3 \)
 - \(\neg x_1 \lor \neg x_2 \lor x_5 \)
 - \(x_4 \lor x_2 \lor x_5 \)
- To convert an arbitrary formula into this form, need to deal with
 - clauses that have only 1 or 2 literals,
 - clauses that have 4 or more literals.

3SAT \rightarrow IND-SET

- The IND-SET problem asks whether a given input graph has an independent set of a given size.
 - An independent set is a set of vertices such that no two of them are adjacent.
- Thus, the larger an independent set, the more interesting it is. Can we find the largest?
- Decision (yes/no) version: Given \(G \) and \(k \), does \(G \) have an independent set of size \(\geq k \)?

SAT \rightarrow 3SAT

- Clauses with too few literals
 - Replicate literals to bring the number up to 3,
 - E.g., \((\neg x_1 \lor x_2) \rightarrow (\neg x_1 \lor \neg x_1 \lor x_2)\)
 - and \((x_3) \rightarrow (x_3 \lor x_3 \lor x_3)\)
- Clauses with too many literals
 - Chaining: split into multiple clauses, using new “link” literals.
 - E.g., \((x_1 \lor x_2 \lor x_3 \lor x_4) \rightarrow (x_1 \lor x_2 \lor z) \land (\neg z \lor x_3 \lor x_4)\)
 - Replace \((x_1 \lor \ldots \lor x_j)\) with \((k-2)\) new clauses:
 \((x_1 \lor x_2 \lor z_3) \land (\neg z_3 \lor x_3 \lor z_4) \land (\neg z_4 \lor x_4 \lor z_5) \land \ldots \land (\neg z_{k-1} \lor x_{k-1} \lor x_j)\)
 [Like converting a CFG into CNF]
- Check that all this can be done in poly time.

3SAT \rightarrow IND-SET

- Must convert 3cnf-formula \(\phi \) into \(G \) and \(k \), s.t.
 - If \(\phi \) satisfiable, then \(G \) has an i.s. of size \(k \).
 - If \(\phi \) unsatisfiable, then \(G \) doesn’t have i.s. of size \(k \).
- Idea: turn
 \((x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_5) \land (x_4 \lor x_2 \lor \neg x_3)\)
 into

![Diagram of 3SAT to IND-SET conversion](image-url)
3SAT → IND-SET

- Formally, “On input \(\langle \phi \rangle \):
 - Let \(C_1, \ldots, C_k \) be the clauses of \(\phi \).
 - Create a 3\(k \)-vertex graph \(G \) where each vertex corresponds to a literal in some \(C_i \) as follows:
 - Draw \(k \) disjoint triangles, one per clause.
 - Then add extra edges connecting each pair of contradicting literals.
 - Output \(\langle G, k \rangle \).”
- Why does this work? Prove it!

IND-SET → VC

- Theorem: Suppose \(G \) has \(n \) vertices. Then \(G \) has an independent set of size \(k \) iff \(G \) has a vertex cover of size \(n - k \).
 - Proof sketch: The vertices not in an independent set form a vertex cover.
- This theorem leads to a very simple reduction:
 “On input \(\langle G, k \rangle \)
 1. Let \(n \) = number of vertices of \(G \).
 2. Output \(\langle G, n-k \rangle \).”

Recap

- We have shown these reductions: \(\text{SAT} \rightarrow \text{3SAT} \rightarrow \text{IND-SET} \rightarrow \text{VC} \)
- Therefore, if we could show \(\text{SAT} \) is NP-complete
 - we would have shown that \(\text{3SAT} \) is NP-complete.
 - we would have shown that \(\text{IND-SET} \) is NP-complete.
 - we would have shown that \(\text{VC} \) is NP-complete.
- Eventually: **Cook-Levin theorem**, which proves from scratch that \(\text{SAT} \) is NP-complete.

Very important reading assignment

- Read Sipser, pages 248-253.
- Read Sipser, section 7.5 completely.
 - There you will find proofs that \(\text{HAMPATH} \) and \(\text{SUBSET-SUM} \) are NP-complete.
 - We will not be doing these proofs in class, but you are responsible for knowing and understanding them.