An Introduction to the C99 Programming Langua ge

In one breath, C is often described as a good general purpose language, an excellent systems programming
language and nothing more than a glorified assembly language wSaiha be all three?

C can be correctly described as a successful, general purpose programming language, a description also
given to Java and C++. C is aproceduralprogramming language, not an object-oriented languageHia

or C++. Programs written in C can of course be describethasd” programs if thg are written clearly

male wse of high lgel programming practices, and are well documented witficgerit comments and
meaningful variable namesOf course all of these properties are independent of C and av&lquo

through mag high level languages. Chas the high lel programming features provided by most
procedural programming languages — strongly typed variables, constants, standaade(alatatypes,
enumerated types, a mechanism for defining youn ¢ypes, aggmgete structures, control structures,
recursion and program modularizatioB.does not support sets of datavala concept of a class or objects,

nested functions, nor subrange types and their use as array subscripts, and has only recently added a a
Boolean datatypeC does hae, howeve, ssparate compilation, conditional compilation, bitwise operators,
pointer arithmetic and language independent input and output. The decision about whether C, @a+, or Ja

is the best general purpose programming language (if that can or needs be decided), is not going to be an
easy one.

C is frequently and correctly described as an excellent systems programming language. It is claimed, too,
that C provides an excellent operating sysgeimterface through well defined library routine€orrectly,

these statements should be considered in pergpedthe C language lgen its development in the early
1970s, as a programming language in which to write significant portions onntkeoperating system.
Today well in excess of 99% of theNlx, LINUX, Mac-OSX, and Widows-XP operating systenmeknels

and their standard library routines, are all written in the C programming langliaday it is etremely
difficult to find an operating systenotwritten in either C or its descendant C++.

C is the programming language of choice for most systen®;lengineering, and scientific programming.

The world’s popular operating systems - Linux,ittlovs and Mac OS-X, their interfaces and file-systems,

are written in C; the infrastructure of the Internet, including most of itsarkimg protocols, web seevs,

and email systems, are written in C; safte libraries providing graphical interfaces and tools, aficieit
numerical, statistical, encryption, and compression algorithms, are written in C; and the software for most
embedded daces, including those in cars, aircraft, robots, smart appliances, sensors, mobile phones, and
game consoles, is written in C.

C has very dicient compilers, libraries and runtime environment supp@tcompilers hae been both
developed and ported to a large number and type of computer architectures, from 8-bit microcomputers,
through the traditional 16, 32, and 64 bit virtual memory architectures used in most PCsrkstdtions,

to larger 64 and 128 bit supercomputers. Compileve liaen deeloped for traditionally large instruction

set architectures, the wer reduced instruction set architectures (RISC), more recently personal data
assistants (PDAs), and parallel and pipelined architectu@&s portability has greatly added to its (and
UNIX's) success. Onca C ompiler has been geloped for a ne architecture (and an architecture and
operating system without a C compiler is, tadayremely rare) the gigabytes of C programs and libraries
available on other C-based platforms can also be ported to whercieitecture.

CS23 Spring’07 - An introduction to the C99 programming language page 1

The C Programming Langua ge, continued

It is often quoted that a C program, when compiled, will run only 1-2% slower than the same program
hand-coded in the na@ asembly language for the machine. But the obvious advantageviofjtthe
program coded in a readable, highddanguage, provides the@whelming advantages of maintainability

and portability Very little of an operating system, such aspJor LINUX, is written in an assembly
language - in most cases the rest is written inBYen the operating systesntevice drivers, often
considered the most time-critical code in an operating systmmek today contain assembly language
numbered in only the hundreds of lines.

C is dso described as nothing more than a glorified assembly language, meaning that C programs can be
written in such an unreadable fashion that/thaok like your terminal is set at the wrong speed @uwtf

theres a humorous contest held each year nanEte International Obfuscated C Code Contest
http://ww. au. i occc. or g/, for such code).

Perhaps @& higgest problem is that the language was designed by programmers who, folklore says, were
not very proficient typistsC makes etensie wse of punctuation characters in the syntax of its operators
and control flev. In fact, only the punctuation characte@s and$ arenotused in GS yntax! Itis not
surprising, then, that if C programs are not formatted both consistently and withestifwhite space
between operators, and iény short identifier names are used, a C program will be very difficult to read!
To partially overcome these problems, a number of editors and programs simfeageformat C code for

us.

C is dso criticized for being too fgiving in its type-checking at compile time. It is possiblecéstan

instance of one type into anotheven if the two dbjects hae mnsiderably different types. In particular

pointer to an instance of one type can be coerced into a pointer to an instance of another type, thereby
permitting the objec$ mntents to be interpreted differently.

C dso has no runtime checking of constructg lfointer \ariables and array indices. Subject to constraints
imposed by the operating systsmemory management routines (ifyan c.f. the general protection fault
andblue screen of dealffy a pointer may point almost anywhere in a process’ address space and seemingly
random addresses accessed or written to. Although all array indices in C beginisapossible to access

an arrays “elements’with negdive indices or indices beyond the declared end of the array.

Despite all of its weaknesses, and weefad no shame admitting them here, the C programming language
is an extremely pmerful and popular language, and there are probably still more people using C and C++
than ay other languages today.

CS23 Spring’07 - An introduction to the C99 programming language page 2

The Standardization of the C Langua ge

Despite Cs$ long history being first designed in the early 1970s, it underwent considerably little change
until the late 1980s. This is a very lengtberiod of time when talking about a programming language’
evdution (c.f. in common discussionsvdais mnsidered only 10 years oldYhe original C language as

mostly designed by Dennis Ritchie and then described by Brian Kernighan and Dennis Ritchie in their
imaginatiely titled book The C Pogramming Languge The language described in this seminal book,
described as th&&R book, is nav described aK&R C or “old”’ C. In the late 1980s a number of
standards forming bodies, and in particular the American National Standards Association X3J11
Committee, commenced work on rigorously defining both the C language and the commuidgdoro
standard C library routines. The results of their lepgtieetings are termed the ANSI-X3J11 standard, or
informally asANSI-C

The formal definition of ANSI-C introduces surprisinglyvfenodifications to the ol&k&R Clanguage and

only a fev additions. Mostof the additions were the result of simianhancementthat were typically
provided by different endors of C compilers, and these had generally been considered as essential
extensions to old C. The ANSI-C language is extremely similar to old C, the committee only introduced a
new base datatype, modified the syntax of function prototypes, added functionality to the preprocessor and
formalized the addition of constructs such as constants and enumerated types.

A new revision of the C language, named ISO/IEC 9899 by the ISO-JTC1/SC22/WG14 working group, of
just C99 was recently completedgain mary features hee keen “cleaned uplincluding the addition of
Boolean and compkedatatypes, single line comments, and variable length arrays, as well agngmo
some unsafe features. Sem://wwwold.dkuug.dk/JTC1/SC22/WG14/docs/cIx/

Today ANSI-C is nw far more widely wailable and accepted than was old C, and the C99 standard is
rapidly gaining wider use.

C is agan being required for mangovernment tenders and being used in allversities and significant
information technology-based companies.

CS23 Spring’07 - An introduction to the C99 programming language page 3

The GNU C Compiler, gcc

On our Departmerg’LINUX PCs you will be using an C compilena®ped by the GNU (pronouncembo)
group of programmers. The GNU group, standing @u’s Not UNIX, (or correctly the Free Softwe
Foundation) produces excellent public domain software modeled on some traditiaratdsnmands and
libraries.

The GNU C compilergcg is perhaps their bestproduct”, being a C compiler supporting both the ANSI-

C and ISO-C99 definitions and distuted in (C!) source form for hundreds of different architecture and
operating system combinationgicc generates both small and efficient code for its range ofetar
architectures and, in the casegufc running under some commercial operating systems, produces better
code, (for a number of significantamples) than the proprietary C compiler distributed with the operating
system itself.

Using the gcc Compiler Under L INUX

The GNU C compilergcc can be imoked from the shels command line lile any other LNux command.
Assuming that yowe entered an C99 program into a file nanfiestprog.c (using, sayvi or emac$,
a typical compilation of the program would be:

prompt-1. gcc -std=c99 -o firstprog firstprog.c

This will result in the syntactically correct C99 program being compiled anddiito the recutable
binary file firstprog . As firstprog is executable and we typically ke te present warking
directory in our shel§ sarch path, we canxecute this program with

prompt-2. firstprog
out put of firstprog

The-std=c99 switch togcc specifies that we want the syntax of the C99 language (rather'dkdin
K&R or ANSI-C) to be gpected. Theo switch togcc specifies that we ant the resulting binargutput
file to be placed in the (foling) indicated file. Note that the C source fitstprog.c musthave the
filename extension ofc . In this case it isgcc that is imposing this restriction and not thenix
operating system nor file system. Attempts twke gcc with incorrect switches or syntactically incorrect
programs will result in a flurry of error messages.

gcc supports a huge number of switches, more tbar{(!), though only a fe will be used in practice.
Depending on the switches and filenames presentgddo the compilation process consists of 2 or 3
independent passes, each run as a sepamsite lprocesses: the C-preprocessmmpilation and code
generation, and optional optimizatiogcc has the expectediux manual entrythough the manual entry
only describes thexéensve list of switches t@cc and its operation, and not the syntax nor semantics of
the C99 language itself.

To minimize the risk of programming errors, Mlehave gcc report as manillegd and “bad practice’
errors as possible. For this reason we’ll compile all programs as:

prompt-1. gcc -std=c99 -Wall -pedantic -o firstprog firstprog.c

CS23 Spring’07 - An introduction to the C99 programming language page 4

The Structure of a C program Operatorsin C

In the follaving sections we’ll consider the aspects of the C language (and C99 in particular) teat mak Nearly all operators in C are identical to those afaJaHoweve the role of C in system programming
different than Jaa. We'll not spend time on describing what a variable is, ner émntrol structures can be exposes us to much more use of the shift and bit-wise operators tham.in Ja
used in C programs as these are concepts common to mostveldarnguages are not peculiar to C.

® Assignment

C, like Jva, is described as fee-formatlanguage, that is statements in C, such as declarations and = (not:=as in Pascal)
expressions may be entered withougarel to the column position of each line. This concept is easy to
grasp after some programming invdathough different if you're used to programming in massembly ® Arithmetic
languages or earlier version obrfiran. Inparticular white space characters (spaces, tabs andines) +, =, * /[, %, unary- (thereis no unary +)
shouldbe used without shame in a C program, particularly if their addition will add to the readability of the Only one/ (not/andi v as in Pascal)
program. Priorities may be werridden with ()’s.
. ® Relational
Commentsin C >, >=, <, <= (allhave same precedence)

== (equality) and != (inequality)
Comments in C are used thitle” some text from the C compiler itself and, of course, used to document
sections of programs with natural language descriptions or pseudo-language outlines of an algorithm. ® Logical
Unlike Jva, there is only one method of opening and closing comments in C. Comments begin with the && (and), || (or), ! (not)
two character sequenc¢e and are closed with the sequefite
® Pre- and post- decrement and increment
/* This is a pretty boring comrent in C */ Any (integer character or pointer)ariable may be either incremented or decremented before or after
its value is used in an expression.
There can be no white space characters between thehawacters in each cas@ny sequence of ASCII

characters may appear within the body of a comment and comments are usually used to terftpdedrily * For example :

some C code from the C compilddnlike sme languages, ever, comments in C cannot be nested (that --fred will decrementred before value used.
is, comments may not appear in comments), and care mustdpeitékiding” C code within a comment, ++fred will incrementfred before value used.

that this C code does notigammments itself! fred-- will get (old) value and then decrement.

fred++ will get (old) value and then increment.
Comments may appear betweey tmo symbols of a C program, for example
® Bitwise operators and masking

result = a /* this is perfectly legal here */ + b; & (bitwise and),| (bitwise or),” (bitwise ngation).
To check if certain bits are onfréd & MASK) etc.
And like Java and C++, there is also a simplé comrent to end of |ine. Shift operators<< (shift left), >> (shift right).

® Combined operators and assignment
a += 2; a -=2;
Be avare that some older C texts will tell you that comments may be plgitieit an identifier! a *= 2 (should bea = a<<2;)
May be combined as il += b; a = a+b;

ident /* no | onger |egal */ifier
* Type coercion
While acceptable in old K&R C, this is no longer valid under C99. C permits assignments and parameter passing between variables of different typégpassastor
coercion Casts in C are not implicit, and are used where some languages reqtiir@nsfer
function”.

CS23 Spring’07 - An introduction to the C99 programming language page 5 CS23 Spring’07 - An introduction to the C99 programming language page 6

Precedence of operator sin C Base Datatypes in C
® Expressions are allvaluated from left-to-right, and the default precedence mayvesidden with Variables are declared to be of a certiipe this type may be either basetype supported by the C
brackets. language itself, or aserdefined typeonsisting of elements drawn fromsCet of base typesC’s base
types and their representation on our labs’ Pentium PCs are:

() coercion (highest)

++ - 17 bool an enumerated type, eititerue orf al se

* | % char the character type, 8 bits long

+ - short the short integer type, 16 bits long

< >> int the standard integer type, 32 bits long

1= == | ong the “longer’ integer type, also 32 bits long

& fl oat the standard floating point (real) type, 32 bits long

| (about 10 decimal digits of precision)

&& doubl e the extra precision floating point type, 64 bits long

Il (about 17 decimal digits of precision)

? enum the enumerated type, monotonically increasing from 0
, (lowest) Very shortly we will see the emergence of IntllA64 architecture where, lkthe Pover-PC already

Variable names in C
Variable names (and type and function names as we shall see later) must commence with an alphabetic or
the underscore characté+Za-z_ and be followed by zero or more alphabetic, underscore or digit

characterd\-Za-z_0-9

Most C compilers, such agcc, accept and support variable, type and function names to be up to 256
characters in length.

Some older C compilers only supporteatiable names with up to 8 unique leading characters egyirkg

| ong integers occup 64 hts.

We aan determine the number bytesrequired for datatypes with the8 zeof operator In contrast, Jea
defines hw long each datatype may be.s@hly guarantee is that:

si zeof (char) <= si zeof (short) <= si zeof (int) <= si zeof (long)

Stora ge Modifier s of Variables

Base types may be preceded with one of rstwmge nodifier :

to this limit may be preferred to maintain portable code. aut o the variable is placed on the stack (default, deprecated)
extern the variable is defined outside of the current file
It is also preferred that you do not usarigble names consisting entirely of uppercase characters - register request that the variable be placed in a register (ignored)
uppercase variable names are best reserved#flafine -ed constants, as IMAXSIZE above. static the variable is placed in global storage with limited visibility
Importantly C variable names amase sensitivand t ypedef introduce auser-defined type
unsi gned storage and arithmetic is only of/on postintegers
MYLIMIT, mylimit, Mylimit and MyLimit
are four different variable names. Initialization Of Variables
All scalaraut o andst at i ¢ variables may be initialized immediately after their definition, typically with
constants or simple expressions that the compiler\cinate at compile time.
The C99 language defines that afinitialized global variables, and allininitialized st at i ¢ local
variables will hare the ‘starting” values resulting from their memory locations being filled with zeroes -
corveniently the value of 0 for an integend 0.0 for a floating point number.
CS23 Spring’07 - An introduction to the C99 programming language page 7 CS23 Spring’07 - An introduction to the C99 programming language page 8

Scope Rules Of Global Variables

In Java, a “variable” is simply used as aameby which we refer to an objecA newly created object is
given a rame for later reference, and that name may be re-used to refer to another'latgettin the

program. InC, a variable more strictly refers to a memory address (or contiguous memory address starting

from the indicated point) and thgpe of the variable declares Wwothat memorys cntents should be
interpreted and modified.

C only has tvwp true lexical l@els, global andfunction though sub-blocks of variables and statements may
be introduced in sub-blocks in maplaces, seemingly creatingwéexical levels. Assuch, variables are
typically defined globally (at lexical Vel 0), or at thestart of a statement block, where a funct®hody is
understood to be a statement block.

Variables defined globally in a file, are visible until the end of that fileey need not be declared at the
top of a file, It typically are. If a global variable has a storage modifiestadt i c, it means that the
variable is only ®ailable from within that file. If the st at i ¢ modifier is missing, that variable may be
accessed from another file if part of a program compiled and linked from multiple source files.

The ext er n modifier is used (within‘our” file) to declarethe existence of the indicated variable in
another file. The variable may beleclaredas ext er n in all files, but must belefined(and not as a
stati c!)in only a single file.

Scope Rules Of Local Variables

Variables may also be declared at the beginning of a statement bliakal not be declared ymhere
other than the top of the block. Sudriables are visible until the end of that block, typically until the end
of the current function.A variables name mayshadowthat of a global variable, making that global
variable inaccessible. Blocks do notvearemes, and so shadowed variables cannot be nabmszhl
variables are accessible until the end of the block in whichateedefined.

Local variables are implicitly preceded by thet o modifier — as control flw enters the block, memory
for the variable is allocated on the run-time stack. The memory is automatide#ijidcated’ (or simply
becomes inaccessible) as controhfleaves the block. The impliciut o modifier facilitates recursion in

C - each entry to a ne block allocates memory for melocal variables, and these unique instances are
accessible only while in that block.

If a local variable is preceded by theat i ¢ modifier, its memory is not allocated on the run-time stack,
but in the same memory as for globalriables. Whertontrol flav leaves the block, the memory is not
deallocated, and remains for theckisive use by that local ariable. Theresult is that &t at i ¢ local
variable retains its value between entries to its block. Whereassthaetihg” value of anaut o local
variable (sitting on the stack) cannot be assumed (or more corrdutiyld be considered to contain a
totally random value), thestarting” value of ast at i c local variable is as it was when the variablasw
last used.

CS23 Spring’07 - An introduction to the C99 programming language page 9

Flow of c ontrol in a C program

Control flov within C programs is almost identical to the eglént constructs in Ja Howeve, C
provides no exception mechanism, and so C hds gocat ch, andf i nal | y constructs.

® Conditional eecution
if (expression)

statementl;

if (expression) {

statementl;
statement2;
}
if (expression)
statement
el se
statement

Of significance, and aevy common cause of errors in C programs, is that pre C99 has no Boolean
datatype. Insteadyry expression thatva@luates to the inger value of 0 is considered false, angt aon-

zero value as trueA conditional statemers’ntrolling expression isvaluated and if non-zero (i.e. true)

the following statement is xecuted. Mosterrors are introduced when programmers (accidently) use
embedded assignment statements in conditional expressions:

i f (loop_index = MAXINDEX)
statement;

/* instead of ... */

if (loop_index == MAXINDEX)
statement;

A good habit to get into is to place constants on the left of (potential) assignments:

if (0=value)
statement;

When compiling withgcc -std=c99 -Wall -pedantic ... the only way to “shut the compiler

up” is to use extra parenthesis:

if ((! oop_index=MAXINDEX))
statement;

CS23 Spring’07 - An introduction to the C99 programming language page 10

Flow of c ontrol in a C program, continued

C’s ather control flov statements are very unsurprising:

whi | e (c onditional-expression) {

statementl,;
statement2;
}
do {
statementl;
statement2;

} whil e (c onditional-expression);

for(i nitialization ; conditional-expression ; statement3) {

statementl;
statement2;

Any of the 4 components may be missing, If the conditional-expression is missingwitys &lue,
Infinite loops may be requested in C witbr (; ;) ... orwith whi | e(1) ...

The equivalence of for and whil e

for (e xpressionl ; expression2 ; expression3) {
statementl;

}

expressionl;
whi | e (e xpression2) {
statementl;
expression3;

}
The swi t ch statement

swi tch (e xpression) {
case constl : statementl; br eak;
case const2 : statement2; br eak;
case const3:
case const4 : statement4;
def aul t ;s tatementN; br eak;

One of the fer differences here between C andals that C permits control to “drop aem” to following

case constructs, unless there is an explinieak statement.

CS23 Spring’07 - An introduction to the C99 programming language

The br eak statement

for (e xpressionl ; expression2 ; expression3) {
statementl ;
ifC..)
br eak;
statementN ;

}

whil e (e xpressionl) {
statementl ;
if(..)
br eak;
statementN ;

}

swi tch (e xpressionl) {
case constl : statementl;

case const2 : statement2;
br eak;

def aul t . s tatementN;

The cont i nue statement

for (e xpressionl ; expression2 ; expression3) {
statement1 ;
if(..)
conti nue
statementN ;

}

whi | e (e xpressionl) {
statement1 ;
if(..)
conti nue
statementN ;

CS23 Spring’07 - An introduction to the C99 programming language

page 12

The C Preprocessor

You will notice that a fev lines, typically near the lgenning, of a C program begin with the hash or pound
sign, #. These lines are termed preprocessor diectivesand are actually instructions (direes) to a
special program called the C preprocessor (locatedliicpp). As its name suggests, the C
preprocessor processes the text of a C progoaforethe C compiler sees it. The preprocessor divesti
(all beginning with#) should begin in column 1 (the 1st column) ofy&ource line on which theappear.
The C preprocessor is easily able to locate these lines and then examine the characters follBwihigethe
following characters usually form a special word in the C preprocesyotax which typically cause the
preprocessor to modify the C program before it is sent to the C compiler Adtlbugh there are about 20
different preprocessor direegs, well only discuss the most common one here and them ettiers as we
need them.

Header File Inclusion

The#include directive, pronouncechash includetypically appears at the beginning of a C progrdm.
is used taextuallyinclude the entire contents of another file at the point offthelude directive. A
commontinclude directve, seen at the beginning of most C files is

#include <stdio.h>

This directve indicates that the contents of the file namietio.h should be included at this point (the
directive is replaced with the contents). There is no limit to the number of lines that may be included with
this directve and, in fact, the contents of the included file mayédurther#include directives which

are handled in the sameay We say that the inclusions areestedand, of course, care should be taken to
avad recursve restings!

The example usingstdio.h> , aove, demonstrates taimportant points. The filename itself appears
between the characters. .. > . The use of these characters indicates that the enclosed filename should
be found in the standad include directory, /usr/include . The required file is then
Jusrf/include/stdio.h

Thestandad includefiles are used to consistently pide system-wide data structures or declarations that

are required in mandifferent files. By haing the standard include files centrally located and globally
awailable, all C programmers are guaranteed of using the same data structures and declaratiogs that the
(all) require. C99 only defines 15 operating system independent header files.

Have a (ecursve) look in the/usr/include directory yourself and you see that there arer 000
standard include filesvailable under inux!

CS23 Spring’07 - An introduction to the C99 programming language page 13

The C Preprocessor, continued

Importantly it is the use of thec . ..> characters which signify that tHasr/include directory
name should be prepended to the filename to locate the requiredAlitgnatvely, the " . .. "
characters may also be used, as in the following example:

#include "mystructures.h”

to include the contents of the fiteystructures.h at the correct point in the C program. Because the
R characters are used, the file is sought in tesent working dectory that is
JImystructures.h . Byusingthe" . .." characters we can specify owminclude files which are
located in the same directory as the C source programs themselves.

In both of the abee examples the indicated filename had thextension’ of .h . Whereas we hee
previously said that the‘éxtension’ of .c is expected by the C compilethe use of.h is only a
convention within UNIx. The .h indicates that the file is leader file because the generally contain
information required at theead(beginning) of a C programHeader files typically (and should) contain
only declaations of C constructs, lig data structures and constants used throughout the C prognam.
particular theyshould notontain ag executable code, variable definitions, nor C statements.

Defining T extual Constants

Another frequently used C preprocessor dikects the#define directive, pronouncechash define The
#define directive is used to introduce a textual value, or textual constant, which when recognized by the
C preprocessor will be textually substituted by its definitidmaditionally #define directives were the

only method wailable to C programmers, using old K&R C, of introducing constants in C prograans.
example, tvo frequently usedtdefine -ed constants are:

#define FRESHMAN
#define SOPHOMORE
#define JUNIOR
#define SENIOR

A WN PR

After these definitions, each time the C preprocessor locates the sequiEER as a complete war
within the C program, it will be substituted for tlebaracter sequenc8&. Although the n& ANSI-C
standard has introduced a forne@inst construct for supporting constants, #haefine directive is dill
the preferred method of defining some forms of constafasexample, when defining an array of igees
(described in greater detail later) we us#define directive define the maximum size of the array
Thereafter we use thidefine -ed constant in the array definition:

#define MAXSIZE 100
i nt myarray[MAXSIZE];
If necessarya preprocessor token may be undefined is no longer required:

#undef MAXSIZE

CS23 Spring’07 - An introduction to the C99 programming language page 14

Textual, Inline Functions

The#define directve may also be used to define some inline functions, more correctly tenaes
within your C programs. An often cited example is:

#define sqr(x) X * X

C does not hee a sandard function for calculating the square of, sayinteger value, but using the inline
macro defined alve, we @an nav write:

result = sqr(i);

wherei is an integer ariable. Noticethat the macro substitution was performed with the macro’
argument being . In a manner akin to actual and formal parameter naming va {nd C), the actual
parametei is represented in the macro as the formal parametéthout problems. Each time appears
as a unique “word’in the right-hand-side of the definition, it will be replaced in the C code by

Notice that this tetual substitution may also be used for calculating (in this example) the square of an
integer constantFor example:

result = sqr(3);

is expanded in an identicalay Our definition ofsqr is not really rigourous enough to provide correct
results in all casesFor example, consider theécall’” to sqr(x+1) which would @auate to2x+1! A
more correct definition would be:

#define sqr(x) () * (x))

Conditional Compilation

Another often used feature of the C preprocessor is the use of conditional compilatiomedireftie C
compile pre-defines awieconstants to‘tell’” the program the operating system in use, filename being
compiled, and so on:

#if defined(linux)

/* compile code specific to L INUX */
#elif defined(WIN32)

/* compile code specific to Windows */
#elif defined(sun) && defined(SVR4)

/* compile code specific to Sun’s Solaris */

#endif

CS23 Spring’07 - An introduction to the C99 programming language page 15

Functions in C

Java sipportsconstructorsandmethodsvhich allocate instances of, and interatgyand modify the state of,
their own (implicit) objects. Constructors and methods are typically directed by their parantters.
procedural programming language, meaning that its primary synchronous controhdithanism is the
function call. Strictly speaking, C has no proceduresiistead has functions, all of which return a single
instance of a base or user-defined ty@és functions access and modify the global memanmy (possibly)
their parameters. Although we may hope that a function can only modify memory that Iseeh *
(through C& scoping rules) or has been provided (through its parameter list), this is untrue.

By stating that there are only functions, in we suggest that all functions must realuea Whilenearly

true, C also has woi d type, difficult to describe, and often used as a place holder (to keep the compiler
happy!). We may think of a procedure in C, as a function that retuwsiad — nothing is returned With a
similar thought, we will often ¥oke a finction, but hee ro use for its return alue. Fr example, a
function such agrintf() will return an integer as its result, but we rarely need to use thigeinté/e

can “cast its valuéto voi d, effectively throwing avay the value.

printf(...);

The default return datatype of a function ist — if a function’s datatype is omitted, the compiler assumes
it to be ani nt. This has the unpleasant result, that if aremnal or yet to be defined functisrprototype

is omitted, the compile will often silently assume iamt return result. This is a frequent cause of
problems, particularly when dealing with functions returning floating pafies, as in G’ mathematics
library. The use ofjcc’s-pedantic switch allows us to trap most such errors.

Every complete C program has an entry point nameeidn, at which it appears the operating system calls
the program.Functionmain is of typei nt — thisi nt is returned as thérésult” of execution of the
whole program, with 0 indicating a successf#aition, anything non-zero otherwise.

C’s functions may recee z2ro or more parameterdill parameters to G’functions are passed bglue.
Other than within a single file, the datatype of function parameters between the fendgfontion and
invocation is not checked, i.e. C provides no link-time cross file type checRixtpaps surprisingl{C dso
permits functions to reoce a \ariable number of parameters. At run-time it is the functioesponsibility
to deal with the data types reesd, and the compiler cannot performyatype checking on these
parameters.

Function parameters are implicithromotedto “higher” datatypes by the compilerchars ae promoted
toi nts, andf | oats ae promoted taoubl es.

CS23 Spring’07 - An introduction to the C99 programming language page 16

Data structures in C

C has no equialent construct to the Ja dass. InsteadC provides two aggregae data structures — arrays
and structures.

Arrays in C are not objects, nor strictly singleriables. Insteadin arrays nrame is the name referring to

the first memory address of a contiguous block of memory of the requested length. Arrays may be declared
or defined wheneer scalar \ariables are declared or defined — arrays may be either arrays <€’ types

or user-defined types.

There is naarray keyword in C, and no bounds checking at run-tin@2aray subscripts commence at 0,
the highest valid subscript oht a[N] thus being N-1.

® One dimensional arrays Defined with (for exampie} score[20];

-> declare score as array of 20 int
int score[20]

total = O;
for(i=0;i<20 ;i++)
total = total + scorel[i];

® Multi-dimesntional arrays?
Strictly speaking, C does not support multi-dimensional arrdyswever, if all (one-dimensional)
arrays in c are consideredectors then multi-dimensional arrays are simply understoodvastbrs
of vectors”.
-> explain char str[10][20]
declare str as array of 10 array of 20 char
The number of elements of an array can be determined with :

#define NELEMENTS (sizeof(score) | si zeof (score[0]))

for(i=0 ; ikNELEMENTS ; i++)
total = total + scorel[i];

CS23 Spring’07 - An introduction to the C99 programming language page 17

User-defined C Structures

Structures in C are aggrae datatypes consisting fiéldsor memberf base types, or other usdefined
types. GCstructures may not includeceeutable code, unlink methods invdadasses.

struct person {
char name[20];
char addr[80];
int age;

I8

struct person pl, p2;
int ages;

ages = pl.age + p2.age;
/* the sum of their ges */

i f (strcmp(pl.name, p2.name) == 0) ...
/* do they have the same name? */

Character arrays and strings

C provides no base type that is a string, though the C compiler accepts the use of double quoted character
string literals and “does the obvious thihgA string in C is a sequence of characters (bytes) in contiguous
memory locations. The string is terminated by the sentinel value dfuthé character (zero byte)When

a C ompiler detects a string literal in a program, it will allocate enough contiguous global (read-only)
memory to hold the characters of the string (including the NULL byte at the end).

C does not record thkengthof a string anywhere (as doewda Insteadby corvention, the length of a
string is defined as the number of characters from the beginning of the string (its starting addressi} up to, b
not including, the NULL byte. The length dfello" is 5.

* Arrays of characters are typically used to store character strings. Notice that the parameter to the
following function does not indicate wexpected (maximum) size, or “length”, of the array.

int my_strlen(char strf])

{
int i=01 en=0;
whi | e(s tr[i] I=10") {
len++;
i++;
}
r et ur n(len);
}
CS23 Spring’07 - An introduction to the C99 programming language page 18

The Standar d 1/O Library

The C language itself does not defing particular file or character-based input or output routines (npr an
windowing routines) — unlik Java. Insteadany program may provide itsven. Clearlythis is a daunting

task, and so the standard C libraryyides a collection of functions to perform file-based input and output.

The standard 1/O library functions provide efficiamiffered!/O to and from both terminals and files.
C programs requiring standard 1/0 should include the line:

#include <stdio.h>
All transactions through the standard I/O functions requfile gpointer

FILE *fp;

fp = fopen(“file.dat", "r");

fclose(fp);
Although we are strictly dealing with afginter, we smply pass this pointer to functions in the standard C
library. Some texts will refer to this pointer adfile steam(and C++ confused thissen more), but these
should not be confused with nor be described as akirvits #reams.

An number of predicate macros are provided to check the status of file operations@nfitegbointer:

feof(fp) * checks for end-of-file */
ferror(fp) /* checks for an error on a file */

The standard 1/0 functions all retuNULL or -1 (as appropriate) when an error is detectéd. example:
#include <stdio.h>

int main(int argc, char *argv[])

{
FILE *fp;

i f ((fp=fopen("/etc/passwd”, "w")) == NULL) {
error nessage ...

}
el se {
[* process the file */

fclose(fp);

CS23 Spring’07 - An introduction to the C99 programming language page 19

The Standar d I/O Librar y, continued

The most frequently used functions in the C standard 1/O library perform output of formattetiVéadao
see here the most frequent use of &teptance of functions receiving a variable number of arguments:

fprintf(FILE *fp, char *format, (T)argl, (T)arg2, ...);

e.g. int res;
char *name = "Chris";

fprintf(fp,"res=%d name=%20s\n", res, name);

Marny standard 1/O functions accepf@rmat specifier a gring indicating hav following arguments are to

be displayed. This mechanism is in contrast t@ddoString facility in which each object knows to

to output/display itself as &tring object. Thereare may possible format specifiers, the most common
ones being 'c’ for character values, 'd’ for decimal valued,df floating point values, and s’ for character
strings. rmat specifiers may be preceded by a number of format modifiers, which may further specify
their data type, and to indicate the width of the required output (in characters).

As a special case, we may use a more concise versipmniraf() in which theFILE pointer of the
operating systers’ gandard output déce is used (typicallythe screen). Thus, the following dw
statements are identical:

fprintf(stdout, "res=%d name=%20s\n", res, name);
printf("res=%d name=%20s\n", res, name);

We nentioned before that the C standard 1/O librarwjutes efficient bffering. Thismeans that although
it appears that the output hagone” to the FILE pointer, it may still be held within an internal character
buffer in the library (and will hence not yet be on disk, or to the scréde)dten need tdlushour output
to ensure that it is more quickly written to disk or the screeiLlE pointers are automatically flushed
when a file is closed or the process exits:

/* ... format sone output ...*/
fflush(fp);

As well as outputting td-ILE pointers, we may also perform formatted output to a character array (a
string), with a very similar series of functions:

int res;
char *name = "Chris";
char buffer[BUFSIZ];

sprintf(buffer, "res=%d name=%20s\n", res, name);

CS23 Spring’07 - An introduction to the C99 programming language page 20

The Standar d I/O Librar y, continued

C’s dandard 1/O library may also be used to input values fRdbiE pointers and character arrays using
fscanf() andsscanf() . Because we want the contents of @riables to be modified by the standard
I/0 functions, we need to pass tmdresf the variables:

fscanf(fp, format, &arg1, &arg2, ...);

e.g. int ires;
char buffer[BUFSIZ];

fscanf(fp, "%d %d", &i, &res);
sscanf(buffer, "%d %d", &i, &res);

We dso frequently need to read all lines from a file, or to (perhaps) sum all integers values fronv\é file.
must be careful here, with the particular retuaiues of the C standard 1/O functions. The functions
themseles return NULLFILE pointers, or a value of -1 at the end of a file or an error condition, but we
must be carevhenwe check these values:

#define MAXLINE 80

int i sum;
char line[MAXLINE];

for(){
fgets(line, si zeof (line), fp);
i f (feof(fp))
br eak;

/* ... process the line just read ...*/
}
fclose(fp);

sum =0;

whi | e(fscanf(fp, "%d", &i) == 1)
sum +=i;

fclose(fp);

CS23 Spring’07 - An introduction to the C99 programming language page 21

The C/Operating System Interface

Operating systems, such asii¥, LINUX, Mac-OSX, and Widows-XR will call C programs with tw
parameters:

ani nt eger argument countfgc),
® an array of pointers to character stringsg{), and

Notice that in may previous examples weé povided amain() without ary parameters allRemember
that C does not check the length and types of parameter lists of functions which it does tvib&koot —
ones that hae ot been prototypedin addition, the functiomain() has no special significance to the C
compiler Only the linker requiresmain() as the apparent starting point ofyaprogram. MostC
programs you see will only laa the first two parameters.

int main(int argc, char *argv[])

-> explain char *argv[]
declare argv as array of pointer to char

A common activity at the start of a ¢ program is to search tenaent list for command-line switches
commencing with a '=’ characteRemaining command-line parameters are often assumed to be filenames:

int main(int argc, char *argv)
{
argv0 = (argvO = strrchr(argv[0],’/")) ? argvO+1 : argv[0];
argc--; argv++;
whi | e((argc > 0) && (*argv[0] =="-")) {
swi tch (*argv[l]) {
case’'d’: dflag = !dflag;
br eak;
default : argc = 0;
br eak;
}
argc--; argv++;
}
i f(argc<0){
fprintf(stderr, "Usage : %s %s\n",argv0,usage);
exit(1);

i f(argc > 0)
whi | e(argc > 0) {
process(*argv);
argv++; argc--;
}
el se
process(NULL);
r et ur n(0);

CS23 Spring’07 - An introduction to the C99 programming language page 22

Pointers in C

The C programming language has a very powerful feature, and if used incorrestjydamgerous feature,
which allows a program (at run-time) to access its own mem®hys ability is well supported in the
language through the use pdinters There is much written about the power axpressveness of G
pointers, and much (more recently) written abow&iddack of pointers. More preciselyava doeshave
pointers, termedeferencesbut the references to\ks objects are so consistently and carefully constrained
at both compile and run-time, that very little can go wrong.

C has both ‘standard’ variables and structures, and pointers to these variables and structueemlyhas
references to objects, and it is only possible to manipulate the corsputenory used to hold the objects,
by using references)C’s drawback is that while the pointers allaus to asily refer to scalar variables and
aggreae structures, C has very little support toverg us accessing anything else (accidently) at run-time.
All speed advantages provided by thailability of pointers, can be trially consumed by the time tak

to debug a program incorrectly using pointers.

C’s pointers allav us to refer to theaddressof a variable rather than itale. Ifthis were all that were
possible, we may be able to getag without using pointers at all* Unfortunately’ parameters to G’
functions may only be passed by value, and so a rudimentary understandisgaft@rs is needed to use
“ pass-by-referencgbarameter passing in C.

Consider the following example trying to interchange the value @irtteger variables:

#include <stdio.h>

void swap(int i, int j)
{
int temp;
temp =;
i =k
j = temp;
}
int main(int argc, char *argv[])
{
int a=3, b=5;
printf("before a=%d, b=%d\n",a,b);
swap(a,b);
printf("after a=%d, b=%d\n",a,b);
return(0);
}

before a=3, b=5
after a=3, b=5

CS23 Spring’07 - An introduction to the C99 programming language page 23

Pass By Reference Using Pointers

Instead, we need to passraference’ to the two integers to be interchanged, so that the funcsieap()
is actually dealing with the originahviables, rather than wecopies of their values (passed ors @in-time
stack).

#include <stdio.h>

void swap(int *ip, int *p)
{

int temp;

temp = “*ip;
o= P
P = temp;

int main(int argc, char *argv[])
int a=3, b=5;

printf("before a=%d, b=%d\n",a,b);
swap(&a, &b);

printf("after a=%d, b=%d\n",a,b);
return(0);

}

before a=3, b=5
after a=5, b=3

Here weve introduced a bit more syntax (and, typicaifyises punctuation characters).

® The address operafat, is used to determine the (run-time) memory address @rame. Hereve
require the memory address of theriablesi andj before passing these addresses tosthep()
function. Noticethat we are still using pass-bglue parameter passing, but that we are passing
addresses on the run-time stack.

® The two asterisks inswap() ’'s formal definition indicate that theasiablesip andjp arepointers or
pointer variablesrather than justsimple” variables. liis typical in C programs to append 'p’ or 'ptr’
to a variables nrame to indicate that #'a winter.

® The asterisks wlays placed in front ofp andjp in function swap() indicate that we wish to
dereferencehese wariables. Insteadf using the contents of these variables (which ‘aredningless”
memory addresses) we wish to use th&espointed toby these ariables. Noticethat we may
dereference variables on “both sided’an assignment expression.

CS23 Spring’07 - An introduction to the C99 programming language page 24

Pointer s To Arrays And Character Strings

One often confusing point in C is the synonymous use of arrays, character strings, and pointers. The name
of an array in C, is actually the memory address of the arfagt element. Thus the following ow
assignment statements are the same, and the first is the most commonly used:

char buffer[BUFSIZ], *ptr;

ptr = buffer;
ptr = &buffer[0];

Using thecdeclprogram again:

-> explain char *ptr
declare ptr as pointer to char

If we also remember that €'character strings are simply a contiguous series of characters which, by
corvention, are terminated by a NULL charagtren we can consider strings to be arrays to, and strings
may be accessed through pointers (you may wish to consider assfiistgtharacter as being stored at the
memory address of the array of charactékie can thus write:

int n;
char *hex_values = "0123456789abcdef";

n = hex_values| ...expression...]
/* or ... don't do this! */
n = "0123456789abcdef' ...expression...]

We will often see the use of character pointers (used to strings), and character arrays (with assumed
terminating NULL characters, used interchangeably:

int my_strlen(char *str)

{
int len=0;
whi | e(s trlen] [* 1="\0 */)
++len;

r et ur n(len);

CS23 Spring’07 - An introduction to the C99 programming language page 25

Pointer Arithmetic

Another confusing facility in C is the use pbinter arithmeticwith which we may advance a pointer to
point to succesgé memory locations at run-time. It auld male little sense to be able tépoint
anywhere’into memoryand so C automatically adjusts pointers (fards and backwards) by values that
are multiples of the size of the base types (or user-defined structures) to which the pointer points(!).

We gpecify pointer arithmetic in the sameaywwe specify numeric arithmetic, using +, —, and pre- and
post- increment and decrement operators (multiplication and divisior fitd& sense).We may thus
traverse an array with pointer arithmetic:

int my_strlen(char *str)

{
int len=0;
while(*str /* I="\0 */) {
++len;
++str;
r et ur n(len);
}

Notice that we are simplymoving the pointer along’we are not modifying what it pointers to, simply
accessing adjacent memory locations until we reach one containing the NULL chafFacesxample is a
little simple, because the character pointer will only be advanced one memory location (one byte) at a time,
as a character is one byte long. Altervelyi, consider the fie equivaent examples:
int sum_array(int *values, int n)
{
int i, *ip;
int sum = 0;

f or(sum=0, i=0 ; i<n ; ++i)
sum += valuesi];

f or (sum=0, i=0 ; i<n ; ++i)
sum += *(values+i);

f or (sum=0, ip=values; ip<&values[n] ; ++ip)
sum += *ip;

for(sum=0, i=0 ; i<n ; ++i) {
sum += *values;
++values;

}

f or(sum=0, i=0 ; i<n ; ++i)
sum += *values++;

r et ur n(sum);

CS23 Spring’07 - An introduction to the C99 programming language page 26

Pointer Arithmetic, continued

Unfortunately we frequently see arxeessie wse of pointer arithmetic in C with programmers trying to be
too smart to speed up their progranfsr example:

char *my_strcpy(char *dest, char *src)

{
char *d = dest;
whi | e(*dest++ = *src++);
r et ur n(d);

}

With code such as this, in which we are trying toycalpcharacters fronsrc to dest until we reach the
NULL characterwe dways have in the back of our minds the concern as to whether the NULL character is
in fact copied from the end sfc todest , and thus lgdly terminatesdest .

Sorting An Array Of Values
A frequently required operation is to sort an array of, saggers or characters. The standard C library
provides a generic function namedort() to help with this, bt we must write a pointer-based function
to perform the comparison of the arm@ements:

#include <stdlib.h>

#define N 100

int compare(const int *ip, const int *p)

{
return(*i - %),
}
int main(int argc, char *argv[])
{
int i
int values[NJ;
srandom(getpid());
for(i=0;i<N ;i++)
values]i] = random();
gsort((void *)values, (size_t)N,
si zeof (values[0]), compare);
r et ur n(0);
}
CS23 Spring’07 - An introduction to the C99 programming language page 27

Dynamic Memor y Allocation

The functionmalloc() returns a requested number of bytes from the operating sgsteap. If
insufficient memory is wailable malloc returnsNULL When we are finished using the space returned by
malloc() , our program should be returned to the heap with a cdtetf) . If a process continues to
malloc() memory and fails to deallocate it usifigee() , the process will quickly “run out of
memory’ and terminate ungracefully.

Unlike Java, C has no gar bage collection of heap objects, and so programs must be very careful about
deallocating memory that isno longer required.

Consider the follwing example which allocates space for wigepy of a gven gring. Thisis very similar
to the standard function namstidup()

char *newstr(const char *s)

{
voi d *malloc(unsi gned int nbytes);
char *p;

i f((p=malloc(strlen(s)+1)) == NULL) {
fprintf(stderr,"out of memory\n");
exit(1);

}

strepy(p,s);
ret ur n(p);

}
malloc() s also frequently used to allocate memory for structures.
#define NEW(t) malloc(si zeof (1))

struct | {
char *line;
struct | * next;

h
struct | * hd = malloc(si zeof(struct I));

fgets(buf, MAX, fp);
whi | e(! feof(fp)) {
p = NEWStruct I);
p->line = newstr(buf);
p->next = hd;
hd = p;
fgets(buf, MAX,fp);

CS23 Spring’07 - An introduction to the C99 programming language page 28

