
Under consideration for publication in J. Functional Programming 1

FUNCTIONAL PEARLS

Enumerating the strings of regular languages

M. DOUGLAS McILROY

Dartmouth College, Hanover, New Hampshire 03755

(e-mail: doug@cs.dartmouth.edu)

Abstract

Haskell code is developed for two ways to list the strings of the language defined by a regu-
lar expression: directly by set operations and indirectly by converting to and simulating an
equivalent automaton. The exercise illustrates techniques for dealing with infinite ordered
domains and leads to an effective standard form for nondeterministic finite automata.

Lazy languages are well suited to sequence generation because of the ease with

which they handle infinite sequences. The problem of enumerating the strings of a

regular language was proposed by Jay Misra as a lovely case in point, simple to state,

yet tricky to solve. This paper develops two concise and radically different solutions

in Haskell (Peterson et al., 1998), one direct and one indirect. Both approaches

exploit Haskell’s outstanding fitness for structural induction.

The direct approach interprets regular expressions as recipes for building sets.

Here the main concern is programming the primitives for combining sets: union,

cross-product, and closure under a binary operation. The primitives apply to any

well ordered domain.

The indirect approach detours through automata, first constructing an equivalent

nondeterministic finite automaton, then tracing execution paths of the automaton

in breadth-first order. The automata have an unusual shape: besides a single final

state, there is exactly one state per symbol in the regular expression and that state

accepts only the one symbol. The set operations developed for the first solution are

used again, this time for combining sets of states rather than sets of strings.

Working Haskell code is available electronically. (McIlroy, 2003)

1 The problem

Devise a program to enumerate the distinct strings of the regular language denoted

by a given regular expression. The resulting list should be ordered by string length

and lexicographically within each length. Parsing is not at issue; regular expressions

are taken to be already parsed data structures.

2 M. D. McIlroy

Table 1. Meaning of regular expressions

e L(e)

∅ empty set
ε singleton set of the empty string
a singleton set of the one-symbol string a

(e) L(e)
e∗ Kleene closure: least fixed point of k = ε|ek
e1e2 catenation: {x1x2|x1 ∈ L(e1), x2 ∈ L(e2)}
e1|e2 alternation: L(e1) ∪ L(e2)

Conventions

e e1 e2 regular expressions
a symbol of alphabet A

ε ∅ () ∗ | metacharacters, not symbols

1.1 Terminology

A regular expression denotes a language (or set) of strings over an ordered alpha-

bet A. Table 1 defines how a regular expression e and its language L(e) may be

constructed. The operators (Kleene closure, catenation, alternation) are listed in

decreasing order of precedence, subject as usual to explicit grouping by parentheses.

The catenation of two languages is the set of pairwise catenations of strings from

each. The Kleene closure of a language is the set of strings made by catenating zero

or more (not necessarily distinct) strings from the language.

Phrases such as ‘enumerating the strings of a language’ will usually be shortened

to ‘enumerating a language’, and ‘enumerating the strings of the language defined

by ...’ to ‘enumerating the language of ...’.

Two languages will be used as running examples.

Example 1, sandwich language

Regular expression ab*a denotes possibly empty strings of b’s sandwiched between

single a’s:

["aa", "aba", "abba", "abbba", ...]

Example 2, even-a language

Regular expression (ab*a|b)* denotes strings that contain an even number of a’s

and any number of b’s:

["aa", "aab", "aba", "baa", "aaaa", "aabb", "abab",

"abba", "baab", "baba", "bbaa", "bbbb", ...]

Functional pearls 3

2 Length-ordered lists

Length-ordered strings, LOS, are defined as a special case of a polymorphic length-

ordered list data type, LOL.

data LOL a = LOL [a] deriving Eq

instance Ord a => Ord (LOL a) where

LOL x <= LOL y = (length x, x) <= (length y, y)

type LOS = LOL Char

Equality tests are automatically lifted from lists to length-ordered lists by the

deriving clause. Inequality tests are implemented by placing length ordered lists

over an ordered type a in type class Ord and stating that comparison is done first

on length, then content.

To define catenation of length-ordered lists, they are placed in class MonadPlus,

to which the ++ operator belongs, and the constructor LOL is declared to distribute

across catenation. As a technical detail, membership in MonadPlus requires mem-

bership in superclasses MonadZero and Monad.

instance MonadPlus LOL where

(LOL x) ++ (LOL y) = LOL (x++y)

instance MonadZero LOL

instance Monad LOL

3 Set operations

According to the usual head-tail strategy for stream processing, operators to calcu-

late new ordered sets from old ones will explicitly calculate the head (least) element

of an output and recur to calculate the tail (greater) elements. These operators ap-

ply to strictly ordered lists of distinct elements.

3.1 Union

Set union is denoted by infix \/, left associative, with the same precedence (6)

as addition. The operation is carried out by a conventional merge, using Haskell’s

3-way comparison function.

infixl 6 \/

(\/) :: Ord a => [a] -> [a] -> [a]

[] \/ ys = ys

xs \/ [] = xs

xs@(x:xt) \/ ys@(y:yt) = case compare x y of

LT -> x : xt\/ys

EQ -> x : xt\/yt

GT -> y : xs\/yt

(According to custom, sequence variables are suffixed with s. When both a sequence

and its tail are named, the latter is given suffix t.) Other binary operations on sets,

4 M. D. McIlroy

such as intersection, difference and symmetric difference, would be programmed

similarly.

Example 3

These expressions all evaluate to True.

[1,3,4] \/ [1,2,4,7] == [1,2,3,4,7]

["a", "aab"] \/ ["b", "bb"] == ["a", "aab", "b", "bb"]

[LOL "a", LOL "aab"] \/ [LOL "b", LOL "bb"]

== [LOL "a", LOL "b", LOL "bb", LOL "aab"]

Example 4.

The expression
[0,2..] \/ [1,3..] == [1..]

though true, involves infinitely many comparisons; its evaluation will not terminate.

3.2 Cross product and set catenation

To catenate sets, we must generate an ordered list of strings xy for all pairs (x, y)

in the cross product of two sets. The least string of the result is the catenation of

the least strings of the two sets. Catenation of length-ordered lists is monotone in

both arguments: x < x′ implies xy < x′y for all y and yx < yx′ for all finite y.

Other familiar binary functions have the same property: addition of nonnegative

integers, multiplication of positive integers, and pairing of nonnegative integers in

the Cantor order, where pairs (i, j) are ordered first on i+j and then on i. It should

be useful, then, to make a polymorphic cross-product generator with a functional

argument:

xprod :: (Ord a, Ord b, Ord c) => (a->b->c) -> [a] -> [b] -> [c]

Example 5

These expressions evaluate to True:

xprod (+) [1,3,5] [2,4,5] == [3,5,6,7,8,9,10]

xprod (++) ["","a"] ["ab", "b"] == ["ab","aab","b"]

xprod (++) [LOL "", LOL "a"] [LOL "b", LOL "ab"]

== [LOL "b", LOL "ab", LOL "aab"]

xprod (^) [2,3,4] [1,2] == [2,3,4,9,16]

(xprod pair [1,2] [1,2] == [(1,1),(1,2),(2,1),(2,2)])

where pair x y = (x,y)]

The function xprod can work, in the sense that every element of the cross product

eventually appears, only if the output domain is well ordered, i.e. has no element

with an infinite number of predecessors. Length-ordered lists are well ordered.

Functional pearls 5

Example 6

The last expression in Example 5 does not generalize to infinite lists. The expression

(xprod pair [1..] [1..]) where pair x y = (x,y)

fails to produce a full mathematical cross product, because Haskell’s standard (lex-

icographic) ordering on pairs is not a well ordering. The expression evaluates to

[(1,1),(1,2),(1,3), ...]

which contains no pair with first member greater than 1.

The basic pattern of xprod applied to nonempty sets must be

xprod f (x:xt) (y:yt) = f x y : tail

The tail may be decomposed into two sets of pairings: (1) x paired with everything

in yt, and (2) everything in xt paired with everything in (y:yt). The two sets may

be constructed recursively and then unioned to give the tail.

xprod _ [] _ = []

xprod _ _ [] = []

xprod f (x:xt) ys@(y:yt) =

(f x y) : (xprod f [x] yt) \/ (xprod f xt ys)

Catenation of regular languages, represented as length-ordered lists of strings, is a

specialization.

cat :: [LOS] -> [LOS] -> [LOS]

cat = xprod (++)

3.3 Closure

The Kleene closure, x∗, of a set x of strings is the closure of x under catenation,

i.e. x∗ is the least fixed point k of k = ε | xk. Again we generalize. The set x of

strings becomes a set from a well ordered domain; catenation becomes a semigroup

operation f on the domain, monotone in both arguments; and ε becomes the identity

element z for operation f . Moreover, z must be the least element of the domain.

closure :: Ord a => (a->a->a) -> a -> [a] -> [a]

closure f z [] = [z]

closure f z xs@(x:xt) = if x==z

then closure f z xt

else z : xprod f xs (closure f z xs)

This definition of closure works, despite the seemingly circular call in the else

clause, because the cons constructor (:) assures a lag; each new element in the result

depends only on previously computed elements. The critical then clause deletes the

identity element from xs, thereby preventing output elements from reappearing by

combination with the identity. The deletion causes nothing to be omitted from the

cross product.

6 M. D. McIlroy

data Rexp = Nil -- empty language

| Eps -- empty string

| Sym Char -- symbol of the alphabet

| Clo Rexp -- Kleene closure

| Cat Rexp Rexp -- catenation

| Alt Rexp Rexp -- alternation

enumR :: Rexp -> [String]

enumR r = [x | (LOL x) <- enumR’ r]

enumR’ :: Rexp -> [LOS]

enumR’ Nil = []

enumR’ Eps = [LOL ""]

enumR’ (Sym a) = [LOL [a]]

enumR’ (Clo x) = clo (enumR’ x)

enumR’ (Cat x y) = cat (enumR’ x) (enumR’ y)

enumR’ (Alt x y) = alt (enumR’ x) (enumR’ y)

alt :: [LOS] -> [LOS] -> [LOS]

alt = (\/)

Fig. 1. Direct enumeration of regular languages

Kleene closure, clo, is a specialization, in which the operation is catenation and

the identity element is the (length-ordered) empty string.

clo :: [LOS] -> [LOS]

clo = closure (++) (LOL "")

4 Direct enumeration

Given the set operations, it is easy to enumerate a language directly from its defining

regular expression. Table 1 maps directly into the data definition in Figure 1, where

a straightforward program enumR’ constructs a list of length-ordered strings, using

set operations. A wrapper program, enumR, strips away the LOL constructors to give

a list of plain strings.

Example 7

The sandwich and even-a languages, ab*a and (ab*a|b)*, are defined by

a = Sym ’a’

b = Sym ’b’

sandwich = Cat a (Cat (Clo b) a)

even_a = Clo (Alt sandwich b)

and the even-a language is enumerated by

enumR even_a

Functional pearls 7

5 A path through automata

Automata theory offers a radically different approach to enumerating regular lan-

guages. A nondeterministic finite automaton (NFA) is a convenient equivalent to a

regular expression, with a state count roughly linear in the length of the expression.

(Equivalent deterministic automata can be exponentially larger.) We shall convert

regular expressions to nondeterministic automata (Perrin, 1990) of a particularly

simple form, with these properties:

• There is one final state.

• There is also one state for each occurrence of a symbol in the regular expres-

sion.

• One or more states are start states, unless the automaton is empty.

• Each nonfinal state accepts just one symbol.

• There are no epsilon moves; the input tape moves with every state change.

Example 8

The automaton for the even-a language (ab*a|b)* has 5 states: a final state and

one state for each occurrence of symbols a and b.

An automaton is known by its start states. A state is fully described by a distin-

guishing identifier, the symbol it accepts, and the states it moves to on that symbol.

‘The states it moves to’ may equally well be thought of as ‘the new automaton it

becomes’. We take state identifiers to be nonnegative integers, with 0 identifying

the final state.

type NFA = [State]

data State = State Ident Char NFA

type Ident = Int

Example 9

The sandwich language ab*a is defined by automaton g, whose only start state is

g3.

g0 = State 0 ’~’ []

g1 = State 1 ’a’ [g0]

g2 = State 2 ’b’ [g1,g2]

g3 = State 3 ’a’ [g1,g2]

g = [g3]

States in g are numbered from right to left in the regular expression. The final

state’s symbol, ~, is a dummy, unusable because there are no moves from that

state.

Example 10

The even-a language (ab*a|b)* is defined by automaton h, with three start states.

h0 = State 0 ’~’ []

h1 = State 1 ’b’ [h4,h1,h0]

h2 = State 2 ’a’ [h4,h1,h0]

8 M. D. McIlroy

h3 = State 3 ’b’ [h2,h3]

h4 = State 4 ’a’ [h2,h3]

h = [h4,h1,h0]

5.1 Terminology

The pedantic distinction between a regular expression and its equivalent automaton

may be dropped when the meaning is clear from context.

An automaton e whose language L(e) contains ε is called bypassable.

b(e) is a predicate, true if and only if e is bypassable.

S(e) denotes the set of start states of automaton e.

F (e) denotes the set of first states, start states of e that are distinct from the

final state. The language of e started in F (e) is L(e) − ε.

D(e) denotes destination states, states that are outside automaton e and are

reached by notional epsilon moves from the final state of e. The notional epsilon

moves are subsumed by replacing each move to the final state with a set of moves

to the destination states. The final state of any subautomaton is also notional; it is

never represented in any data structure.

A set of constituent equations relates the attributes b(e), S(e), F (e) and D(e) of

a composed automaton e and of any immediate components, e1 or e2.

Destination states of a bypassable automaton also appear among the start states

according to the constituent equations

S(e) = F (e) ∪ D(e), if b(e) is true

S(e) = F (e), if b(e) is false

Example 11

Automaton h (Example 10) has two first states, h4 for the first a in (ab*a|b)* and

h1 for the second b. Being a closure, which can match the empty string, the body

of the automaton is bypassable. Thus the start states include the first states and

the sole destination state, final state h0.

5.2 NFA construction

We shall define a function r2n to convert a regular expression to a nondeterministic

automaton.

r2n :: Rexp -> NFA

The main work of conversion, though, will be done by an auxiliary function r2n’,

which constructs automata for subexpressions and connects them according to the

recipes below. The parameters of r2n’ are a subexpression (type Rexp), the least

identifier (Ident) available for any states that may have to be created, and the

destination states (NFA). The return value comprises the first states (NFA), the next

available identifier (Ident) for use in further subautomata, and a bypass flag (Bool),

true if and only if the newly constructed automaton is bypassable.

Functional pearls 9

r2n’ :: Rexp -> Ident -> NFA -> (NFA,Ident,Bool)

Example 12

Consider the subexpression that consists of the first b in (ab*a|b)*. The corre-

sponding subautomaton, h3 in Example 10, is built by the code fragment

(fs,n,bf) = r2n’ (Sym ’b’) 3 ([h2]\/fs)

which is invoked in the course of constructing the automaton for the immediately

enclosing subexpression b*. State identifier 3 is the first identifier that the new

subautomaton can use. State h2, which accepts the second a in (ab*a|b)*, is the

only destination state outside of the surrounding b*. The full destination argument,

([h2]\/fs), says the subautomaton for b in context may also loop back to its own

first states fs; lazy evaluation closes the loop. The new available-identifier value,

n, will be 4 because the subautomaton uses one state, state 3. The bypass flag bf

will be False because b cannot match the empty string.

The top-level conversion program, r2n, constructs the final state

(State 0 ’~’ []). and calls r2n’ to construct the rest of automaton r.

State 0 is the sole member of the automaton’s destination states ds, and 1 is

the next available state identifier. The start states returned by r2n include the

first states and, conditionally, the destination states (the singleton final state), as

determined by a bypass function bp, depending on the bypass flag b.

r2n r = let {

ds = [State 0 ’~’ []];

(fs, _, b) = r2n’ r 1 ds

} in fs \/ (bp b ds)

bp :: Bool -> NFA -> NFA

bp True ds = ds

bp False _ = []

Since operator \/ works only on ordered sets, we must place an order on states.

Though any ordering, such as ordering by identifier, might do, we shall see later

that ordering by state symbol is more convenient for the task at hand.

5.2.1 Primitive automata

The constructions for primitive regular expressions e are straightforward. Each is

described below, together with constituent equations and Haskell code.

If e is ∅, the automaton is nugatory. It has no states and is not bypassable.

F (e) = ∅

b(e) = false

r2n’ Nil n _ = ([], n, False)

If e is ε, the automaton also has no states; it is a pure bypass.

F (e) = ∅

b(e) = true

10 M. D. McIlroy

r2n’ Eps n _ = ([], n, True)

If e is (Sym c), the automaton has one state, which accepts symbol c; it is not

bypassable. Its identifier is n; the next available identifier is n+1. The state’s moves

go to the destination states ds.

F (e) = {state n}

b(e) = true

r2n’ (Sym c) n ds = ([State n c ds], n+1, False)

5.2.2 Composed automata

In an alternation, e = e1 | e2, the destination states of e1 and e2 are the destination

states of e. The first states of e are the union of the first states of e1 and e2. The

alternation is bypassable if either e1 or e2 is bypassable.

D(e1) = D(e2) = D(e)

F (e) = F (e1) ∪ F (e2)

b(e) = b(e1) ∨ b(e2)

r2n’ (Alt x y) n ds = let {

(fs, n’, b) = r2n’ y n ds;

(fs’, n’’, b’) = r2n’ x n’ ds;

} in (fs\/fs’, n’’, b||b’)

In a catenation, e = e1e2, the destination states of e2 are the destination states

of e. The destination states of e1 are the start states of e2. The first states of the

catenation are the first states of e1 plus, if e1 is bypassable, the first states of e2.

The catenation is bypassable if both e1 and e2 are bypassable.

D(e2) = D(e)

D(e1) = S(e2)

b(e) = b(e1) ∧ b(e2)

F (e) = F (e1) ∪ F (e2), if b(e1) is true

F (e) = F (e1), if b(e1) is false

r2n’ (Cat x y) n ds = let {

(fs, n’, b) = r2n’ y n ds;

(fs’, n’’, b’) = r2n’ x n’ (fs\/(bp b ds));

} in (fs’\/(bp b’ fs), n’’, b&&b’)

The first states of a closure, e = e∗
1
, are the first states of e1. The destination

states of e1 are the union of the first states of e1 and the destination states of e

The closure is bypassable.

F (e) = F (e1)

D(e1) = D(e) ∪ F (e1)

b(e) = true

Functional pearls 11

r2n’ (Clo x) n ds = let {

(fs, n’, _) = r2n’ x n (fs\/ds)

} in (fs, n’, True)

Example 13

The automata in Examples 9 and 10 are exactly the automata that r2n builds for

the regular expressions of Example 7.

g = r2n sandwich

h = r2n even_a

5.2.3 Sufficiency of lazy evaluation

Inspection of the constituent equations reveals that the following computation

schedule imposes an order of evaluation wherein the left side of each equation may

be calculated from the right. The existence of a feasible schedule assures us that

lazy evaluation of r2n’ will solve the constituent equations.

1. Initialize D(e) at the root of the regular expression tree, from r2n.

2. Initialize b(.) and F(.) at the leaves, from formulas for primitive automata.

3. Compute b(.) by a postorder traversal of the regular expression tree.

4. Compute F (.) by a postorder traversal.

5. Compute D(.) and S(.) by a preorder traversal that computes D(e) before

S(e) and visits e2 before e1 whenever both exist.

5.2.4 Complexity

Let a regular expression r contain s symbols (s+1 states); let its parse tree contain

n nodes; and let time be measured in Haskell interpreter steps, exclusive of compi-

lation and garbage collection. Then the set operations in r2n’ take worst-case time

O(s + 1) per node for which they are called. Since r2n’ is called once per node,

the construction takes time at most O((s + 1)n), or O(n2) in view of the fact that

s ≤ n. This complexity is asymptotically optimal, witness the family of regular

expressions

a∗

1
a∗

2
...a∗

n,

where the ai are distinct. Minimal automata for these expressions have move tables

with O(n2) entries.

5.3 Enumerating the language of an NFA

To enumerate the language of an automaton, we simulate its operation. Each step of

the simulation treats the automaton’s action in a set of states to which the automa-

ton has been driven by a distinct string. The history to that point is summarized

in a word that tells the string and the current states.

12 M. D. McIlroy

type Word = (String,NFA)

In each state the automaton accepts one symbol and moves to another set of states.

Since different states may have different symbols, each word in general gives rise to

multiple words, the strings of which differ in their last symbols. Thus the words form

a tree rooted at a start word (string is empty, current states are the start states).

A word’s depth in the tree is the same as the length of its string. If a word’s states

include the final state (0), the word’s string is accepted by the automaton.

accept :: NFA -> Bool

accept ds = 0 ‘elem‘ [i | (State i _ _) <- ds]

To produce strings ordered by length, we must walk the tree of words breadth

first. Thus we are led to keep a queue ws of words.

visit :: [Word] -> [String]

visit [] = []

visit ((x,ds):ws) = let { xs = visit (ws ++ ...)

} in if accept ds then x:xs else xs

The current word (x,ds) is removed from the queue and a set of successor words

(...) is constructed and appended to the queue. If the current states indicate

acceptance, the word’s string is placed on the output list. The rest of the list, xs,

is computed by recursively visiting other words in the queue.

To avoid getting duplicate strings among the successor words, we group the moves

from all the states in ds by symbol. For convenience we represent a group by a

(possibly fictitious) state that accepts the symbol and has a unioned list of moves.

The code for the grouping function

grp :: NFA -> NFA

will be given later. The set of successors to word (x,ds) is

[(x++[c],ds’) | (State _ c ds’) <- grp ds]

Whence the completed code for visit is

visit [] = []

visit ((x,ds):ws) = let { xs = visit (ws ++

[(x++[c],ds’) | (State _ c ds’) <- grp ds])

} in if accept ds then x:xs else xs

If the grouped states are ordered by symbol, words with strings x++[c] will be

added to the queue in lexicographic order.

To facilitate grouping, it is convenient to keep lists of states ordered by symbol,

resolved when necessary by identifier. That ordering is defined by

instance Eq State where

(State i _ _) == (State i’ _ _) = i==i’

instance Ord State where

(State i c _) <= (State i’ c’ _) = (c,i) <= (c’,i’)

Functional pearls 13

Now, to enumerate the language of an automaton known by its start states

starts, we initialize the visiting process at the root of the tree, with the automaton

setting out from its start states to consider and extend the empty word.

enumA :: NFA -> [String]

enumA starts = visit [("",starts)]

Words will be visited in length-first order. To prove this, observe that if words

of length n occur consecutively in the queue (as holds trivially for n = 0), then

their successors of length n + 1 will occur consecutively further on in the queue.

Moreover, if all words x of length n are lexicographically ordered (again trivially

true for n = 0), the successor strings x++[c] will be, too, because the c’s come in

order.

We must still provide code for grp, which represents the union of moves of states

that have the same symbol as the moves of fictitious states, all harmlessly given the

same identifier, −1. Every list of states, having been constructed by set operations,

is necessarily ordered, and states are ordered by symbol. Thus grp need only run

along the list of states, consolidating adjacent states that have a common symbol

c.

grp :: NFA -> NFA

grp (m@(State _ c ds) : ms@((State _ c’ ds’):mt)) =

if c==c’ then grp ((State (-1) c (ds\/ds’)):mt)

else m : grp ms

grp ms = ms -- 0- and 1-element lists

While the foregoing code is complete, in the sense that it does eventually list each

string of a language, it can run forever considering dead-end ‘prefixes’ for an empty

language denoted by a regular expression such as a∗∅. This bad behavior may be

forestalled by preprocessing to eliminate ∅ from all but the top level of a regular

expression. A function to do so, deNil, is included in the working code (McIlroy,

2003). A robust enumerator enumRA of the language of a regular expression may be

composed from deNil, r2n and enumA.

deNil :: Rexp -> Rexp

enumRA :: Rexp -> [String]

enumRA = enumA . r2n . deNil

Example 14

The Haskell expression

enumRA sandwich

enumerates the sandwich language (Example 7).

5.4 Testing

A good test of both of the very different programs enumR and enumRA is afforded

by two-version programming. Although Haskell cannot confirm equality of infinite

14 M. D. McIlroy

lists, it can check arbitrary initial segments. Agreement on a long initial stretch is

good evidence for the correctness of the two enumerators.1

To look for pathological cases, the comparative check was run on exhaustive

enumerations of expressions of limited size, using the Hugs(1998) interpreter. The

most extensive test checked thirty strings for each of the 182,712 expressions free

of ∅ and ε on a two-letter alphabet, with operators nested at most three deep. This

test, including the generation of regular expressions, used one billion reductions,

two billion cells, 23000 garbage collections, and 30 CPU minutes on a 400 MHz

Pentium with Hugs’s default 100K workspace. The exhaustive lists of expressions

with operator nesting depth at most d were created by specifying an ordering and

using set operations.

rexprs 0 = [Sym ’a’, Sym ’b’]

rexprs d = let rs = rexprs (d-1) in rs \/

xprod Cat rs rs \/ xprod Alt rs rs \/ map Clo rs

Another test, of the 90276 regular expressions having eight or fewer Rexp nodes, on

two alphabetic symbols plus ∅ and ε, used 800 million reductions, 1.5 billion cells,

20000 garbage collections, and 25 CPU minutes.

6 Discussion

6.1 Efficiency

The direct enumerator enumR can waste time generating every parsing of a string

and discarding all but one. Moreover, the time per comparison to identify duplicates

grows with string length.

Example 16

Length-n strings in the language a∗a∗ have n + 1 different parsings: aian−i, for

i = 0..n. The direct enumerator makes n + 1 copies of a and rejects all but one as

duplicates. By catenating k instances of a∗ we can make the number of comparisons

per string of length n grow as nk−1.

By contrast, an automaton generates each word just once. It may be shown that

an automaton built from a ∅-free regular expression considers O(m) words in gen-

erating the first m strings of the language, and does a bounded amount of work

per word considered. Thus each such automaton does work asymptotically propor-

tional to the number of language strings enumerated. Still, the work per string can

be large, depending on the regular expression. For some regular expressions direct

generation is faster.

1 A plausible, but usually wildly pessimistic, estimate of how far to check follows from setting the
goal of exercising every distinct superstate (set of current states) of the NFA. As the number
of superstates is at most 2s+1, where s is the number of symbols in the regular expression, a
correct implementation is sure to visit every superstate in the course of listing strings up to
length 2s+1.

Functional pearls 15

6.2 Fictitious states

The fictitious states constructed in the course of visiting a word are closely related

to an equivalent deterministic automaton. A word’s current-state set, or superstate,

may be identified with a state of the deterministic automaton. The fictitious states

describe superstates and their transitions. By caching distinct fictitious states, one

could build the equivalent deterministic automaton in the course of simulating the

NFA.2

6.3 The automata

Recognizers based on nondeterministic automata in the one-state-per-symbol form

are extremely simple to simulate. The execution cycle is

1. Check whether any current state is final.

2. Replace the set of current states by the union of next states for every current

state that accepts the next input character.

3. Advance the input.

The construction method descends from Ken Thompson’s classic construc-

tion.(1968) The present method differs from the earlier construction and deriva-

tives thereof (Aho et al., 1986; Thompson, 2000) in dispensing with epsilon moves.

Epsilon moves do not appear as either transitory or permanent artifacts of the

construction process. There is no separate transitive-closure calculation to remove

them, and no capability to simulate them. Only the tiny function bp remains as a

Cheshire grin of epsilons past.

6.4 Paean to Haskell

The art of handling regular expressions and automata is ancient; I have simply

dressed the subject in modern garb. Functional programming in general (Harper,

1999), and Haskell in particular (Thompson, 2000) offer eminently suitable fabric.

In developing the automata-based code, I set out guided by the classic mod-

els. (Thompson, 1968; Aho et al., 1986) Then the Haskell formulation revealed

an opportunity: lazy evaluation allowed separate states that represented composed

subexpressions and associated epsilon moves to be elided prospectively.

Having found the Haskell version, I could now write the program comfortably

in most any language. But if the exercise had begun in a traditional language, the

final neat model would not have been perceived.

2 This hypothetical way to build a deterministic automaton echos the eminently practical lazy
construction strategy pioneered by Aho in the Unix pattern-matching program “egrep”: con-
struct a state of a deterministic automaton only when a string that drives the automaton to
that state is met.

16 M. D. McIlroy

7 Acknowledgements

This work reflects the influence of members of IFIP Working Group 2.3, Program-

ming Methodology. In particular Jay Misra proposed the problem, provided the

elegant one-line definition of length order, and supplied the running examples. Bill

McKeeman broke out of the box with an automaton-based solution in Matlab,

which inspired enumA. Discussion and solutions in various languages by other mem-

bers of the working group have shed further light on the problem. I am also grateful

for unstinting advice from Phil Wadler about Haskell and Al Aho about automata.

References

Aho, A. V., Sethi, R. and Ullman, J. D. (1986) Compilers: Principles, Techniques and

Tools. Addison Wesley.

Harper, R. (1999) Proof-directed debugging. J. of Functional Programming 9: pp. 463–469.

Hugs 1.4 (1998). University of Nottingham and Yale University. http://www.haskell.org.

Karczmarczuk, J. (1997) Generating power of lazy semantics. Theoretical Computer Sci-

ence 187: pp. 203–219.

McIlroy, M. D. (2003) Enumerating the strings of regular languages. Accompany-
ing online material, J. of Functional Programming. http://www.dcs.glasgow.ac.uk/

jfp/bibliography/author.html.

Perrin, D. (1990) Finite automata. In van Leeuwen, J. (ed.) Handbook of Theoretical

Computer Science, Volume B, Formal Models and Semantics. Elsevier.

Peterson, J. et al. (1998) Report on the Programming Language Haskell, a Non-strict,
Purely Functional Language. http://www.haskell.org.

Thompson, K. (1968) Regular expression search algorithm. Comm ACM, 11: pp. 419–422.

Thompson, S. (2000) Regular Expression and Automata using Haskell. Tech. rept. 5-00,
Computing Laboratory, University of Kent.

