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For examples in a talk at the Cambridge Computing Laboratory (1968) I cooked up some
interesting coroutine-based programs. One, a prime-number sieve, became a classic,
spread by word of mouth. As far as I know* it didn’t appear in print until 1978, in Tony
Hoare’s influential CSP paper [‘‘Communicating sequential processes’’ CACM 21 (1978)
666-677]. It’s one of those wonderfully intuitive ideas that can be explained over drinks
in a bar just as easily as in a classroom lecture—and probably more quickly.

Method

The program implements the sieve of Eratosthenes as a kind of production line, in which
each worker culls multiples of one prime from a passing stream of integers, and new
workers are recruited as primes are discovered.

Program 1 shows a Unix implementation written in C. A source process writes a se-
quence of integers, 2,3,4,... into a pipeline of cull filters. Each filter culls multiples of one
prime and passes other integers on. The source and filters are trivial programs; the inter-
esting action happens at the end of the pipeline. There, a sink process receives the inte-
gers that make it all the way through. These are the primes. Upon receiving each prime,
the sink publishes it and inserts a cull filter for it into the pipeline.

Robustness

Notionally the sieve creates pipes and processes forever. But, for every prime it publish-
es, the sieve allocates another process and another pipe. Eventually some resource limit
will be hit and return an error. Since the program ignores errors, it must eventually give
bad output or crash—perhaps taking an overstressed system down with it.

If the program were written to detect errors, it could still continue well beyond the point
at which it exhausts resources. Suppose an error occurs when trying to create a filter to
cull prime p. If the sink were to stop creating filters at that point, it could keep on pro-
ducing primes until it reaches p2—the smallest composite number that has no prime fac-
tor less than p.

The Appendix gives a program that still does not detect errors, but only deploys filters up
to p½ while computing each prime p.

* I now (2020) know better. It appeared in Gilles Kahn and David MacQueen, ‘‘corou-
tines and Networks of Parallel Processes’’, INRIA Research Report inria-00306565
(1976), https://hal.inria.fr/inria-00306565/PDF/rr_iria202.pdf.
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Program 1. Coroutine sieve written in C and realized in Unix processes. Boldface high-
lights the essence of the program.

Pipeline of Processes

source

2,3,4,...

cull(2)

cull(3)

cull(5)

sink
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source

sink

#include <stdio.h>
#include <unistd.h>

void source() {
int n;
for(n=2; ; n++)

write(1, &n, sizeof(n));
}

void cull(int p) {
int n;
for( ; ; ) {

read(0, &n, sizeof(n));
if(n%p != 0)

write(1, &n, sizeof(n));
} }

/* connect stdin (k=0) or stdout (k=1) to pipe pd */
void redirect(int k, int pd[2]) {

dup2(pd[k], k);
close(pd[0]);
close(pd[1]);

}

void sink() {
int pd[2];
int p; /* a prime */
for( ; ; ) {

read(0, &p, sizeof(p));
printf("%d\n", p);
fflush(stdout);
pipe(pd);
if(fork()) {

redirect(0, pd);
continue;

} else {
redirect(1, pd);
cull(p);

} } }

int main() {
int pd[2]; /* pipe descriptors */
pipe(pd);
if(fork()) { /* parent process */

redirect(0, pd);
sink();

} else { /* child process */
redirect(1, pd);
source();

} }
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History

When Bob McClure introduced me to Melvin Conway’s coroutine concept [‘‘Design of a
separable transition-diagram compiler’’ CACM 6 (1963) 396-408], I was intrigued. Lack-
ing a language that supported coroutines, I did thought experiments with a hypothetical
extension of PL/I. That was the framework of my Cambridge talk.

A new language of the time, Simula 67, had a control structure sufficient for coroutines.
Its lead designer, Ole-Johann Dahl, loved the sieve scheme when I told him about it (over
drinks). I believe he ran the program soon after. He certainly helped spread the word.

When Unix came to be, my fascination with coroutines led me to badger its author, Ken
Thompson, to allow writes in one process to go not only to devices but also to matching
reads in another process. Ken saw that was possible. As a minimalist, though, he wanted
ev ery system feature to carry significant weight. Did direct writes between processes of-
fer a really major advantage over writing to a temporary file in one process and then read-
ing it in the other? Not until I made a specific proposal with a catchy name, ‘‘pipe’’, and
shell syntax to connect processes via pipes, did Ken finally exclaim, ‘‘I’ll do it!’’

And he did do it. In one feverish evening Ken modified both kernel and shell, and fixed
several standard programs so they could take input from standard input (potentially
piped) as well as named files. The next day brought a heady explosion of applications.
By the end of the week, department secretaries were using pipes to send text-processor
output to the printer spooler. Not long after, Ken replaced the original API and shell syn-
tax for pipes with cleaner conventions that have been used ever since.

The initial pipe exploits did not include the coroutine sieve; a job that spawned processes
so furiously would have overwhelmed the small system. Only some time later, more than
five years after the Cambridge talk, I made a package that supported coroutines within
one single-thread, multi-stack process. Using the package, Dennis Ritchie wrote the first
coroutine sieve that I actually saw run.

Ever since Hoare’s paper, the coroutine sieve has been a standard demo for languages or
systems that support interprocess communication. Implementations using Unix processes
typically place the three coroutines—source, cull and sink—in distinct executable files.
The fact that the whole program can be written as a single source file, in a language that
supports neither concurrency nor IPC, is a tribute not only to Unix’s pipes, but also to its
clean separation of program initiation into fork for duplicating address spaces and exec
for initializing them.

High style

Aside from calling pr intf, Program 1 is expressed at the kernel API level. Program 2,
written at the shell level, expresses the same algorithm more succinctly. Here the actions
of setting up pipes and starting processes—more than half of the C program—have been
abstracted into the pipe operator "|". The ((...)) clause serves as an arithmetic predicate.
The rest of the && compound statement will be eecuted only when the predicate is true.

The logic of Program 2 differs slightly from that of Program 1: (1) To accommodate the
pipe operator, sink uses tail recursion instead of a loop. (2) The handy seq command
used for the source can produce only finitely many integers, but the limit of a million is
more than enough to saturate today’s systems.

The sieve is an arch-example of composition of stream-processing operators. Programs 1
and 2 accomplish composition by pipelining. Lazy functional languages provide another
approach. A lazy function can take as an argument a conceptually infinite sequence,
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Program 2. Sieve as a shell script.*

#!/bin/bash

source() {
seq 2 1000000

}

cull() {
while true
do

read n
(($n % $1 != 0)) && echo $n

done
}

sink() {
read p
echo $p
cull $p | sink &

}

source | sink

whose elements need not be reified until the function actually accesses them. Composi-
tion of operations becomes simple functional composition.

In a functional language the basic logic of the sieve can be laid bare. Pipe connections
translate to function applications. Thus, in Haskell, the sieve becomes

sink (p:ns) = p : sink (filter ((/= 0).(‘mod‘ p)) ns)
pr imes = sink [2..]

In this code one may recognize in-lined analogs of source and cull in Program 2.

source = [2..]

cull p ns = filter ((/= 0).(‘mod‘ p)) ns

The standard Haskell function filter selects from a given list those elements that satisfy a
given predicate. Here the predicate is the composition of two unary functions, ‘‘not equal
to zero’’ and ‘‘mod p’’.

Filters as (lazy) functions

In comparison to the concise Haskell version, the C and shell versions seem like quaint
historic relics. Nevertheless the C version offers a (prime!) example of the power of the
Unix API, and a vivid illustration of the capacity of today’s Unix-like systems to handle
computations that comprise hundreds of concurrent processes.

From a functional viewpoint, a Unix filter is a function from byte stream to byte stream.
For endless byte streams, functional composition cannot be accomplished sequentially by
completing the first function before the second begins. Lazy evaluation† is a necessity if
one is ever to see any output.

* The identifier source, used for readability here and in Program 3, must be changed to
run in the bash shell because it collides with a shell keyword.

† Or, equivalently, Landin stream processing. [P. J. Landin, ‘‘A correspondence between
ALGOL 60 and Church’s lambda notation, Part I’’ CACM 8 (1965) 89-101]
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The late Robert Morris called our attention to this fact at the outset, on ‘‘pipe day’’ itself.
Composition by sequential evaluation, he observed, is likewise useless for interactive use.
For example, the innocuous cat command (the compositional identity function) is harm-
less when run in series with the interactive desk calculator dc via a pipe:

dc | cat

but stymies the interaction when connected via a temporary file:

dc >temp; cat <temp

Ironically, neither Ken Thompson nor I had taken conscious note of this critical distinc-
tion between pipes and intermediate files; otherwise pipes might have made their debut in
the first edition of the Unix manual rather than the third.

Try it

Plain-text source is available for the C and (slightly modified) shell versions at

http://www.cs.dar tmouth.edu/˜doug/sieve/sieve .c
http://www.cs.dar tmouth.edu/˜doug/sieve/sieve .bash

If your browser doesn’t like to get .c or .bash files, try using wget, cur l, or lynx.

Appendix. Efficiency: beyond coroutines

The sieves we hav e shown hog resources. To compute primes up to n, culling filters are
deployed for all lesser primes, although only filters for primes up to n½ are necessary.
This profligate use of resources can be avoided by deploying filters only as needed. To do
so we must keep a queue, or ‘‘waiting list’’, of primes between n½ and n.

In all the programs above, such a waiting list is implicit in the part of the chain of culling
filters beyond the necessary ones. In the Unix models, the waiting list is heavy: a process
and a pipe per prime. The Haskell model, while much lighter, still involves a closure
(‘‘thunk’’) per prime. In every model, each member of the waiting list expends a useless
quantum of computing time for every passing prime. (The Unix models impose a further,
unrelated burden: buffering allows upstream processes to run ahead of the ultimate con-
sumer, stuffing pipes with numbers that may never be needed.)

Surely the waiting list can be kept simply as a queue of numbers without the overhead of
processes or closures. The necessary data is already at hand in the stream of primes. All
we need to do is to arrange for it to be read (at different rates) by both the sink and the
outside consumer.

The only trickery in the following program is to ‘‘prime’’ the waiting list with 2, so the
sink can read from it at the outset. Parameter p′ is the modulus for the next filter. Parame-
ter p is a prime, provided it is less than p′ 2; otherwise p is discarded and the next filter is
started.

pr imes = 2 : sink [3..] primes
sink (p:ns) ps@(p’:ps’)

| p < p’ˆ 2 = p : sink ns ps
| otherwise = sink (filter ((/= 0).(‘mod‘ p’)) ns) ps’

To make an analogous shell script, we must hand craft some data-flow connections be-
cause the pipe operator cannot express certain aspects of the flow graph: (1) sink reads
from two input streams; (2) primes are fed back from the output of sink to the input; and
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(3) output of sink is delivered to two consumers.

In Program 3, feedback is handled by a named pipe, more formally called a fifo, created
by mkfifo. The sink output is replicated by tee, which copies its standard input to both
standard output and the fifo. The redirection idiom {pr imes}<fifo opens the fifo for read-
ing in the sink and assigns its file descriptor to pr imes. To read from this descriptor, sink
executes read −u primes. (−u for ‘‘unit number’’ conjures ancient Fortran terminology.)

Program 3. More efficient sieve: tests divisors only up to p½.

#!/bin/bash

source() {
seq 3 1000000

}

cull() { # same as in Program 2
while true
do read n

(($n % $1 != 0)) && echo $n
done

}

sink() {
read −u $primes pp
while

read p
(($p < $pp*$pp))

do
echo $p

done
cull $pp | sink &

}

mkfifo fifo
(echo 2; (source | sink {primes}<fifo)) | tee fifo

source
3,4,...

sink

tee
pr imes

echo
2

cull
filters

Program 3 attests to the possibility of using a Unix shell to set up general networks of
processes communicating by pipes. However, the code to do so is obscure (and incom-
plete; it doesn’t provide for removing fifo when the program stops). Complex networks
are not yet ready for prime(!) time. A tantalizing question arises. Might nonlinear net-
works become naturalized as design patterns if a perspicuous notation became available?

Colophon
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September 2019. Reword colophon and insert one other word
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