
© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Official Android
Coding Style Conventions

Originals of Slides and Source Code for Examples:
http://www.coreservlets.com/android-tutorial/

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live Android training, please see courses
at http://courses.coreservlets.com/.
Taught by the author of Core Servlets and JSP, More

Servlets and JSP, and this Android tutorial. Available at
public venues, or customized versions can be held

on-site at your organization.
• Courses developed and taught by Marty Hall

– JSF 2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 6 or 7 programming, custom mix of topics
– Ajax courses can concentrate on 1 library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo, etc.) or survey several

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, EJB3, GWT, Hadoop, SOAP-based and RESTful Web Services

Contact hall@coreservlets.com for details

Topics in This Section

• Why follow conventions?
• Valuable conventions

– Ones that are widely considered good practice for any
Java project (based on general Java industry consensus)

• Tolerable conventions
– Ones that do no harm, but are of questionable value

(in Marty’s highly subjective opinion)

• Dubious conventions
– Ones that we would have been better off without

(in Marty’s highly subjective opinion)

5

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Overview

Official Android Code
Conventions

• Required for
– Code contributed to Android project

• Used in
– All official tutorials and (supposedly) all source code

• Suggested for
– Code submitted to the app store
– Any Android project

• Details
– http://source.android.com/source/code-style.html

• Eclipse preferences file
– Downloadable from coreservlets.com from this section of the

Android Tutorial.
• Sets spacing, brace style, and use of @Override

7

Pros and Cons of Following
Conventions

• Pros
– Consistent with official tutorials and Android source
– More familiar to Android developers who join your team

• Cons
– Inconsistent with Java code you wrote before
– Less familiar to other Java developers
– Simply bothers you.

• Java developers often have strong personal preferences

• My recommendations
– Most conventions are best practices anyhow

• Definitely follow those
– Most others are neither worse nor better than alternatives

• Probably follow those
– A few are (arguably) bad or at least wrong in some situations

• Ignore those if the situation warrants it
8

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Conventions that are
Good Standard Practice

(For any Java project)

Indentation: blocks that are nested
more should be indented more

• Yes

blah;
blah;
for(...) {

blah;
blah;
for(...) {

blah;
blah;

}
}

• No

blah;
blah;
for(...) {
blah;
blah;
for(...) {
blah;
blah;
}
}

10

Indentation: blocks that are nested the
same should be indented the same

• Yes

blah;
blah;
for(...) {

blah;
blah;
for(...) {

blah;
blah;

}
}

• No

blah;
blah;

for(...) {
blah;
blah;
for(...) {

blah;
blah;

}
}

11

Break Things into Small Pieces

• Write short methods
– No official limit, but try to keep methods short and

focused. Think often about how to refactor your code to
break it into smaller and more reusable pieces.

• This is good advice in any language.
• This also shows why overly strict rules on the length of

comments can be counter productive by encouraging
developers to write long methods to avoid writing docs.

• Keep lines short
– They have a strict rule of 100 characters except for

imports or comments that contain URLs or commands
that cannot be broken up.

• Not sure 100 is the magic number, but short lines are good
practice anyhow.

12

Follow Normal Capitalization
Rules

• Classes start with uppercase letter
public class SomeClass { … }

• Constants use all caps
public static final double GOLDEN_RATIO =

(1 + Math.sqrt(5.0))/2;

• Everything else starts with lowercase letter
– Instance variables, local variables, parameters to

methods, package names

• Extra rule
– Use words for acronyms, not all uppercase

• getUrl, not getURL
– This is good advice in Web apps also

13

Use JavaDoc

• Use JavaDoc from the beginning
– Don’t wait until the code is finished. Short comments are

fine, but use some. Explain purpose and non-obvious
behavior. Don’t explain standard Java constructs.

• Document every class
/** Represents a collection of Blahs. Used to … **/
public class Foo { … }

• Document anything public
– Methods
– Constructors
– Instance variables (but very rare to have public ones)

• Review Oracle JavaDoc guidelines
• http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

14

Use @Override

• Use @Override when you override methods
from parent class
– Won’t be caught until run time

public void oncreate(Bundle savedInstanceState) {
…

}

– Will be caught at compile time
@Override
public void oncreate(Bundle savedInstanceState) {

…
}

• Guidelines are silent regarding interfaces
– But, in Java 6 or later, I prefer to also use @Override

when implementing methods from interface15

Use Other Standard Annotations
when Warranted (but Rarely)

• @Deprecated
– If you use a deprecated method, add this annotation to

your method. Also add @deprecated JavaDoc tag
explaining why it was necessary to use deprecated code.

• Of course, try hard to avoid use of deprecated methods

• @SuppressWarnings
– Generic collections are prohibited from doing extra work

at run time, so casting to generic type can cause warning
that Java can’t verify the types. Sometimes unavoidable

• @SuppressWarnings("unchecked")
• Other similar situations when making generic types

– Android guidelines require a TODO comment in these
cases, saying why you cannot avoid the situation

16

Limit the Scope of Variables

• Use narrowest scope possible
– Variables should be declared in the innermost block that

encloses all uses of the variable.
• E.g., if variable is only used inside if statement, declare it inside

if statement.

– Yes
if (…) {

double d = someCalculation(…);
doSomethingWith(d);

} else {
// No use of d

}

– No
double d = 0;
if (…) { … } else { … }

17

Initialize Local Variables when
Declared

• Initialize (almost) all local variables
– Yes

String s = "Hello";

– No
String s;
…
s = "Hello";

– Exception: try/catch blocks
int n;
try {

n = Integer.parseInt(someString);
} catch(NumberFormatException nfe) {

n = 10;
}

18

Put Braces on Conditionals

• Always use braces for if statements
– Even if there is only one thing to do

• Yes
if (…) {

doSomething();

}

• No
if (…)

doSomething();

• Guidelines give small exception
– If there is only one thing to do and it is all on one line

• Tolerated (grudgingly?)
if (…) doSomething();

19

Use TODO Comments for
Temporary Code

• Use “// TODO: … ” for code that needs to be
changed later
– Situations

• Temporary fix
• OK but not great
• Works for small sizes, but bad performance in future when

data sets get bigger.

– Examples:
// TODO: Switch to a Map when you have more entries
// TODO: Remove after UrlTable2 has been checked in

• Eclipse note
– Eclipse puts TODO in bold and puts check mark in left

margin of code
20

Avoid Finalizers

• Do not use finalize()
– Idea

• finalize() gets called when an object is garbage collected,
so you can do cleanup work then (such as closing socket
connections)

– Problem
• No guarantee when (or even if) finalizer will be called

– Guidelines
• Don’t use them.

• Good news
– Finalizers have long ago fallen out of favor, and many

Java developers don’t even know what they are.

21

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Conventions that
Don’t Hurt

(No harm in following them, but
their value is questionable)

Put Open Braces with Preceding
Code

• Put { with previous line, not on its own line
– Yes

public void foo() {
if (...) {

doSomething();
}

}

– No
public void foo()
{

if (...)
{

doSomething();
}

}23

Indent 4 Spaces for Blocks

• Indent 4 spaces when starting a block
– Yes

public void foo() {
if (...) {

doSomething();
}

}

– No
public void foo() {

if (...) {
doSomething();

}
}

24

Indent 8 Spaces for Lines

• Indent 8 spaces when splitting a line
– Yes

String s =
somethingVeryLong(…);

– No
String s =

somethingVeryLong(…);

25

Fully Qualify Imports

• List each class name; don’t use *
– Yes

• import android.widget.Button;
• import android.widget.CheckBox;
• import android.widget.EditText;

– No
• import android.widget.*;

• Exception
– Can use * for java or javax packages

• Permitted
– import java.util.*;

26

Order Import Statements

• First
– Android packages

• import android.foo.Bar;

• Second
– Third party packages

• import com.coreservlets.utils.RandomUtils;

• Third
– Standard java or javax packages

• import java.util.*;

• Within each group
– Alphabetical (uppercase Z before lowercase a)

• Separating groups
– Blank line between each major grouping

27

Start JavaDoc Comments with
3rd Person Verb

• Examples
– Yes

• Represents a …
• Responds to mouse clicks with …
• Deletes …

– No
• This class …
• This method …

• Android’s own docs are inconsistent
– Many (most?) classes start with “This class” or similar.

• E.g., View, Activity, LinearLayout

28

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questionable
Conventions

(You would have been
better off without them)

Start Instance Variables with
“m” (normal) or “s” (static)

• Use “m” for non-public, non static fields
– “m” for “member variable” or “data member”

• Yes
– private String mFirstName;

– private boolean mIsMarried;

• No
– private String firstName;

– private boolean isMarried;

• Use “s” for static (non-final) fields
• Yes

– private static double sBiggestRadius;

• No
– private static double biggestRadius;

• Marty’s opinion
– Results in less readable names with no real benefit

30

Impact of Naming Convention
on Constructors

Standard Style

public class Person {
public String firstName, lastName;

public Person(String firstName,
String lastName) {

this.firstName = firstName;
this.lastName = lastName;

}

…
}

Android Style

public class Person {
public String mFirstName, mLastName;

public Person(String firstName,
String lastName) {

mFirstName = firstName;
mLastName = lastName;

}

…
}

31

Never Ignore Exceptions

• Avoid empty catch blocks
– Yes

try {
…

} catch(SomeException se) {
doSomethingReal();

}

– No
try {

…
} catch(SomeException se) { }

– Marty’s opinion
• Usually, but not always, a good rule

32

Why Ignoring Exceptions Rule
is Too Strict

• Can make shorter code with same safety
– Android style

int n;
try {

n = Integer.parseInt(…);
} catch(NumberFormatException nfe) {

n = 10;
}

– Shorter style if you could ignore exceptions
int n = 10;
try {

n = Integer.parseInt(…);
} catch(NumberFormatException nfe) { }

33

Why Ignoring Exceptions Rule
is Too Strict (Continued)

• Sometimes there is nothing to be done
try {

Thread.sleep(…);
} catch(InterruptedException ie) {

// What could you do here?
}
doSomethingAfterThePause();

34

Don’t Catch Generic Exception

• List each Exception type
– Yes

try {
…

} catch(ExceptionType1 et1) {
…

} catch(ExceptionType2 et2) {
…

}

– No
try {

…
} catch(Exception e) {

…
}

35

Why Generic Exception Rule is
(Arguably) Too Strict

• Listing each type is almost always best
– So exceptions you didn’t expect don’t get caught there
– So real failure-handling is not obscured

• Sometimes combining is concise and safe
– E.g., if someString could be null, you could have either

NumberFormatException or NullPointerException. But,
in both cases, you just want to use original value for n.

int n = 10;
try {

n = Integer.parseInt(someString);
} catch(Exception e) { }

36

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

Summary

• Strictly follow conventions that reflect widely
accepted best practices
– Also, familiarize yourself with best practices.

• All developers who have worked with Java more than two years
full time should read Josh Bloch’s Effective Java (2nd Edition).

– Even experts will learn something new and valuable

• For other conventions, if you don’t strongly
object, follow the conventions anyhow
– Even if you don’t see any real value

• If convention really bothers you, ignore it
– Assuming it is not in category of generally accepted best

practices. Personal taste plays role in many of them.
38

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

