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For live Android training, please see courses 
at http://courses.coreservlets.com/.
Taught by the author of Core Servlets and JSP, More 

Servlets and JSP, and this Android tutorial. Available at 
public venues, or customized versions can be held 

on-site at your organization.
• Courses developed and taught by Marty Hall

– JSF 2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 6 or 7 programming, custom mix of topics
– Ajax courses can concentrate on 1 library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo, etc.) or survey several

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, EJB3, GWT, Hadoop, SOAP-based and RESTful Web Services

Contact hall@coreservlets.com for details



Topics in This Section

• Why follow conventions?
• Valuable conventions

– Ones that are widely considered good practice for any 
Java project (based on general Java industry consensus)

• Tolerable conventions
– Ones that do no harm, but are of questionable value

(in Marty’s highly subjective opinion)

• Dubious conventions
– Ones that we would have been better off without

(in Marty’s highly subjective opinion)
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Official Android Code 
Conventions

• Required for
– Code contributed to Android project

• Used in
– All official tutorials and (supposedly) all source code

• Suggested for
– Code submitted to the app store
– Any Android project

• Details
– http://source.android.com/source/code-style.html

• Eclipse preferences file
– Downloadable from coreservlets.com from this section of the 

Android Tutorial. 
• Sets spacing, brace style, and use of @Override
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Pros and Cons of Following 
Conventions

• Pros
– Consistent with official tutorials and Android source
– More familiar to Android developers who join your team

• Cons
– Inconsistent with Java code you wrote before
– Less familiar to other Java developers
– Simply bothers you. 

• Java developers often have strong personal preferences

• My recommendations
– Most conventions are best practices anyhow

• Definitely follow those
– Most others are neither worse nor better than alternatives

• Probably follow those
– A few are (arguably) bad or at least wrong in some situations

• Ignore those if the situation warrants it
8
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Conventions that are 
Good Standard Practice

(For any Java project)

Indentation: blocks that are nested 
more should be indented more

• Yes

blah;
blah;
for(...) {

blah;
blah;
for(...) {

blah;
blah;

}
}

• No

blah;
blah;
for(...) {
blah;
blah;
for(...) {
blah;
blah;
}
}
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Indentation: blocks that are nested the 
same should be indented the same

• Yes

blah;
blah;
for(...) {

blah;
blah;
for(...) {

blah;
blah;

}
}

• No

blah;
blah;

for(...) {
blah;
blah;
for(...) {

blah;
blah;

}
}
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Break Things into Small Pieces

• Write short methods
– No official limit, but try to keep methods short and 

focused. Think often about how to refactor your code to 
break it into smaller and more reusable pieces.

• This is good advice in any language.
• This also shows why overly strict rules on the length of 

comments can be counter productive by encouraging 
developers to write long methods to avoid writing docs.

• Keep lines short
– They have a strict rule of 100 characters except for 

imports or comments that contain URLs or commands 
that cannot be broken up.

• Not sure 100 is the magic number, but short lines are good 
practice anyhow.
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Follow Normal Capitalization 
Rules

• Classes start with uppercase letter
public class SomeClass { … }

• Constants use all caps
public static final double GOLDEN_RATIO =

(1 + Math.sqrt(5.0))/2;

• Everything else starts with lowercase letter
– Instance variables, local variables, parameters to 

methods, package names

• Extra rule
– Use words for acronyms, not all uppercase

• getUrl, not getURL
– This is good advice in Web apps also
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Use JavaDoc

• Use JavaDoc from the beginning
– Don’t wait until the code is finished. Short comments are 

fine, but use some. Explain purpose and non-obvious 
behavior. Don’t explain standard Java constructs.

• Document every class
/** Represents a collection of Blahs. Used to … **/
public class Foo { … }

• Document anything public
– Methods
– Constructors
– Instance variables (but very rare to have public ones)

• Review Oracle JavaDoc guidelines
• http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
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Use @Override

• Use @Override when you override methods 
from parent class
– Won’t be caught until run time

public void oncreate(Bundle savedInstanceState) {
…

}

– Will be caught at compile time
@Override
public void oncreate(Bundle savedInstanceState) {

…
}

• Guidelines are silent regarding interfaces
– But, in Java 6 or later, I prefer to also use @Override 

when implementing methods from interface15

Use Other Standard Annotations 
when Warranted (but Rarely)

• @Deprecated
– If you use a deprecated method, add this annotation to 

your method. Also add @deprecated JavaDoc tag 
explaining why it was necessary to use deprecated code.

• Of course, try hard to avoid use of deprecated methods

• @SuppressWarnings
– Generic collections are prohibited from doing extra work 

at run time, so casting to generic type can cause warning 
that Java can’t verify the types. Sometimes unavoidable

• @SuppressWarnings("unchecked")
• Other similar situations when making generic types

– Android guidelines require a TODO comment in these 
cases, saying why you cannot avoid the situation

16



Limit the Scope of Variables

• Use narrowest scope possible
– Variables should be declared in the innermost block that 

encloses all uses of the variable.
• E.g., if variable is only used inside if statement, declare it inside 

if statement.

– Yes
if (…) {

double d = someCalculation(…);
doSomethingWith(d);

} else { 
// No use of d

}

– No
double d = 0;
if (…) { … } else { … }
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Initialize Local Variables when 
Declared

• Initialize (almost) all local variables
– Yes

String s = "Hello";

– No
String s;
…
s = "Hello";

– Exception: try/catch blocks
int n;
try {

n = Integer.parseInt(someString);
} catch(NumberFormatException nfe) {

n = 10;
}

18



Put Braces on Conditionals

• Always use braces for if statements
– Even if there is only one thing to do

• Yes
if (…) {

doSomething();

}

• No
if (…)

doSomething();

• Guidelines give small exception
– If there is only one thing to do and it is all on one line

• Tolerated (grudgingly?)
if (…) doSomething();

19

Use TODO Comments for 
Temporary Code

• Use “// TODO: … ” for code that needs to be 
changed later
– Situations

• Temporary fix
• OK but not great
• Works for small sizes, but bad performance in future when 

data sets get bigger.

– Examples:
// TODO: Switch to a Map when you have more entries
// TODO: Remove after UrlTable2 has been checked in

• Eclipse note
– Eclipse puts TODO in bold and puts check mark in left 

margin of code
20



Avoid Finalizers

• Do not use finalize()
– Idea

• finalize() gets called when an object is garbage collected, 
so you can do cleanup work then (such as closing socket 
connections)

– Problem
• No guarantee when (or even if) finalizer will be called

– Guidelines
• Don’t use them.

• Good news
– Finalizers have long ago fallen out of favor, and many 

Java developers don’t even know what they are.

21
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Conventions that 
Don’t Hurt

(No harm in following them, but 
their value is questionable)



Put Open Braces with Preceding 
Code

• Put { with previous line, not on its own line
– Yes

public void foo() {
if (...) {

doSomething();
}

}

– No
public void foo() 
{

if (...) 
{

doSomething();
}

}23

Indent 4 Spaces for Blocks

• Indent 4 spaces when starting a block
– Yes

public void foo() {
if (...) {

doSomething();
}

}

– No
public void foo() {

if (...) {
doSomething();

}
}

24



Indent 8 Spaces for Lines

• Indent 8 spaces when splitting a line
– Yes

String s =
somethingVeryLong(…);

– No
String s =

somethingVeryLong(…);
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Fully Qualify Imports

• List each class name; don’t use *
– Yes

• import android.widget.Button;
• import android.widget.CheckBox;
• import android.widget.EditText;

– No
• import android.widget.*;

• Exception
– Can use * for java or javax packages 

• Permitted
– import java.util.*;

26



Order Import Statements

• First
– Android packages

• import android.foo.Bar;

• Second
– Third party packages

• import com.coreservlets.utils.RandomUtils;

• Third
– Standard java or javax packages

• import java.util.*;

• Within each group
– Alphabetical (uppercase Z before lowercase a)

• Separating groups
– Blank line between each major grouping

27

Start JavaDoc Comments with 
3rd Person Verb

• Examples
– Yes

• Represents a …
• Responds to mouse clicks with …
• Deletes …

– No
• This class …
• This method …

• Android’s own docs are inconsistent
– Many (most?) classes start with “This class” or similar. 

• E.g., View, Activity, LinearLayout

28
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Questionable 
Conventions

(You would have been 
better off without them)

Start Instance Variables with 
“m” (normal) or “s” (static)

• Use “m” for non-public, non static fields
– “m” for “member variable” or “data member”

• Yes
– private String mFirstName;

– private boolean mIsMarried;

• No
– private String firstName;

– private boolean isMarried;

• Use “s” for static (non-final) fields
• Yes

– private static double sBiggestRadius;

• No
– private static double biggestRadius;

• Marty’s opinion
– Results in less readable names with no real benefit
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Impact of Naming Convention 
on Constructors

Standard Style

public class Person {
public String firstName, lastName;

public Person(String firstName,
String lastName) {

this.firstName = firstName;
this.lastName = lastName;

}

…
}

Android Style

public class Person {
public String mFirstName, mLastName;

public Person(String firstName,
String lastName) {

mFirstName = firstName;
mLastName = lastName;

}

…
}
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Never Ignore Exceptions

• Avoid empty catch blocks
– Yes

try { 
…

} catch(SomeException se) {
doSomethingReal();

}

– No
try { 

…
} catch(SomeException se) { }

– Marty’s opinion
• Usually, but not always, a good rule

32



Why Ignoring Exceptions Rule 
is Too Strict

• Can make shorter code with same safety
– Android style

int n;
try {

n = Integer.parseInt(…);
} catch(NumberFormatException nfe) {

n = 10;
}

– Shorter style if you could ignore exceptions
int n = 10;
try {

n = Integer.parseInt(…);
} catch(NumberFormatException nfe) { }

33

Why Ignoring Exceptions Rule 
is Too Strict (Continued)

• Sometimes there is nothing to be done
try {

Thread.sleep(…);
} catch(InterruptedException ie) {

// What could you do here?
}
doSomethingAfterThePause();

34



Don’t Catch Generic Exception

• List each Exception type
– Yes

try { 
…

} catch(ExceptionType1 et1) {
…

}  catch(ExceptionType2 et2) {
…

} 

– No
try { 

…
} catch(Exception e) { 

…
}

35

Why Generic Exception Rule is 
(Arguably) Too Strict

• Listing each type is almost always best
– So exceptions you didn’t expect don’t get caught there
– So real failure-handling is not obscured

• Sometimes combining is concise and safe
– E.g., if someString could be null, you could have either 

NumberFormatException or NullPointerException. But, 
in both cases, you just want to use original value for n.

int n = 10;
try {

n = Integer.parseInt(someString);
} catch(Exception e) { }
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Wrap-Up

Summary

• Strictly follow conventions that reflect widely 
accepted best practices
– Also, familiarize yourself with best practices. 

• All developers who have worked with Java more than two years 
full time should read Josh Bloch’s Effective Java (2nd Edition).

– Even experts will learn something new and valuable

• For other conventions, if you don’t strongly 
object, follow the conventions anyhow
– Even if you don’t see any real value

• If convention really bothers you, ignore it
– Assuming it is not in category of generally accepted best 

practices. Personal taste plays role in many of them.
38
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Questions?

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.


