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ABSTRACT
We develop distributed algorithms for self-organizing sensor
networks that respond to directing a target through a re-
gion. The sensor network models the danger levels sensed
across its area and has the ability to adapt to changes. It
represents the dangerous areas as obstacles. A protocol that
combines the artificial potential field of the sensors with the
goal location for the moving object guides the object incre-
mentally across the network to the goal, while maintaining
the safest distance to the danger areas. We give the analysis
to the protocol and report on hardware experiments using
a physical sensor network consisting of Mote sensors.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication

General Terms
Algorithms, Design, Experimentation, Measurement, Per-
formance

Keywords
Sensor networks, Potential field, Navigation, Motes, Robotics

1. INTRODUCTION
We wish to create more versatile information systems by

using adaptive distributed sensor networks: hundreds of
small sensors, equipped with limited memory and multiple
sensing capabilities which autonomously organize and reor-
ganize themselves as ad-hoc networks in response to task
requirements and to triggers from the environment. Dis-
tributed adaptive sensor networks are reactive computing
systems, well-suited for tasks in extreme environments, es-
pecially when the environmental model and the task specifi-
cations are uncertain and the system has to adapt to them.
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A collection of active sensor networks can follow the move-
ment of a source to be tracked, for example a moving vehicle.
It can guide the movement of an object on the ground, for
example a surveillance robot. Or it can focus attention over
a specific area, for example a fire to localize its source and
track its spread.

A sensor network consists of a collection of sensors dis-
tributed over some area that form an ad-hoc network. Each
sensor is equipped with some limited memory and process-
ing capabilities, multiple sensing modalities, and communi-
cation capabilities. Previous work in sensor networks has
concentrated on routing protocols for sensor networks. Of-
ten the network topology is unknown and the network has to
discover the best route for a packet. Optimization criteria
include shortest path to destination, minimum power uti-
lization, maximum minimum residual power in the network,
etc.

In this paper we focus on a reactive task in sensor net-
works: guiding the movement of a user equipped with a
node that can talk to the field of sensors across the field.
We also discuss how sensor networks can serve as adaptive
distributed repositories of information.

Current work in reactive routing protocols (or directed
diffusion) are aiming for the network communication. They
cannot provide the navigation information to the user in
the sensor field. We combine robotics and networking. We
model the user guidance problem as a robot motion planning
problem and use the inherent feature of the sensor network
to compute the robot navigation path in a distributed way.
Our paper contributes: (1) an interesting application for
sensor network; (2) an implementation and evaluation on a
physical sensor network; (3) a distance computation method
that does not use node positions; (4) performance analysis
and hardware experimentation.

More specifically, we build on important previous work by
[17, 11, 28, 7] and examine in more detail reactive sensors
that can adapt to their environment by capturing a dan-
ger level map and distributing this map across the network.
We represent the danger detected by the sensors as “ob-
stacles” in the network and compute the artificial potential
field that corresponds to the current state. We then develop
a distributed protocol that combines this artificial potential
field with information about the direction and goal of the
moving object and guarantees the best safest path to the
goal. By safest path we mean the path with the largest
clearance of the danger zones. We also develop a proto-
col for distributing the information in the sensor network,



such as the danger map and shortest paths. We then show
how sensors equipped with limited memory can cooperate to
hold and retrieve information about the network. Finally,
we discuss an implementation of our protocols on a real sen-
sor network consisting of 50 Mote sensors [10] and present
our experimental data.

2. RELATED WORK
We are inspired by previous work in sensor networks [6],

ad-hoc networks [12, 13, 9, 18, 21, 5, 4, 24], and robotics [15].
Our experimental work is done with the Mote hardware [10].

In Intanagonwiwat et al.’s direct diffusion [11] approach,
data generated by sensor nodes is named by attribute-value
pairs. A node requests data by sending interests for named
data; the interests will be propagated within the network
to find the source of the related data. The direct diffusion
method is used to reinforce the best path from the source to
the sink. We propose to actively disseminate the informa-
tion in the network, and consider the sensor network as an
information base.

Ye et al. [28] proposed TTDD, a Two-Tier Data Dissem-
ination approach that provides scalable and efficient data
delivery to multiple mobile sinks. The data source proac-
tively builds a grid structure and the sink requests the data
from the nodes on the grid. This approach can be applied to
the general problem of sensor network data dissemination.

Meguerdichian et al. [17] considered the minimal expo-
sure path problem in a sensor network. They developed an
efficient and effective algorithm for the problem. We con-
sider a seemingly similar problem. We are concerned about
the dangerous areas rather than the coverage of an indi-
vidual sensor. Instead of calculating the information about
the worst case exposure-based coverage caused by the de-
ployment of a sensor network, we use the sensor network
to compute a path that can navigate a user to the goal
by avoiding the dangerous area. Furthermore, we use dis-
tributed algorithms to disseminate the data in the sensor
network.

There have been many studies conducted on mote sen-
sor networks, especially two recent papers that are closely
related to our system implementation. An empirical study
on networks composed of over 150 Motes was conducted in
[7]. The paper presents the data collected in different layers
and reveals that even a simple protocol can exhibit a large
complexity in the mote network. It gives many very useful
experimental data on a real sensor network platform. Some
of the observations from our experiments show the same be-
haviors in many scenarios. Wan and Campbell et al. [27]
proposed PSFQ (Pump slowly, Fetch Quickly), a reliable
transport protocol in wireless sensor networks. This paper
addresses some problems that we encountered in our system
implementation.

Gupta and Kumar [8] researched the capacity bounds of
a large scale ad-hoc network. Scaglione and Servetto [23]
showed an approach to work around the vanishing per-node
throughput problem by coupling routing and source coding
in a sensor network.

We use the number of hops to evaluate the distance be-
tween sensors. The similar method was used in [19]. Papers
working on location in ad-hoc networks include [3, 22, 20,
25].

The application developed in this paper uses techniques
from robotics, where a key problem is how to plan the mo-

tion of moving robots. A good overview of motion planning
in robotics is given by [15]. [16] proposed a robot motion
planner that rasterizes configuration space obstacles into a
series of bitmap slices, and then use dynamic programming
to compute the distance from each point to the goal and
the paths in this space. This method guarantees that the
robot finds the best path to the goal. [14] discusses the use
of an artificial potential field for robot motion planning. A
robot moving in accordance to the potential will never hit
obstacles, but it may get stuck in local minima. We com-
bine these two methods to find the best path to the goal,
which is safe and short, and modify them to exploit the dis-
tributed nature of sensor networks. Another related work by
Batalin and Sukhatme [2] is to address the problem of cov-
erage and exploration of an unknown dynamic environment
using a mobile robot by using beacons. The beacons (mark-
ers) that form a communication network are used a support
infrastructure to aid exploration of the mobile robot.

3. A DISTRIBUTED ALGORITHM FOR GUID-
ING THE NAVIGATION OF A USER

Sensors detect information about the area they cover.
They can store this information locally or forward it to a
base station for further analysis and use. Sensors can also
use communication to integrate their sensed values with the
rest of the sensor landscape. In this section we explore using
sensor networks as distributed information repositories. We
describe a method to distribute the information about the
environment redundantly across the entire network. Users
of the network (people, robots, unmanned planes, etc.) can
use this information as they traverse the network. We il-
lustrate this property of a reactive sensor network in the
context of a guiding task, where a moving object is guided
across the network along a safe path, away from the type of
danger that can be detected by the sensors.

The guiding application can be formulated as a robotics
motion planning problem in the presence of obstacles. The
dangerous areas of the sensor network are represented as
obstacles. Danger may include excessive heat (volcanoes,
fire, etc), people, etc. We assume that each sensor can sense
the presence or absence of such types of danger. A danger
configuration protocol run across all the nodes of the net-
work creates the danger map. We do not envision that the
network will create an accurate geometric map, distributed
across all the nodes. Instead, we wish for the nodes in the
network to provide some information about how far from
danger each node is. If the sensors are uniformly distributed,
the smallest number of communication hops to a sensor that
triggers “yes” to danger is a measure of the distance to dan-
ger. The goal is to find a path for the moving object that
avoids the dangerous areas. We envision having the user
ask the network regularly for where to go next. The nodes
within broadcasting range from the user supply the next
best step.

There are numerous solutions to motion planning in the
presence of obstacles and uncertainty. For a good survey of
the techniques see [15]. We seek a solution that lends itself
naturally to the discrete nature of sensor networks. In [16],
Donald et al. describe an optimal solution for motion plan-
ning when the map of the world is given. The first step of
the solution is to rasterize the configuration space obstacles
into a series of bitmap slices. Dynamic programming is then



Figure 1: The left figure shows a typical setup for
the navigation guiding task. The solid black circles
correspond to sensors whose sensed value is “dan-
ger”. The white circles correspond to sensors that
do not sense danger. The dashed line shows the
guiding path across the area covered by the sensor
network. Note that the path travels from sensor
to sensor and preserves a maximal distance from
the danger areas, while progressing to the exit area.
The right picture shows some Mote sensors used for
our experiments. The three sensors placed in the
upright position denote 2 obstacles (that is, danger
areas) and one goal.

used to calculate the optimal path in this space. Although
this method can not be applied directly, it can be adapted
for sensor networks. Although the map is not immediately
available, the motion planning algorithm fits a sensor net-
work well in two ways. First, the sensors can be regarded
as the bitmap pixels. Second, the dynamic programming
component of the algorithm can be implemented by using
the sensor communications.

In order to supply obstacle information to the planning
algorithm we use artificial potential fields. In an artificial
potential field, objects move under the actuation of artificial
forces. Usually, the goal generates an attractive potential
which pulls the object to the goal. The obstacles generate
a repulsive potential which push the object away from the
goal. The (negated) gradient of the total potential is the
artificial force acting on the object. The direction of this
force is the current best direction of motion [15].

The “obstacles” (recall they correspond to the dangerous
areas) will have repulsing values and the goal will have an at-
tracting value according to some metric (see Figure 1(left)).
Algorithm 1 shows the potential field protocol. The poten-
tial field is computed in the following way. Each node whose
sensor triggers “danger” 1 diffuses the information about the
danger to its neighbors in a message that includes its source
node id, the potential value, and the number of hops from
the source of the message to the current node. When a
node receives multiple messages from the same source node,
it keeps only the message with the smallest number of hops.
(The message with the least hops is kept because that mes-
sage is likely to travel along the shortest path.) The cur-

1The possibility to identify obstacles is dependent on the
sensing quality of the sensors. Our assumption is that the
sensors have this capability and this is not the concern of our
algorithm, although it is a very important factor in applying
our algorithm in real applications. In our experiments, a
light sensor becomes an obstacle when it detects a high light
intensity. For Mica Motes we found that the light sensors
work well.

Algorithm 1 The potential field computation protocol.

1: for all sensors si in the network do
2: poti = 0, hopsj = ∞ for any danger j
3: if sensed-value = danger then
4: hopsi = 0
5: Broadcast message (i, hops = 0)
6: if receive(j, hops) then

7: if hopsj > hops + 1 then

8: hopsj = hops + 1
9: Broadcast message (j, hopsj)

10: for all received j do

11: Compute the potential potj of j using potj = 1
hopsj

2

12: Compute the potential at si using all potj, poti =
poti + potj

Algorithm 2 The safest path to goal computation protocol.

1: Let G be a goal sensor
2: G broadcasts msg = (Gid, myid(G), hops =

0, potential = 0)
3: for all sensors si do
4: Initially hopsg = ∞ and Pg = ∞
5: if receive((g, k, hops, potential) then

6: Compute the potential integration from
the goal to here:

7: if Pg < potential + poti then

8: Pg = potential + poti

9: hopsg = hops + 1
10: priorg = k
11: Broadcast (Gid, myid(si), hopsg, Pg)

rent node computes the new potential value from this source
node. The node then broadcasts a message with its potential
value and number of hops to its neighbors.

After this configuration procedure, nodes may have sev-
eral potentials from multiple sources. To compute its current
danger level information, each node adds all the potentials.

Note that the potential field protocol provides a distributed
repository of information about the area covered by the sen-
sor network. It can be run in an initialization phase, con-
tinuously, or intermittently. The sensor network can self-
organize adaptively to the current landscape. It updates
its distributed information content by running the poten-
tial field computation protocol regularly. In this way, the
network can adapt to sensor failure, to the addition of new
nodes into the network and to dynamic danger sources that
can move across the network.

The potential field information stored at each node can
be used to guide an object equipped with a sensor that can
talk to the network in an on-line fashion. The safest path
to the goal can be computed using Algorithm 2. The goal
node initiates a dynamic programming computation of this
path using broadcasting. The goal node broadcasts a mes-
sage with the danger degree of the path, which is zero for
the goal. When a sensor node receives a message, it adds
its own potential value to the potential value provided in
the message, and broadcasts a message updated with this
new potential to its neighbors. If the node receives multiple
messages, it selects the message with the smallest poten-
tial (corresponding to the least danger) and remembers the
sender of the message.

A user of the sensor network can rely on the informa-



Algorithm 3 The navigation guiding protocol.

1: if si is a user sensor then
2: while Not at the goal G do
3: Broadcast inquiry message (Gid)
4: for all received messages m =

(Gid, myid(sk), hops, potential, prior) do
5: Choose the message m with minimal potential

then minimal hops
6: Let myid(sk) be the id for the sender of this mes-

sage
7: Move toward myid(sk) and prior
8: if si is an information sensor then
9: if receive (Gid) inquiry message then

10: Reply with
(Gid, myid(si), hopsg, Pg, priorg)

tion computed using Algorithms 1 and 2 to get continuous
feedback from the network on how to traverse the area. Al-
gorithm 3 shows the navigation guiding protocol. The user
asks the network for where to go next. The neighboring
nodes reply with their current values. The user’s sensor
chooses the best possibility from the returned values. Note
that this algorithm requires the “integrated” potential com-
puted by Algorithms 1 and 2 in order to avoid getting stuck
in local minima.

3.1 Implementation Issues
Our navigation algorithms have an implicit assumption

that the communication paths in the network are bi-directional.
Since the safest path is computed backward from the goal,
messages have to be able to flow in the opposite direction to
lead the user to the goal. Our experience (see 4.4) has taught
us that not all links in sensor networks are bi-directional.
For example see Figure 2 that shows the distribution of
symmetric and asymmetric links in an experiment with a
7x7 grid of Mote sensors. This is consistent with data from
[7]. We propose the following method for identifying the bi-
directional links in the network. The computation can be
thought of as an additional protocol run by each node.
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Figure 2: The distribution of symmetric and asym-
metric links in one experiment. The x-axis shows
the node id and the y-axis the number of links. For
each node we have three bars: the first shows the
number of symmetric links, the second is the num-
ber of unidirectional outgoing links and the third
the number of unidirectional incoming links.

Each node does neighbor profiling to find all its stable
one-hop neighbors bi-directionally; that is, these neighbors
should be reachable to and from the node with high proba-
bility. In this way we may ward off the unidirectional link
nodes that may lead to long distance hops. Each node only

uses the received packets from its stable neighbors after pro-
filing. In our current implementation, we perform the neigh-
bor profiling on the fly. Every time a node receives a packet,
it increases the frequency of the sender of the packet, which
measures the stability of that link. A link is used only if its
frequency is higher than some threshold value, which is one
fifth of the maximal frequency of all the links in our imple-
mentation. 1/5 is a parameter we chose for our experiments.

A side effect of neighbor profiling is the removal of many
of the transient links that are active for a very short time.
By exchanging the information about the frequency of two
neighbors, the system ends up using the most stable bi-
directional links. Our hop distance can also be close to av-
erage instead of too abnormal.

Algorithms 1 and 2 ask each sensor to broadcast upon
receiving a message with fewer hops to the dangerous area
or a smaller potential integration to the goal. Many broad-
casts may not be necessary since only the message with the
least hops to the danger node location or the minimal poten-
tial integration to the goal is useful. To reduce the message
broadcasts, we let each sensor wait for some time before it
broadcasts. The waiting time for sensor si is proportional to
one unit in Algorithm 1 and the value poti in Algorithm 2.
The main idea is to let the message traveling time be propor-
tional to the hops from the danger or the potential integra-
tion along the path traveled. Then the messages that carry
the non-optimal value will be suppressed and only the mes-
sages that carry the optimal value will get broadcast. We
can prove that the number of message broadcasts for each
sensor is 1 in each algorithm using this technique [1]. In our
current implementation, we let each sensor wait for one unit
time plus a small random number to reduce the message
broadcasts and traffic congestions due to the simultaneous
transmissions.

In order to desynchronize the nodes in a proximity that
would, upon the reception of a packet, simultaneously broad-
cast the packet, we also add random variable waiting time
to each node to reduce the contention.

Packet loss is common in our Mote network because of the
network congestion or the inability of the Mote to handle
the incoming packets. Thus it is important that we design
protocols that repeat the packet transmission.

Most of the information stored at a node can be inferred
by reading the protocols. To adapt the network topology
(goal and obstacles) change, each sensor periodically flushes
its route cache (route to obstacles and goal) with all the
other information unchanged. Currently we have not in-
cluded the capability to tune the cache expiration timer.
Instead, we fix the expiration time to flush the caches.

3.2 Analysis

3.2.1 Correctness
Our protocols can correctly determine the safest path to

the goal without getting stuck in the local minima that are
often an issue with artificial potential fields methods.

Theorem 1. Algorithm 3 will always give the user sensor
a path to the goal.

Proof. In Algorithm 2, the prior link of a node points to
a node that has potential value less than that of the current
node. So for each node other than the goal, there must be
a neighboring node that has a smaller potential value. This
proves that there is no local minima in the network.



The user’s sensor can always find a node among its neigh-
bors that leads to a smaller potential value. If the process
continues, the node will end up with the goal that has the
smallest potential value 0. Therefore, Algorithm 3 can al-
ways give the user sensor a path to the goal.

3.2.2 The Hop Distance Model
One critical assumption behind Algorithm 1 is that we can

represent distance in terms of numbers of hops. In general,
how realistic is this model? To answer this question, we
consider how the density of the sensor distribution affects
the distance evaluation in our algorithms. We now address
this question for the case when that each node has a constant
transmission range, which is an assumption consistent with
our testbed hardware.

The key metric is the minimal number of hops between
any two sensors that are l distance apart. Since in our al-
gorithms each sensor uses flooding to broadcast packets to
all of its neighbors and each sensor within the transmission
range of the broadcasting sensor can forward the packets, it
is very hard to characterize this metric. An approximation
can be obtained by allowing only the sensors at the bound-
ary of the transmission range to forward packets. Of all
those sensors we choose the sensor that can make the most
progress in the direction of the destination sensor. The num-
ber of hops computed this way is an approximation of the
minimal number of hops.

In [26], Takagi and Kleinrock proposed the most forward
routing and analyzed its average progress in the direction of
the destination. We can use the same analysis to approxi-
mate the distance of a single hop.

Suppose the average progress be R′ by using the analysis
in [26] and the transmission range be R. Then the minimal
ideal hops should be l/R, but the expected minimal hops
in our real sensor network is l/R′. That is, the distance we
evaluate is always R/R′ times of the real distance.

In [7], Ganesan et al. reported the length of a hop may
not be fixed, as we observed in our experiments. By exper-
iments, we can get the expectation and the deviation of the
length of a hop (call them E and d). According to central
limit theorem in probability theory, the length of n hops has
the expectation of nE and the deviation of

√
nd, that is, the

deviation (or the difference) between the real distance and
the computed distance is in the order of

√
nd, which is small

compared with the distance of the order of nE. This actu-
ally shows that our algorithms are robust in the real network
scenario.

3.2.3 Performance Bound of the Computed Path
We expect our protocols to compute the integrated poten-

tial value on the safest path, but the implementation intro-
duces error. We now compare the integrated potential value
on the path found by our protocols and the optimal path to
show how safe the found path would be.

Theorem 2. The computed potential integration on the
computed path is upper and lower bounded with respect to
the actual potential integration on the path.

Proof. Suppose we find a path from A to B by running
our algorithms, the sum of the potential value on the sen-
sor nodes by running our algorithm is P1, and the nodes
on the found path are A = s0, s1, s2, · · · , sk = B. Let
s0s1, s1s2, · · · , sk−1sk (or s0s1s2 · · · sk−1sk) be the path con-

necting all these nodes consecutively by lines. Let the inte-
gration on this path be P2 (continuous line integration, not
only on the points). We would like to compare P1 and P2;
specifically we would like to upper bound P2. Take a look at
si−1si. Let the potential value of si−1 be pi−1, si be pi. We
assume we use the fixed transmission model. |si−1si| ≤ R (R
is the transmission range). For any danger source dj , sup-
pose the potential that si gets from obstacle dj is pij = 1

h2
ij

where hij =
lij

R
and lij is the distance between si and dj . For

any point t on segment si−1si, let ltj be the distance between
t and dj . Then ltj ≥ lij −R, so the potential value at t due

to dj is ptj = 1
h2

tj

≤ R2

(lij−R)2
= 1

(
lij
R

−1)2
= 1

(hij−1)2
. So we

have
ptj

pij
≤ h2

ij

(hij−1)2
. Similarly we have

ptj

pi−1j
≤ h2

i−1j

(hi−1j−1)2
.

By integrating upon the entire path, we have the follow-

ing. P2 =
∫ B

A

∑
j ptj =

∑k−1
i=0

∫ si+1

si

∑
j ptj ≤ ∑k−1

i=0

∫ si+1

si

∑
j

(
h2

ij

(hij−1)2
·pij) ≤

∑k−1
i=0 R·(∑j

h2
ij

(hij−1)2
·pij) (since |si−1si| ≤

R)

If
h2

ij

(hij−1)2
≤ q1 for all i, j, we have P2 ≤ R·q1·

∑k−1
i=0

∑
j pij =

R · q1 · P1.
On the other hand, we have the following. First we have

|si−1si+1| ≥ R, so |si−1si| + |sisi+1| ≥ R. Let’s find s′i on

sisi+1 such that |si−1si| + |sis′i| = R/2 or find s′i on si−1si

such that |s′isi|+ |sisi+1| = R/2. Without loss of generality,
we assume s′i is on sisi+1. The distance from any point on
si−1si or sis′i to si−1 is no greater than R/2 (also less than
R), so for any point t on these two segments, we have ptj =
1

h2
tj

= R2

(ltj)2
≥ R2

(li−1j+R)2
= 1

(hi−1j+1)2
. Similarly, the dis-

tance from any point on s′isi+1 to si is no greater than R, so

for any point t on this segment, we have ptj = 1
h2

tj

= R2

(ltj)2
≥

R2

(lij+R)2
= 1

(hij+1)2
. Let s0, s2, · · · , s2i be s′0, s

′
2, · · · , s′2i

and we then create s′1, s
′
2, · · · , s′2i+1 by the above procedure.

It follows that P2 =
∫ B

A

∑
j ptj =

∑k−1
i=0

∫ s′i+1

s′
i

∑
j ptj ≥

∑k−2
i=0

∫ s′i+1

s′
i

∑
j(

h2
ij

(hij+1)2
·pij) ≥

∑k−2
i=0

R
2
·(∑j

h2
ij

(hij+1)2
·pij).

If
h2

ij

(hij+1)2
≥ q2 for all i, j, and

∑
j

h2
k−1j

(hk−1j+1)2
is very

small compared to P1, we have P2 ≥ R
2
· q2 ·

∑k−1
i=0

∑
j pij =

R
2
· q2 · P1.

Combining the preceding analysis, we have R
2
· q2 · P1 ≤

P2 ≤ R · q1 ·P1. This tells that the real potential integration
on the computed path is relatively close to the computed
potential integration of the sensor nodes on that path.

Theoretically, there is an optimal path that has the min-
imal potential integration and may not traverse any sensor
node, but this path is not feasible in our system since a
user can only go from one sensor to another by listening to
the reply from the next sensor in our navigation protocol.
Therefore, instead of defining an optimal path, we define an
optimal sensor path as one that is composed of a series of
sensor nodes that are connected consecutively by straight
line segments (the connected nodes are within the transmis-
sion range of each other), which we expect to characterize
the motion of a user. Assume the optimal sensor path is
a series of segments u0u1 · · ·ul where u0, u1, · · · , ul are the
sensor points and the potential integration along all these
segments is P0. We now compare the potential integration



of this optimal sensor path (P0) with that of our computed
path (P2).

Theorem 3. The potential integration on the computed
path is upper bounded with respect to the potential integration
on the optimal sensor path.

Proof. Starting from u0 = s0, we want to choose some
nodes from u0, u1, · · · , ul in that order. Suppose we have
chosen s0 = u0, s1 = ul1 , · · · , s2i−3 = ul2i−3

, s2i−2 = ul2i−2
.

Let’s choose the next two points s2i−1 = uj , s2i = uj+1

with the least j such that j > l2i−2 and |s2i−2uj+1| =
|ul2i−2

uj+1| > R. The process continues until there is no
point left and we let the last point be sk = ul. Let the
potential sum on all those points si (0 ≤ i ≤ k − 1) be P ′

0

(by adding up the potential values on all the node points),
and we will compare P0 and P ′

0. For any 1 ≤ x ≤ k,
we have |sx−1sx| ≤ R, and for any 0 ≤ y ≤ bk/2c, we
have |s2y−2s2y−1| + |s2y−1s2y| > R. Consider segments
s2y−2ue · · ·ufs2y−1s2y on the optimal sensor path. If the
sum of all the segments of s2y−2ue · · ·ufs2y−1 is no less than
R/2, we find s′2y−1 on the segments of s2y−2ue · · ·ufs2y−1

such that |s2y−2ue · · ·ups′2y−1| ≥ R/2, and all the points on

segments s′2y−1ur · · · s2y−1 are within R distance from s2y−1,

and |s′2y−1ur · · · s2y−1| + |s2y−1s2y| ≥ R/2 ( The argument
is as follows. Draw a circle with radius R centered at s2y−1.
If the circle intersects segments s2y−2ue · · ·ufs2y−1, let the
last intersection point be ty. We have |s2y−2ty|+ |tys2y−1|+
|s2y−1s2y| ≥ |s2y−2s2y−1| + |s2y−1s2y| ≥ R and |tys2y−1| =
R. There must be a point s′2y−1 on segments tyua · · ·ubs2y−1

such that |s2y−2ue · · ·ups′2y−1| ≥ R/2, |s′2y−1ur · · · s2y−1s2y| ≥
R/2, and all points on s2y−2ue · · ·ups′2y−1 is within R from

s2y−2, and all points on s′2y−1ur · · · s2y−1s2y is within R from
s2y−1 ). If the sum of all the segments of s2y−2ue · · ·ufs2y−1

is less than R/2, we find s′2y−1 on the segment of s2y−1s2y

such that |s2y−2ue · · ·ufs2y−1s′2y−1| = R/2. In either case,

any point t on segments s2y−2ue · · · s′2y−1 has potential value

ptj ≥ 1
(h2y−2j+1)2

, and any point t on segments s′2y−1 · · · s2y

has potential value ptj ≥ 1
(h2y−1j+1)2

. Both |s2y−2ue · · · s′2y−1|
and |s′2y−1 · · · s2y| are no less than R/2. P0 =

∑l−1
i=0

∫ ui+1

ui

∑
j

ptj ≥ ∑bk/2c−1
i=0 (

∫ s′2i−1

s2i−2

∑
j(

h2
2i−2j

(h2i−2j+1)2
· p2i−2j) +

∫ s2i

s′
2i−1

∑
j

(
h2
2i−1j

(h2i−1j+1)2
· p2i−1j)) ≥

∑k−2
i=0

R
2
· (∑j

h2
ij

(hij+1)2
· pij).

If
h2

ij

(hij+1)2
≥ q0 for all i, j, and

∑
j

h2
k−1j

(hk−1j+1)2
is very

small compared to P ′
0, we have P0 ≥ R

2
· q0 ·

∑k−1
i=0

∑
j pij =

R
2
· q0 · P ′

0. Since P ′
0 ≥ P1 ≥ P2

Rq1
, we have P2 ≤ 2q1

q0
P0, i.e.,

our computed path has bounded potential integration.

3.2.4 Propagation and Communication Capability
Two natural questions arise about the protocols we de-

scribed previously: How much time does it take to prop-
agate the obstacle and goal information? Is the network
capable of transmitting all the information? In this section,
we answer the two questions in the context of our current
implementation, in which we use one packet for propagating
the information of each obstacle or goal for every broadcast.
To optimize the bandwidth usage by reducing the informa-
tion transmission, we can combine the information about
two or more obstacles and the goal into a packet, or use
information encoding to reduce the information redundancy

among the neighboring nodes. It is no surprising they can
provide performance gain to our system.

We assume that each node has fixed transmission range
and the nodes in a node’s neighborhood (say k nodes) should
be silent to avoid contention when that node broadcasts. For
the obstacle information propagation, assume the number of
the concerned obstacles is o; i.e., on average, each node has
to process the information of o obstacles. Let the trans-
mission rate for each node be b packets/s. Then the time
for the obstacle information propagating to a node is okl/b
where l = min(L, l0), L is the distance for the potential
value to become 0, and l0 is the distance between the node
and the obstacle, both in number of hops. The formula is
for the case when we add waiting time for each broadcast;
i.e., each node only broadcasts once for each obstacle infor-
mation propagation. In this case, each node needs to wait
for k/b time before broadcasting the best value. This wait-
ing time allows enough time for each of the node’s neighbors
to broadcast the packet if they hold the same value as this
node, so that they do not collide. For the case without ex-
plicit waiting time scheme, the MAC protocol enforces this
delay to make sure all the packets go through smoothly. On
the other hand, suppose we do not have the waiting time
scheme, each node may broadcast multiple times because
the least number of hops is unlikely to be obtained by the
first received message so that the node needs to broadcast
several packets before the best value is propagated. In this
case, we must multiply the propagation time by another pa-
rameter m, which is the average messages broadcast for each
node. Similarly, we can evaluate the propagation time for
the goal information.

The transmission rate of the Mote sensors we are using
is approximately b = 40 packets/s, so for k = 8, the added
waiting time to each node is 8/40 = 0.2s. Regardless of
how many obstacles there are in this system, if each node is
in the proximity of only one obstacle, it takes 0.2 ∗ 10 = 2
seconds to propagate the information up to 10 hops away.

When the obstacles are static, and we do not care about
the time, the network is capable of transmitting these amount
of bits. If we have some constraints on the time, say, we
have moving obstacles and the location of an obstacle must
be known to the network within a distance resolution d, the
network may not be able to carry all the information. Sup-
pose the maximal speed of the obstacle is v. In the worst
case, an obstacle generates v/d packets per time unit, so
each node needs to process ov/d packets, which should be
less that b/k, i.e., ov/d < b/k. If we do not have the wait-
ing time, we expect more packets will be generated and the
precision about the vehicle represented by the network will
be low.

Suppose an obstacle is moving at a speed of 1m/s, the
maximal transmission rate for a node is 40 packets/s, the
number of concerned obstacles is 1, and the number of the
concerned neighbors of a node is 8. The network can sustain
updates at a resolution of 0.2 meters. If we have the same
network, but the moving object is a vehicle moving at a
speed of 30 miles, the vehicle updates can happen every 2.7
meters.

4. EXPERIMENTS
We have implemented the algorithms described in Sec-

tion 3 using the Mote MOT300 sensors [10].



4.1 Correctness Validation
We have implemented the protocols in Algorithms 1, 2,

and 3. In our experiments, we asked both the goals and the
obstacles to generate the potential field and propagate it to
the entire network periodically. This demonstrates experi-
mentally that the goals and the obstacles can be added to
the network at any time.

The goal is represented with one Mote. The obstacles
are represented by one Mote each. The user traversing the
sensor network is also represented by one Mote.

A first experiment was designed to show empirically that
the protocols work and are correct. In this first experiment
we used a grid of 12 first generation Motes. The Motes
were approximately on a line with several nodes around the
obstacles in order to test if the safest path is a detour around
the obstacle. All neighbors are within communication range.
The application is run by iterating a request for the next step
by the user, a response by the network, and a move to the
direction of the network response. To implement this last
part we assume that the nodes know their location and that
it can be transmitted to the moving object/user. This can
be done by augmenting Motes with a GPS location, or via
triangulation. Since we have not done this augmentation of
the hardware yet, we simulate location knowledge by placing
the Motes in a grid pattern and supplying coordinates. The
potential field and goal path computations are run by the
network continuously.

When an obstacle or goal broadcasts, the receiving net-
work node checks its list of known goals, and replaces the
old data with the new broadcast if the new broadcast has a
lower hop count. If the obstacle or goal is unknown, then
an entry is created, and it erases the oldest entry if there is
no room.

When a node receives a broadcast, it degrades the value of
the broadcast based either on a linear function on the num-
ber of hops (for goals) or by the number of hops squared (for
obstacles). If the new value is not below a cutoff threshold,
the packet is transmitted to its neighbors.

When a user requests potential estimates, all nodes that
can hear it respond. The user chooses the node with the
lowest value (that is lower than the value of the current
node). The user moves toward this node.

This first experiment proved that a user with a sensor
node actually went around the obstacles and got to the goal,
via the correct path. We observed that the network adapted
to the introduction of new obstacle nodes quickly and ro-
bustly.

When a new obstacle is inserted in the network, the obsta-
cle starts broadcasting its danger information which affects
the information held by each node. At this point Algo-
rithms 1 and 2 cause the local information to change. We
call the total time for the network to identify the new dis-
tances from danger and to the goal for each node the time
for the network to stabilize. In other words, the time for the
network to stabilize is the information propagation time in
the network, which depends on the maximal hops from the
goals or the obstacles to any node in the network. When
an obstacle is added to the system online, it takes an iden-
tical amount of time to diffuse the information to the whole
network.

Fig. 3 shows the comparison between the measured real
distance and the hops counted using our algorithm. The
data was collected in our 7x7 grid network. We can see

the measured real distance is approximately linear in the
number of hops. Fig. 4 shows the potential integrations
(line integration instead of the sum of the point potentials)
in 54 experiments with eight different network topologies.
For each network topology, we computed the optimal path
by using dynamic programming and recorded the computed
paths in several experiments. The solid line is the potential
integration on the optimal path. The dashed line is the av-
erage potential integration over the computed paths. The
dotted line is the worst potential integration among all the
computed paths in experiments. Note that the potential
integration bears no linear relationship with the distance.
Compared with a dangerous path, which has potential inte-
gration of 3-5, the computed path is quite close to the safest
path.
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Figure 3: This figure shows the comparison between
the measured real distance and the hops counted
using our algorithm.
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Figure 4: This figure shows the potential integra-
tions in 54 experiments with eight different network
topologies. The solid, dashed, and dotted lines are
the potential integrations on optimal path, average
over all computed paths, and the worst computed
respectively.

4.2 Measuring Adaptation
We have implemented the protocols in Algorithms 1, 2,

and 3 on the second generation Motes MOT300. In this



Table 1: The data that summarizes timing measurements for several experiments with a sensor network
consisting of Mote sensors. All network topologies are summarized as geometric icons and all measurements
are in seconds.
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For each experiment, the goal is at the black disk and the danger is at the shaded disk.

second experiment, we used a 50 Mote MOT300 testbed.
We arranged the nodes in the given topology and gave each
node position information (which could be obtained using a
GPS extension of the hardware.) We ran a suite of different
network topologies and measured the network stabilization
time when obstacles and goals are injected on-line in the
network. Tables 1 summarizes our data.

The layouts include grids with various numbers of Motes,
randomly dispersed Motes, and circles. In each network we
inserted obstacle sensors (assumed to have detected danger)
and goal sensors. The focus of these experiments has been
to determine on how quickly the network responds to the
environmental change, specifically new danger sources and
goal changes.

We ran all the experiments on a large table in our lab,
as shown in Figure 1(right). For each experiment, we set
the transmission range to be very small (9”). In all these
second round experiments we focused on the network as a
whole and did not use a base station (thus, we did not collect
data in a central place.) To collect timing data, we used
two procedures: the videotaping procedure and the logging
procedure.

We used the videotaping procedure to capture the global
behavior of the sensor node. The Mote LEDs were pro-
grammed to capture the state of the Mote. We recorded the
experiment with a Sony video camera at a rate of 30 frames
per second. We then analyzed the resulting video to cap-
ture the timing measurements—which gave us a resolution
of 1/30th of a second. We looked at the video sequence frame

by frame and kept track of when and which LED triggered.
Since the overall timings for the navigation algorithms are
on the order of seconds, we believe our methodology is ac-
curate enough.

We analyzed four metrics for each experiment: the time
for the danger information to propagate from the danger/obstacle
sensor to the whole network, the time for all the nodes in the
network to obtain their shortest distance to the dangerous
areas, the time for the goal information to propagate to the
whole network, and the time for all the nodes in the network
to obtain their safest path to the goal. Tables 1 shows the
time distribution of the four metrics.

We also did experiments to measure the response time of
the sensor network after changing the topology of the net-
work. Starting from the initial topology (No. 0), we changed
the locations of the obstacles and recorded the response time
in each experiment. Table 2 shows the data of 15 consecu-
tive experiments. The response time is defined as the period
from the time when the topology change occurs to the time
when the user finds the path to the goal. The route cache
on each mote is refreshed every 10 seconds. The route in-
formation incurred by the topology change is updated only
after flushing the cache. Without taking into account the
information propagation time, the average response time is
5 seconds. The information propagation adds extra time
after the cache is flushed.

We also used the logging procedure to collect data about
the message flow in the system. In the logging procedure,
information about incoming and outgoing messages, as well



Table 2: The data of the response time for several experiments with a sensor network consisting of Mote
sensors. All network topologies are summarized as geometric icons and all measurements are in seconds.
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For each experiment, the goal is at the black disk and the danger is at the shaded disk. The black line and arrow signify the
safe path found in each network topology.

as internal events of interest, were logged to the 4Mbit flash
chip on the Mote sensors with a resolution of 1/128 of a sec-
ond. After each experiment the data was read out over the
radio link and then postprocessed using custom C programs.
There are some limitations to this approach since data can
be lost if a write to the flash chip is already pending. This
was minimized by adding buffers so that at least one mes-
sage or event of each type could be queued for writing if a
write was already pending.
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Figure 5: Measured communication graph of the ex-
perimental 7x7 grid network. Notice the absence of
many point to point links we expect to be available
(from example from (1,1) to (2,1)) and the presence
of long links we do not expect to have, for example
from (1,7) to (7,6).

Nodes were configured to log records of the packets sent
and received, corresponding time, and related internal events.
The network was a 7x7 grid with 49 Motes evenly placed on
the grid. The neighboring Motes were spaced apart from
each other at a distance slightly less than the transmission
range in the appropriate direction. The two obstacles were
placed at (1, 1) and (7, 7); the goal was put at position (1, 7).
Starting from (1, 1), we numbered the Motes along the lines
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Figure 6: The obstacle and goal propagation time
distribution. In our experiment, the nodes were ar-
ranged in a 7x7 grid, with obstacles placed at (1,1)
and (7,7). The nodes on x-axis are sorted according
to the Manhattan distance to (1,1), while the y-axis
shows propagation time (in seconds). shown on the
y-axis.

parallel to the line (1, 7) − (7, 1), so that 1 and 49 were ob-
stacles and 22 was the goal. The number of each mote gives
a sense of the distance to the two obstacles. The obstacles
and the goal periodically broadcast beacons. Each mote re-
broadcasts a packet only if the received packet has a value
that is as good, or better than, the current optimal value.

In order to distinguish the information propagation of the
obstacle and goal, we first turned on the obstacles for ap-
proximately 30 seconds, and turned them off, then turned
on the goal mote for more than 30 seconds.

Fig. 5 shows the connectivity between Motes. A line be-
tween two Motes indicates that they communicated directly
at least once in the experiment. We can see how irregular



0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Node id

tr
an

sm
itt

ed
 p

ac
ke

ts

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

Node id

re
ce

iv
ed

 p
ac

ke
ts

Figure 7: Transmission count distribution. The
nodes on x-axis are sorted according to the Man-
hattan distance to (1,1), while the y-axis represents
the number of packets (send/receive) for that node.

the connection graph is. Note the Motes in the right corner
which are completely disconnected.

Fig. 6 (top) shows the obstacle information propagation
time, that is, the time when a mote receives a stable po-
tential value. Some Motes get the stabilized potential value
very quickly, but it takes a long time for a fraction of Motes
to finally get the potential. The same observation can be
made in Fig. 6 (bottom), which shows the goal propaga-
tion time, defined as the time for a mote to get a stabilized
integration value to the goal.

Fig. 7 presents the number of transmitted packets and
received packets at each mote. The Motes closer to the
obstacles transmit and receive more data. In the middle of
the x-axis, the heightened activity represents Motes that are
close to the goal.

Fig. 8 plots the the send/receive activity of each node
over time, which gives more detail about the packets sent
and received. The Motes close to the obstacles or the goal
receive and rebroadcast more packets than other Motes. In
this figure, we observe some void areas where no mote sends
or receives any packet. This is because many Motes do not
reliably rebroadcast packets to their neighbors. We believe
this to be caused by two factors. One is that the rate of
packet reception at these key nodes is too high, and thus
they are unable to process all incoming messages. Another
is that the packets these nodes forward to their neighbors are
corrupted because of network congestion. This also explains
why the obstacle and goal propagation times are uneven, as
much more traffic is generated by two obstacles than by one
goal.

4.3 Performance Optimization
We optimized the message broadcasts using the methods

described in section 3.1 and performed several experiments
with this implementation. The goal was to eliminate the
asymmetric and transient links and to reduce the network
congestion. The experiments were conducted on the same
7x7 grid as ones in section 4.2. The following figures were
plotted in the same fashion as the related figures in the pre-
vious experiments. We observed the following (as compared
to the initial suite of experiments).
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Figure 8: Transmission/reception of packets by in-
dividual nodes over time. The bottom part signifies
the propagation of the information from the two ob-
stacles (1 and 49) in the first period of the experi-
ment when only the obstacles were turned on. The
top part is the goal information propagation in the
second half of the experiment when only the goal
was turned on..

1. The obstacles and goal propagation time (Fig. 10).
The obstacle propagation was done very quickly and evenly
for each node because the network had less congestion. Our
current waiting time scheme gave the priority to the packets
that traveled with less hops.

2. Packet send/receive count (Fig. 11). Compared to
our previous scheme, we see much better balanced packet
transmission on all the nodes. Most of the nodes showed
the increase in the transmitted packet both for sending and
receiving, which suggests that less packets were suppressed
because of the congestion and all the nodes had quite large
probability to broadcast their best computed value to the
network.

3. The packet send/receive analysis (Fig. 12). In this fig-
ure, we have more packets for goal propagation because each
node actively broadcasts (broadcasts once for every second)
to test the network congestion. We see that although there
is large network traffic, the sends and receives on each node
are balanced. For all the nodes, the transmitted packets are
balanced among all the nodes. We can reduce the transmit-
ted packets in goal propagation by changing the program.
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Figure 9: Measured communication graph of the ex-
perimental 7x7 grid network.
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Figure 10: The obstacle and goal propagation time
distribution as a function of the sensor node id.
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Figure 11: Transmission count distribution.

4.4 Lessons Learned
Several interesting aspects of these experiments can be ob-

served. The time for network stabilization (that is, the time
for all the nodes to get the shortest distance to the danger
source and the time for all the nodes to get the safest path
to the goal) takes much longer than we expected. In our
algorithms we made two typical assumptions: (1) a node
broadcasts the message received immediately and (2) each
node gets the packet traveling through the shortest path.
We observed that on the hardware testbed neither of these
assumptions held. The network stabilization takes a long
time because of network congestion and transitory link sta-
tus. Often, nodes seemingly out of range hear each other for
brief moments of time.

Our observations of these hardware experiments have taught
us some lessons about the assumptions used by most dis-
tributed sensor network protocols examined theoretically or
in simulation.

1. Data loss. Data loss is not rare in sensor networks.
This is due to network congestion, transmission inter-
ference, and garbled messages.

2. Asymmetric connection. We observed that the trans-
mission range in one direction may be quite different
from that in the opposite direction. Thus, the assump-
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Figure 12: Transmission/reception of packets by in-
dividual nodes over time.

tion that if a node receives a packet from another node,
it can send back a packet is too idealistic. In routing al-
gorithm design, the existence of a route that can carry
a packet from the source to a node does not guarantee
a reverse route from that node to the source.

3. Congestion. Network congestion is very likely when
the message rate is high. This is aggravated when the
nodes in proximity of each other try to send packets
at the same time. For a sensor network, because of its
small memory and simplified protocol stack, conges-
tion is a big problem.

4. Other unpredictable network conditions. In our sensor
networks nodes that should be several hops away from
each other occasionally come in direct communication
range. We expect many transitory links (on and off)
in a unstable network due to the impact of the unpre-
dictable conditions.

We conclude that the uncertainty introduced by data loss,
asymmetry, congestion, and transient links is fundamental
in sensor networks. We need new models, algorithms, and
simulations that take this kind of uncertainty into account.
Guided by these lessons, we are currently conducting exper-
iments to characterize better the likelihood of these uncer-
tainty conditions.

5. USING SENSOR NETWORKS TO DIS-
TRIBUTE INFORMATION

Section 3 provided an example for how to use a sensor
network as a distributed information repository about the
environment in the context of a navigation guiding applica-
tion. In this section we examine in more detail how to rep-
resent the information needed by our algorithm effectively
in a sensor network. We thus examine the use of a sensor
network as a distributed information repository.

Consider again the navigation guiding application formu-
lated as a motion planning problem. Suppose multiple goal
are installed in the network. It is possible that each sensor
has enough memory to store all the pertinent information
about these goals. However, the current sensor hardware
has very limited memory which restricts the amount of in-
formation that can be stored.



We argue that sensors do not have to store all the infor-
mation about the goals. Instead, all the necessary informa-
tion should be stored somewhere, but not everywhere, in the
network. The important thing is being able to retrieve the
information any time it is needed.

Many sensors can cooperate to store information by hav-
ing each sensor locally store only part of it. If the density
of the network is such that multiple sensors cover the same
area, the local information is the same for the sensors in
some neighborhood. Thus, it does not matter who stores
what. We propose that when a node receives a piece of in-
formation about the network, it randomly chooses to either
keep it or to discard the information. To make this work, we
must address (1) how to quantify the probability of discard-
ing the information with respect to the information amount,
the message size, and the density of the nodes; (2) how to
retrieve the information from this sensor proximity, and (3)
what are the trade-offs between the memory utilization and
broadcasting amount.

In order to address the information storage question, con-
sider the proximity area S covered by a group of sensors. All
local (environmental) information about S is the same for all
these sensors. To use Algorithm 3, at least one of the sensors
in S must store information about the goals. Let λ ·S be the
number of sensors in the area where λ is the density of the
sensor distribution and S is the area of the field in question.
Suppose each sensor has memory m. Then mλS is the total
memory across all sensors. Let the amount of information
to be recorded be

∑
mi where mi is the size of information

i. If mλS ≥ ∑
mi, then it is possible that in the proxim-

ity area S, all the required information can be found locally
using Algorithm 3. To achieve this information distribution
when the amount of information is too large for a node’s
memory (that is, m <

∑
mi), we can use a random, in-

dependent and distributed method to store the information
on each sensor. Each sensor node randomly keeps a piece
of information with probability p = m∑

mi
. When it receives

a piece of information, the probability that the information
can be found in this area is 1 − (1 − p)λS (see Figure 13).
Currently, we are also exploring some other approaches to
cooperative caching data among proximity sensors.

Algorithm 4 summarizes the protocol for locating a piece
of information in a sensor network. If the information can-
not be found in the proximity area S, the sensor must try
to retrieve information beyond the area in the sensor net-
work. Intuitively, the request for information is broadcast
to all the sensors in the area S. The sensors who have the
information reply to the request. If there is no reply in the
transmission range, the request must be broadcast again to
a larger area, by making larger and larger concentric com-
munication bands. More specifically, the user sends out the
information request; the sensors in the broadcast range hear
the request and reply if they have the information. Other-
wise no sensor replies to the request. After some period of
silence with no reply (∆, the transmission time for the re-
quest and reply message), the user’s requesting node sends
out an information request for two hops. Each node re-
ceiving this message will broadcast the request out. If the
information is found, it is sent back to the requesting node.
Otherwise after some time of silence time with no reply (2∆
here), the requesting node sends out an information request
for three hops, and so on, until finally the information gets
back to the requesting node.
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Figure 13: This figure shows the probability (Y-axis)
that a piece of information can be found in S, some
neighborhood of a sensor. The X-axis is the proba-
bility that the sensor keeps a piece of information.
We plot for various numbers of sensors in the area
from λS = 2 to λS = 10 where λS is the number of
sensors in that area. As the number of the sensors
increases, the probability to find some information
in that area is close to 1 even though the probability
that a sensor keeps the information is small.

6. CONCLUSION
We have discussed self-organizing sensor networks that

can react to their environment and adapt to changes. We
have described a novel application: using the sensor network
to guide the movement of a user (human or robot, equipped
with a sensor that can talk to the network) across the area of
the network along a safest path. Safety is measured as the
distance to the sensors that detect danger. We described
several protocols for solving this problem. Our protocols
implement a distributed repository of information that can
be stored and retrieved efficiently when needed. We have
used ideas from robotics to provide a correct solution to
the navigation guiding task. We have implemented these
protocols on a network of 50 Mote sensors. The key metric
used in our experimental evaluations is the time it takes the
network to adapt to a new situation (detecting a moving
vehicle, detecting a new obstacle, adding a new sensor in
the network, removing a sensor from the network, etc.). Our
experimental work has taught us a number of lessons about
some typical assumptions for designing protocols and have
pointed out some important new directions of research.
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Algorithm 4 Sensor information query algorithm

1: if I am the query sensor s then
2: depth1 = depth2 = 1
3: while true do
4: Broadcast (s, query, depth1, depth2)
5: Wait for time depth1 ∗ ∆
6: if some reply arrives then
7: stop
8: else
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(s, query, depth1, ∗) then
13: discard the message
14: if I have the information to query then
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16: if depth2 − 1 == 0 then
17: stop
18: else
19: broadcast(s, query, depth1, depth2 − 1)
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