
The Role of Information in Computational-Resource Allocation,

for the TASK REF:

Dynamic Control of Emergent Behavior in E-Commerce Ecologies

Jonathan Bredin, Daniela Rus, and David Kotz

Department of Computer Science, Dartmouth College

Abstract

We examine the role of information in markets that al-
locate computation to software agents. The comparison
of two types of markets illuminates the importance of
information and the incentives for buyers and sellers to
share their preferences with each other. In our compari-
son, the distinguishing feature of the two markets types
is the alignment of agents’ interests. We define a closed-
interest market as one where resources are collectively
owned among the agents. An open-interest market makes
no assumptions on the interests of agents or resource own-
ers.

The incentives of agents in the two markets drastically
differ. The open-interest model motivates agents to be
less trusting and to not share information. This aspect
stems from the model’s greater applicability to resource
allocation, but has a deep impact on system efficiency.
In this paper, we summarize some economic theory and
allegorical evidence from our models and system imple-
mentations that support the claim, and conclude with
guidelines for system development.

1 Introduction

We look at two types of markets where software agents
purchase computational resources, such as computation,
communication, and storage, from their hosts. In the
first type of market, a closed-interest market, agents share
ownership of the resources that they consume. The sec-
ond type of market is an open-interest market that makes
no assumptions on resource ownership. The major differ-
ence between the two types of markets is the motivation of
hosts. With collectively owned resources, the principals’
concerns are that the resources should be fully utilized.
When we separate resource ownership and use, a prin-
cipal’s goal becomes revenue maximization. A dramatic
result of the separation is evident in the differences in
incentives for a software agent and its host to exchange
information. While open markets are applicable to more
scenarios, there are costs inherent to trade both in terms
of the computation involved in allocation and the effi-
ciency of the outcome.

First, we examine some preliminary related theoretical
results that led us to consider simple allocation policies.
We then summarize two models we developed and relate
the applicability of each. Finally, we present our intuition
and advice concerning market-based computation alloca-
tion.

2 Theoretical Background

Mechanism design, the study of rule construction to guide
agent behavior, hints that operation in environments with
diverse interests is difficult. Theoretical results state that
in the presence of uncertainty of preferences, perfect ef-
ficiency is not possible. It may not even be feasible or
possible to gather agent preferences. Further complica-
tions arise when we consider repeated interaction among
agents.

The Myerson-Satterthwaite theorem states that com-
plete efficiency is not possible when agents have asym-
metric information and there is the possibility that trade
yields zero gain to at least one agent [MS83]. Thus we
may wish to consider methods to extract agents’ prefer-
ences in our search for efficient systems. As system de-
signers, we see a possible conflict of interest between the
goal of system efficiency and individual rationality. For
now, we consider the costs of preference extraction.

The Gibbard-Satterthwaite theorem states that with-
out restrictions on agents’ utilities and unless one agent
dictatorially decides the outcome for all others, it is im-
possible to motivate more than two agents to reveal their
preferences for allocation [Gib73]. We can, of course, re-
strict agents’ utility functions to reasonable classes, but
even so, truthful implementation usually involves pay-
ment to each agent to divulge its preference.

The minimum required payment can be large enough
to dominate all other issues. An example is evident in the
Clarke-Groves mechanism to allocate public goods. It is
the only truthfully implementable mechanism for public-
good allocation, but it cannot guarantee a balanced bud-
get to the principal [GL77].

To help the selection of a mechanism to extract agents’
preferences, we compare the cost of the use of the mech-
anism with alternative methods. Frequently, the com-

1

David Kotz
© Copyright 2001 by the authors

putational cost in implementing the mechanism is infea-
sible. Nisan applies dominant-strategy game-theoretic
approaches to distributively solve traditional computer-
science problems [Nis99]. Unfortunately, the alloca-
tion problems leverage Vickrey-Clarke-Groves mecha-
nisms that require enormous amounts of computation.
Given the computational costs of allocation and the loss
of revenue in preference extraction, the principal may be
indifferent to the outcome of a dominant-strategy mech-
anism and the outcome of a simpler one.

There is one more complication. Realistic agents have
many goals and will likely repeatedly compete with each
other. The aspect of repeated play complicates the anal-
ysis of rational behavior in the face of a particular mecha-
nism. Little research on repeated-play mechanism design
and the assumptions used to derive strategies in the one-
shot game disappear in repeated play. An example of
this is the value of an agent’s private cost in a repeated
auction.

3 Market Applications

In the previous section, we presented a litany of problems
with market design. We now present our pragmatic ap-
proach to computational-resource allocation: we restrict
our attention to simple strategies and mechanisms and
represent repeated play through optimization of a long
game with simple decisions.

Our interests lie in the allocation of computational re-
sources to software agents. Typically, the i-th agent must
negotiate both the price and priority of its resource con-
sumption in the face of a budget constraint to complete
Mi tasks with sizes qij , j ∈ [1 . . .Mi]. The motivations for
studying markets are mainly three-fold:

• An agent with greater potential, expressed by its cur-
rency holdings, relative to its job size should have
greater priority than an agent with less potential.

• Trade in valuable currency motivates a principal to
make its resources publicly available in previously
closed environments.

• Optimization of system performance is frequently in-
tractable or infeasible. Markets can provide good
distributed heuristics for resource allocation.

We identify the alignment of agents’ interests as a pa-
rameter that characterizes most resource-allocation prob-
lems. In one extreme, a closed-interest environment, all
agents cooperate to achieve a common global objective.
At the other end of the spectrum, there are no restric-
tions on an agent’s motivations and each agent competes
to maximize its private utility. The clearest distinction
between the two examples is how likely an agent is to re-
veal its underlying motivations. For example, an agent
may misrepresent its deadlines, job-size estimations, or

priority so that it may achieve a more favorable alloca-
tion. The next two subsections summarize bodies of work
at each end of the spectrum.

3.1 Collective Ownership

In our first example, we investigate a scenario where soft-
ware agents represent the interests of the people who own
a network of computing resources [BMI+00]. We assume
that the resource owners wish to utilize the resources as
efficiently as possible and that an individual agent’s goal
is to compute as quickly as possible. We employ a market
for computation to prioritize agents as well as to provide
a means to balance the load of computation throughout
the network.

3.1.1 Allocation

In the interest of fairness, we allocate computation such
that payment is proportional to allocation. We define the
allocation mechanism such that the i-th agent submits a
function that, given the price of computation at host j,
returns uij , the rate in currency per unit of time that the
agent pays the host for access. The amount of computa-
tion available at the j-th host the i-th agent visits is cij ,
the i-th agent receives a portion

xij = uij/

Nj∑
k=1

ukj

of the computation, and computes at a rate of vij = cijxij

instructions per time unit at a host with Nj agents.
The host determines a price for its computation to sat-

isfy all present agents’ bidding contracts. Figure 1 shows
an example of the search for an equilibrium price. We
plot the price that the host could present for all of its
computation, θ1, versus the amount agents would pay
for computation at that price. The point where the line
with slope one intersects the market’s response satisfies
all agents’ contracts. In the event that only one agent
visits the host, the agent receives all of the computation
at no charge.

Our mechanism produces a unique non-trivial alloca-
tion so long as each agent’s bid contract, gi(θ), satisfies
the following constraints:

• gi(0) = 0, • ∂g/∂θ
∣∣θ=0 = 1,

• gi(θ > z) = 0, • ∂2g/∂θ2
∣∣θ∈[0,z] ≤ 0.

Furthermore, no agent may return its unused endowment
to its user.

3.1.2 Agent Participation

An agent’s utility stems from minimizing its end-to-end
latency. Ignoring network latencies, the i-th agent’s goal
is to maximize Ui, where

Ui = −
Mi∑
j=1

qij

cijxij
.

2

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

Congestion: θ
1

A
ll

bi
ds

: Σ
i g

i(θ
1)

Σ
i
 g

i
(θ

1
)

θ
1

Figure 1: A sample of the sum several agents’ bid con-
tracts that form the market’s response to the price of
computation, θ1, at a host.

Here our utility has a concrete meaning since an agent’s
currency has no value outside its immediate set of tasks.
We apply Lagrangian relaxation to compute the closed
form equation for the agent’s bid in terms of the price
of computation. The optimization process implies that if
an agent bids, it can complete its task set and the bid
is optimal in the absence of information relevant to the
competing bids.

Congestion: θ
1

B
id

: g
(θ

1)

base
increased endowment
increased consumption
g(θ

1
)=θ

1

Figure 2: Some sample bidding contracts as functions of
the price of computation.

Figure 2 illustrates an example agent bid. Increased en-
dowment has the effect of scaling the bid function, while
increasing the agent’s future load makes the function’s
curvature softer and decreases the range over which the
agent may bid. Decreasing the agent’s future consump-
tion makes the bid function sharper and better approxi-
mates the function gi(θ1) = θ1 along the interval where
the agent can afford to compute.

3.1.3 Results

We have implemented our allocation policy in a simulated
network and compared it with other allocation policies.
Empirically, we find 8% to upper bound on the cost of our
prioritization and that we improve throughput by 18% in
comparison to round-robin resource allocation.

Figure 3 shows how our allocation performs when agent
requests exceed system capacity. Our allocation policy

determines which agents can be suspended or dropped
and still allocates computation to important agents that
complete their tasks with reasonable performance.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

μ−2σ μ−σ μ μ+σ μ+2σ

Id
ea

l T
im

e/
A

ct
ua

l T
im

e

Endowment

Figure 3: Agent endowment versus performance in an
overloaded system with shared resource ownership. We
plot endowment/job-size ratios two standard deviations,
σ, around the mean endowment/job-size ratio, μ.

Our bidding algorithm relies on estimations of the
agent’s task sizes. We find, however, that our bidding
procedure is robust to errors in estimation error. Figure 4
demonstrates the effect of estimation error upon agents’
performance. We plot error as the standard deviation
of the estimate versus average agent performance. The
graph plots error for five multiples of the actual job-size
mean and shows that every factor only decreases perfor-
mance by about 3%.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 1 2 3 4 5

Id
ea

l T
im

e/
A

ct
ua

l T
im

e

Job-Size Error Standard Deviation

SRPT
GT

Figure 4: Agent job-size estimation error versus through-
put for our game-theoretic and shortest-job-remaining op-
timal allocation policies.

Cooper and Gray [CG00] implemented the allocation
policy for a version of D’Agents that runs on top of
QLinux.

3.2 Revenue Maximization

We now move to resource allocation in an environment
where a host’s sole objective is revenue maximization. We
implement a simple mechanism with this objective.

3.2.1 Allocation

The allocation mechanism that we choose is a sealed-bid
auction. The j-th host has a private value, vj , for its

3

own computation and holds an auction for access to that
computation for the next Δ seconds. Each agent submits
a single price-quantity pair, (tij , xij), to the host. The
host can maximize its revenue through selection of a set of
bids where each has a price-per-unit density, tij/xij ≥ v′j ,
where v′j is greater than vj and depends on the host’s
prior beliefs on the demand for computation [FT96]. The
host’s utility is then

max (
∑

i tijxijyi + vj −
∑

i xijyij)
such that

∑
i xijyi ≤ 1, yi ∈ {1, 0}.

Optimization requires the host to solve an NP-complete
integer programming problem. For reasonable numbers of
visiting agents, we can apply approximation algorithms to
solve the problem with little overhead.

3.2.2 Agent Utility

Until now, we have not considered an agent’s utility in
the open-interest market. We would like to have savings
be a positive value in our model given that resource own-
ers and agent owners are separate entities. We choose a
quasi-linear utility for the i-th agent to be

Ui = Ei

/ ⎛
⎝1 + exp

⎛
⎝ Mi∑

j=1

κiqij

cijxij
− τj

⎞
⎠

⎞
⎠ −

Mi∑
j=1

tij ,

where xij is the agent’s average share of computation at
the j-th host, tij is the payment to the host for the j-th
task, Ei is the agent’s initial endowment, τj is the user’s
expectation for the j-th task’s completion time, and κi >
0 is the precision of the expectations. The left-hand side
of the difference is a sigmoid with respect to execution
time and the right is the total currency expenditure.

This utility function is different from the closed-interest
model in several ways. The function models savings ben-
efits, but quasi-linear utility functions have no wealth ef-
fect. That is, an agent’s consumption does not change
with its endowment. For this reason, we have changed
the utility to correspond with a weighted difference of the
agent’s ability to complete its tasks in time less than ex-
pectation with the currency spent to complete the tasks.

3.2.3 Agent Participation

The domain over which an agent can bid is large. In this
subsection, we show a heuristic that prunes the bid space.
We then show how the agent can build a belief function
that can optimize its utility.

The host’s algorithm to decide which bids to accept
leverages the price per unit of computation, or density, of
a bid. For our utility function, we can derive the highest
density bid for any level of utility. Figure 5 plots several
isoquants, a set of payment-allocation pairs that yield
identical utility, and a curve that plots the densest bid for
each level of utility. This curve shows the one dimensional
space upon which we collapse the agent’s bidding space.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

Resource Portion

P
ay

m
en

t

u=0

ρ x = f(x)

u=1
u=2

u=3

u=4

u=5

Figure 5: A set of isoquants and the set of bids that
maximizes price-per-unit of computation at any level of
utility.

The agent can look at the history of submitted bids
and map each bid to one of equal utility, but higher den-
sity. We use the resulting set of mapped bids build a
belief function that returns the probability of a bid’s ac-
ceptance in a similar fashion used by Gjerstad and Dick-
haut [GD98].

With a belief function and a single dimensional bidding
space, the agent can fix its expectations and optimize its
utility by maximization of

E[Ui(xi1, ti1|xj �=1, tj �=1)]

=
∞∑

k=a

(
k−1
a−1

)
paqk−aUi(acijk/qij , ti1|xj �=1, tj �=1),

where a is the number of auctions that the agent must
win to complete its next task, p is the probability that the
agent’s bid is accepted, and q is the complement. Both
probabilities are functions of xi1 and ti1. The program
computes the sum of the products of the probabilities that
an agent will take exactly k auctions to win a of them and
the utility from finishing the task in k attempts. We can
approximate the value of the sum using our knowledge
of hyper-geometric series and Taylor series expansions to
compress the optimization to a one-dimensional search.

3.2.4 Results

We simulate agents that use our bidding procedure and
operate under the repeated sealed-bid auction allocation
policy. In light of the closed-interest model’s behavior
to over-constrained resource allocation, we ran the same
experiment in our open-interest market model under a
similar load. Because the utility function differs between
the two models, instead of throughput, we measured an
agent’s probability of successfully completing its itinerary.

Figure 6 plots endowment versus observed success
rates. As in the closed-interest model, an agent’s per-
formance is related to its relative endowment, though un-
like the closed-interest market, many poorer agents sneak
through. In the open-market model, there is another fac-
tor that correlates with performance: the number of sites
an agent must visit. Figure 7 plots the success rates of

4

0

0.1

0.2

0.3

0.4

0.5

0.6

μ−2σ μ−σ μ μ+σ μ+2σ

S
uc

ce
ss

 R
at

e

Endowment

Figure 6: The relationship between endowment and agent
completion rate in an overloaded simulation of the open-
interest market.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 2 3 4 5 6 7 8 9

S
uc

ce
ss

Itinerary Length

Figure 7: Agent success rate conditioned on itinerary
length in an overloaded simulation.

agents in the simulation versus the number of hosts that
they intended to visit. The repeated, independent en-
counters with different hosts add risk to an agent’s per-
formance.

4 Conclusions

We reason about applications of markets to solve resource
allocation in distributed systems where resource owners
and consumers either share or do not share utility. We
look at allocation of computation to software agents in
two scenarios: a “closed-interest” scenario where users
own resources; and an “open-interest” situation where
users and resource owners are distinct groups.

Markets provide a means of prioritization of jobs
through endowments. Because resource consumption is
tied to currency expenditure, markets implement an ele-
ment of fault tolerance and load balancing. Additionally,
an individual agent can optimize its performance through
budgeting its expenditures.

We observe that we can achieve more efficient allocation
in the closed-interest markets. In our examples, the closed
market allocates all available resources, while the open
market typically only allocates 40% of the available re-
sources, despite agent requests are 160% of the resources.
Part of the efficiency disparity is due to the open-market
agents’ greater constraints, but clearly if agents and their
hosts were more articulate in exchanging goals, we could
arrive at a better allocation.

While open-markets apply to more scenarios, the im-
plementation costs are higher than closed markets. An
agent’s performance in a closed market depends heavily
on the accuracy of its prior beliefs of the state of the mar-
ket. Evaluation of an agent’s savings is also complicated
and simple, commonly-used quasi-linear utility models do
not capture the wealth effect. On the seller’s, as well as
the buyer’s side, open markets frequently involve greater
computation than analogs in closed markets. From these
observations, we conclude that utility choice and mar-
ket structure are important system design issues. Engi-
neers should carefully consider alternatives to markets,
of course, but should also keep in mind agent goals and
co-locate resource ownership and usage interests as much
as possible.

References

[BMI+00] Jonathan Bredin, Rajiv T. Maheswaran, Cagri
Imer, Tamer Başar, David Kotz, and Daniela
Rus. A game-theoretic formulation of multi-
agent resource allocation. In Proceedings of
the Fourth International Conference on Au-
tonomous Agents, Barcelona, June 2000.

[CG00] Ezra E. K. Cooper and Robert S. Gray.
An economic CPU-time market for D’Agents.
Technical Report TR2000-375, Dartmouth
College, June 2000. Undergraduate honors
thesis. Advisor: Bob Gray.

[FT96] Drew Fudenberg and Jean Tirole. Game The-
ory. MIT Press, Cambridge, MA, 1996.

[GD98] Steven Gjerstad and John Dickhaut. Price for-
mation in double auctions. Games and Eco-
nomic Behavior, 22(1):1–29, January 1998.

[Gib73] Allan Gibbard. Manipulation of voting
schemes: A general result. Econometrica,
41(4):587–601, July 1973.

[GL77] Jerry Green and Jean-Jacques Laffont. Char-
acterization of satisfactory mechanisms for
the revelation of preferences for public goods.
Econometrica, 45(2):427–438, March 1977.

[MS83] Roger B. Myerson and Mark A. Satterth-
waite. Efficient mechanisms for bilateral trad-
ing. Journal of Economic Theory, 28:265–281,
1983.

[Nis99] Noam Nisan. Algorithms for selfish agents
– mechanism design for distributed computa-
tion. In Proceedings of the Symposium on The-
oretical Aspects in Computer Science, Trier,
Germany, March 1999.

5

