
Copyright 1993 by Trustees of Dartmouth College.
Appeared in DAGS/PC Symposium on Parallel I/O and Databases, pages 64-74.
Available at https://www.cs.dartmouth.edu/~kotz/research

Integrating Theory and Practice in Parallel File Systems

Thomas H� Cormen David Kotz

Department of Mathematics and Computer Science

Dartmouth College

Hanover� NH ����������

Abstract

Several algorithms for parallel disk systems have appeared in the literature recently� and
they are asymptotically optimal in terms of the number of disk accesses� Scalable systems with
parallel disks must be able to run these algorithms� We present for the �rst time a list of
capabilities that must be provided by the system to support these optimal algorithms� control
over declustering� querying about the con�guration� independent I�O� and turning o� parity�
�le caching� and prefetching� We summarize recent theoretical and empirical work that justi�es
the need for these capabilities� In addition� we sketch an organization for a parallel �le interface
with low�level primitives and higher�level operations�

� Introduction

To date� the design of parallel disk systems and �le systems for parallel computers has not taken
into account much of the theoretical work in algorithms for parallel I�O models� Yet� theory has
proven to be valuable in the design of other aspects of parallel computers� most notably networks
and routing methods� In addition� empirical studies of early parallel �le systems have found that
optimizing performance requires programs to carefully organize their I�O� This paper describes
how the design of parallel I�O software and hardware should be in�uenced by these theoretical and
empirical results�

People use parallel machines for one reason and one reason only� speed� Parallel machines
are certainly no easier or cheaper to use than serial machines� but they can be much faster� The
design of parallel disk and �le systems must be performance�oriented as well� There are several
recent algorithms for parallel disk systems that are asymptotically optimal� solve important and
interesting problems� and are practical� These algorithms require certain capabilities from the
underlying disk and �le systems� and these capabilities are not di�cult to provide�

Not all parallel systems provide these capabilities� however� and only those that do can be
scalable� Here� by scalable we mean that disk usage is asymptotically optimal as the problem and
machine size increase� Because disk accesses are so time�consuming compared to computation�
changing the number of parallel disk accesses by even a constant factor often has a strong impact
on overall performance� The impact is even greater as the problem or machine size grows� For
applications that use huge amounts of data� it is essential to use the best algorithms to access the

This research was supported in part by funds from Dartmouth College� Authors� names are listed alphabetically�
Tom Cormen�s Internet address is Thomas�H�Cormen�Dartmouth�edu� and his telephone number is ����� �	�
�	��
David Kotz�s Internet address is David�Kotz�Dartmouth�edu� and his telephone number is ����� �	�
�	���

data� The disk and �le system capabilities to support these algorithms are then equally essential
for scalability�

The capabilities we describe apply to two di�erent uses of parallel I�O� One is the traditional
�le�access paradigm� in which programs explicitly read input �les and write output �les� The
other is known variously as 	out�of�core�
 	extended memory�
 	virtual memory�
 or 	external

computing� in which a huge volume of data forces a computation to store most of it on disk� Data
is transferred between memory and disk as needed by the program�

This paper sketches an interface that includes primitive operations to provide the capabilities�
The interface also includes higher�level operations that use these primitives to implement algorithms
whose disk usage is asymptotically optimal�

The remainder of this paper is organized as follows� Section � describes the capabilities required
for asymptotically optimal parallel I�O performance and surveys some existing systems according
to whether they provide these capabilities� Although one may view our list of capabilities as
	conventional wisdom�
 few existing systems� if any� supply them all� Section � lists the algorithms
that drive these capabilities and presents supporting empirical evidence for why these capabilities
are necessary for high performance� Section outlines an organization for a parallel �le interface�
Maintaining parity for data reliability on parallel disk systems exacts a performance cost� and
Section � shows that for several parallel I�O�based algorithms� we can dramatically reduce the cost
of maintaining parity information� Finally� Section � o�ers some concluding remarks�

� Necessary capabilities

In this section� we present the capabilities that parallel �le systems and disk I�O architectures must
have to support the most e�cient parallel I�O algorithms� Many of these required capabilities turn
out to be at odds with those of some existing parallel systems� We conclude this section with a
brief survey of existing parallel �le systems in terms of these capabilities�

All disk I�O occurs in blocks� which contain the smallest amount of data that can be transferred
in a single disk access� Any system may choose to perform its disk I�O in integer multiples of the
block size�

Before proceeding� we note that the algorithms� and hence the required capabilities� apply to
both SIMD and MIMD systems� In SIMD systems� the controller organizes the disk accesses on
behalf of the processors� In MIMD systems� the processors organize their own disk accesses� In
either case� the algorithms specify the activity of the disks�

The necessary capabilities are control over declustering� querying about the con�guration� in�
dependent I�O� and turning o� parity� �le caching� and prefetching� We discuss each in turn�

Control over declustering

Declustering is the method by which data in each �le is distributed across multiple disks� A given
declustering is de�ned by a striping unit and a distribution pattern of data across disks� The
striping unit is the sequence of logically contiguous data that is also physically contiguous within a
disk� A common distribution pattern is striping� in which striping units are distributed in round�
robin order among the disks� a stripe consists of the data distributed in one round� Striping unit
sizes are often either one bit �as in RAID level three �PGK���� or equal to the block size �as in
RAID levels four and �ve��

The optimal algorithms assume striping with a block�sized striping unit� The programmer�
therefore� should be able to rede�ne the striping unit size and distribution pattern of individual
�les�

Querying about the con�guration

The optimal algorithms need the ability to query the system about the number of disks� block size�
number of processors� amount of available physical memory� and current declustering method� In
addition� some algorithms need to know the connection topology among compute processors� I�O
processors� and disks�

Independent I�O

The algorithms typically access one block from each disk in an operation known as a parallel I�O�
Optimality often depends on the ability to access blocks at di�erent locations on the multiple disks
in a given parallel I�O� We call such parallel I�O operations independent� in contrast to fully striped
operations� in which all blocks accessed are at the same location on each disk�� The block locations
we refer to are not absolute disk addresses� rather� they are logical o�sets from the beginning of
the �le on each disk�

In order to perform independent I�O within a SIMD system� the I�O interface must allow
speci�cation of one o�set into the �le for each disk� Contrast this style of access with the standard
sequential style� in which all I�O operations specify a single o�set into the �le� When this single�
o�set style is extended to parallel �le systems� independent I�O is not possible�

Turning o� parity

Another necessary capability is that of turning o� parity or other redundancy management on a
per��le basis� Section � examines why turning o� parity can help performance and how to do so
without compromising data reliability�

Turning o� �le caching and prefetching

The �nal capability we require is that of bypassing all �le caching and prefetching mechanisms� In
Section �� we show that �le caching interferes with many �le access patterns and that the optimal
algorithms e�ectively perform their own caching�

Existing systems

Here we survey some existing systems and their support for the above capabilities� Table � sum�
marizes these systems�

One of the �rst commercial multiprocessor �le systems is the Concurrent File System �CFS�
�Pie��� FPD��� PFDJ��� for the Intel iPSC and Touchstone Delta multiprocessors �Int���� CFS
declusters �les across several I�O processors� each with one or more disks� It provides the user with
several di�erent access modes� allowing di�erent ways of sharing a common �le pointer� Unfortu�
nately� caching and prefetching are completely out of the control of the user� and the pattern for
declustering the �le across disks is not predictable and mostly out of the user�s control�

Its designers claim that the Parallel File System �PFS� for the Intel Paragon supports our list
of capabilities �Rul���� but we have not had the opportunity to verify this claim� We note� however�
that the Paragon does not maintain parity across I�O nodes� Instead� each I�O node controls a
separate RAID�level�three disk array� which maintains its own parity information independent of
all other I�O nodes� Whereas a complete Paragon system may have many physical disks� the local

�There is potential for confusion here� Fully striped operations are based on the block size� which may or may
not correspond to the striping unit size� The term �fully striped�� however� is standard in the literature�

System Control over Querying Independent Turn o� Turn o�
declustering con�guration I�O caching parity

Intel CFS limited limited yes no n�a
Paragon PFS yes yes limited yes limited
nCUBE �old� yes limited yes no n�a
nCUBE �current� yes limited yes no n�a
KSR�� no� � limited no limited
MasPar no yes no no no
TMC DataVault no yes no no no
TMC SDA no yes no no no
IBM Vesta yes yes yes no n�a

Table �� Some existing systems and whether they support our list of capabilities� We are not sure about
support for declustering control and con�guration querying in the KSR���

RAID level three organization limits the disk array at each I�O node to only fully striped I�O� The
apparent number of independent disks� therefore� is only the number of I�O nodes� rather than the
larger number of physical disks�

The �rst �le system for the nCUBE multiprocessor �PFDJ��� gives plenty of control to the
user� In fact� the operating system treats each disk as a separate �le system and does not decluster
individual �les across disks� Thus� the nCUBE provides the low�level access one needs� but no
higher�level access� The current nCUBE �le system �dBC��� supports declustering and does allow
applications to manipulate the striping unit size and distribution pattern�

The �le system for the Kendall Square Research KSR�� �KSR��� shared�memory multiproces�
sor declusters �le data across disk arrays attached to di�erent processors� The memory�mapped
interface uses virtual memory techniques to page data to and from the �le� which does not provide
su�cient control to an application trying to optimize disk I�O�

Reads and writes in the Thinking Machines Corporation�s DataVault �TMC��� are controlled
directly by the user� Writes must be fully striped� however� thus limiting some algorithms� Neither
the �le system for the newer Scalable Disk Array �TMC��� LIN���� nor the �le system for the
MasPar MP�� and MP�� �Mas��� Mas��� support independent I�O as we have de�ned it��

IBM�s Vesta �le system �CBF��� for its Vulcan prototype multiprocessor supports many of the
capabilities we require� Users can control the declustering of a �le when it is created� specifying
the number of disks� record size� and stripe�unit size� It is not clear whether a program may query
to �nd out the available memory or a �le�s declustering information� All I�O is independent� and
there is no support for parity �they depend on checkpoints for reliability��

� Justi�cation

In this section� we justify the capabilities of parallel �le systems and disk I�O architectures that we
claimed to be necessary in Section �� Our justi�cation is based on both theoretical and empirical
grounds�

�These systems use RAID level three� which serializes what look to the programmer like independent writes�

Theoretical grounds

Several algorithms for parallel disk systems have been developed recently� These algorithms� which
are oriented toward out�of�core situations� are asymptotically optimal in terms of the number of
parallel disk accesses� They solve the following problems�

Sorting� Vitter and Shriver �VS��� VS��� give a randomized sorting algorithm� and Nodine and
Vitter �NV��� NV��� present a deterministic sorting algorithm�

General permutations� Vitter and Shriver �VS��� VS��� use their sorting algorithm to perform
general permutations by sorting on target addresses�

Bit�de�ned permutations� Cormen �Cor��� Cor��� presents algorithms to perform bit�de�ned
permutations often with fewer parallel I�O operations than general permutations� This class
of permutations includes BPC �bit�permute�complement� permutations� in which each tar�
get address is formed by applying a �xed permutation to the bits of a source address and
then complementing a �xed subset of the resulting bits� Among the useful BPC permuta�
tions are matrix transpose� with dimensions that are powers of �� bit�reversal permutations�
vector�reversal permutations� hypercube permutations� and matrix reblocking� Cormen and
Wisniewski �CW��� present an asymptotically optimal algorithm for BMMC �bit�matrix�
multiply�complement� permutations� in which each target address is formed by multiplying
a source address by a matrix that is nonsingular over GF ��� and then complementing a �xed
subset of the resulting bits� This class includes all BPC permutations� Gray code permuta�
tions� and inverse Gray code permutations�

General matrix transpose� Cormen �Cor��� gives an asymptotically optimal algorithm for ma�
trix transpose with arbitrary dimensions� not just those that are powers of ��

Fast Fourier Transform� Vitter and Shriver �VS��� VS��� give an asymptotically optimal algo�
rithm to compute an FFT�

Matrix multiplication� Vitter and Shriver �VS��� VS��� cover matrix multiplication as well�

LU decomposition� Womble et al� �WGWR��� sketch an LU�decomposition algorithm�

These algorithms have the following characteristics�

� They solve important and interesting problems�

� They are designed for a parallel disk model based on control over declustering� knowledge of
the con�guration� independent I�O� and no parity� �le caching� or prefetching�

� They are asymptotically optimal in this model� That is� their parallel I�O counts match
known lower bounds for the problems they solve to within a constant factor�

� Several of them are practical in that the constant factors in their parallel I�O counts are small
integers�

� Although the algorithms� as described in the literature� appear to directly access disk blocks�
it is straightforward to modify them to access blocks within �les instead�

�Vitter and Shriver earlier gave an algorithm for matrix transpose�

The parallel disk model used by these algorithms was originally proposed by Vitter and Shriver
�VS��� VS���� The cost measure is the number of parallel I�O operations performed over the
course of a computation� The model does not specify the memory�s organization� connection to the
disks� or relation to the processors� and so it is independent of any particular machine architecture�
Moving or manipulating records solely within the physical memory is free� The cost measure focuses
on the amount of tra�c between the memory and the parallel disk system� which is the dominant
cost�

Note that these algorithms are asymptotically optimal over all SIMD or MIMD algorithms� The
lower�bound proofs make no distinction between SIMD and MIMD� they simply count the number
of times that any algorithm to solve a problem must access the parallel disk system�

Asymptotically optimal algorithms require independent parallel I�O� Restricting the I�O oper�
ations to be fully striped is equivalent to using just one disk whose block size is multiplied by the
number of disks� It turns out that the constraint of fully striped I�O increases the number of disk
accesses by more than a constant factor compared to independent I�O �VS��� VS���� Disk accesses
are expensive enough� to increase their number by more than a constant factor for large amounts
of data can be prohibitively expensive�

The algorithms treat all physical memory uniformly� there is no distinct �le cache� They
carefully plan� their own I�O patterns so as to minimize tra�c between the parallel disk system
and the memory� File caching� and hence cache�consistency mechanisms� are unnecessary because
the algorithms are already making optimal use of the available memory� In e�ect� the algorithms
perform their own caching�

Empirical grounds

Several empirical studies of multiprocessor �le system performance have found that common �le
access patterns do not always �t well with the underlying �le system�s expectations� leading to
disappointing performance� Therefore� the basic �le system interface should include primitives to
control �le declustering� caching� and prefetching�

The performance of Intel�s CFS when reading or writing a two�dimensional matrix� for example�
depends heavily on the layout of the matrix across disks and across memories of the multiprocessor�
and also on the order of requests �dBC��� BCR��� Nit��� GP��� GL���� del Rosario et al� �dBC���
�nd that the nCUBE exhibits similar ine�ciencies� when reading columns from a two�dimensional
matrix stored in row�major order� read times increase by factors of ������ One solution is to transfer
data from disk into memory and then permute it within memory to its �nal destination �dBC����
Nitzberg �Nit��� shows that some layouts experience poor performance on CFS because of thrashing
in the �le system cache� His solution to this problem carefully schedules the processors� accesses to
the disks by reducing concurrency �Nit���� Each of these examples highlights the need for programs
to organize their I�O carefully� To do so� we must be able to discover and control the I�O system
con�guration�

Grimshaw et al� make many of the same arguments for their ELFS �le system �GP��� GL����
ELFS is an extensible �le system� building object�oriented� operation�speci�c classes on top of
a simple set of �le access primitives� ELFS leaves decisions about declustering� caching� and
prefetching to the higher�level functions� which have a broader understanding of the operation�
Asynchronous I�O primitives are necessary for these libraries to perform prefetching and parallel
I�O operations�

�The literature sometimes employs the more colorful term �choreograph��

� Interface

In Sections � and �� we argued that a multiprocessor �le system must provide su�cient control to
allow user�level applications to control �le declustering� caching� prefetching� and parity� because a
higher�level understanding of the application I�O patterns can lead to signi�cant� even asymptotic�
performance gains� Without detailing a speci�c �le system interface �although some of our ideas
are given in �Kot����� we propose an interface with two personalities�

Low�level primitive operations

The primitive operations provide the 	traditional
 �le system interface� such as basic read� write�
and seek operations� The �le system provides default declustering� caching� prefetching� and parity�
making this interface su�cient for many simple applications� In addition� the interface includes
primitives implementing all the capabilities listed in Section �� Most current systems lack this
degree of control�

High�level operations

Operations such as sorting� FFT� �le copy� matrix transpose� and matrix transfer between dis�
tributed disks and distributed memories are programmed using the appropriate algorithms �Sec�
tion ��� tuned for the particular architecture and combined into an I�O library� The library can
be invoked either directly by the user or by a smart compiler� much like the LINPACK suite of
numerical algorithms �DBMS���� This library depends on the existence of the above primitive
operations for detailed control of I�O�

� Parity

We claimed in Section � that parallel �le systems should be able to turn o� parity or other re�
dundancy information on a per��le basis� This section shows why we want to do so� Because we
maintain parity to improve data reliability� this section also describes typical situations in which
we can turn o� parity without compromising data reliability�

The cost of maintaining parity

Patterson� Gibson� and Katz �PGK��� outline various RAID �Redundant Arrays of Inexpensive
Disks� organizations� RAID levels four and �ve support independent I�Os� Both use check disks
to store parity information�

In level four� the parity information is stored on a single dedicated check disk� If all parallel
writes are fully striped� parity maintenance entails no additional disk accesses� Why� First� all
the information needed to compute parity is drawn from the data to be written� and so no further
information needs to be read to compute the parity� Second� each block written on the check disk
is considered to be part of a stripe� and so each check�disk block is written concurrently with the
rest of its stripe� When parallel writes are independent� however� maintaining parity information
in RAID level four often entails extra disk accesses� The blocks are still striped across the disks�
When writing some� but not all� the blocks in a stripe� we incur the additional expense of reading
the old values in these blocks and the old parity values in order to compute the new parity values�
Moreover� the check disk becomes a bottleneck� For each block written� the check disk in its stripe
must be written as well� In a write to blocks in k di�erent stripes� parity maintenance causes k
serial accesses to the check disk�

In RAID level �ve� also known as 	rotated parity�
 the data and parity information are dis�
tributed across all the disks� The cost of independent writes is lower than for level four� since
the check disk is no longer as severe a bottleneck� Level �ve still su�ers from three performance
disadvantages for independent writes� however� First� the additional read of the old data block
and old parity block is still necessary to compute the new parity block� Second� any individual
disk can still be a bottleneck in a write if it happens to store parity blocks corresponding to more
than one of the data blocks being written� Third� the block addresses are moved to accommodate
the rotated parity information� The logical location of a block within a stripe might not match its
physical location� especially when �le system block allocation policies hide physical stripe locations
from the application� This mismatch can complicate the algorithms of Section �� which carefully
plan so that when several blocks are accessed at once� they are on distinct disks�

Turning o� parity safely

Systems maintain parity to enhance data reliability� When parity is maintained correctly� if a disk
fails� its contents can be reconstructed from the remaining disks�

Although reliability is important for permanent data �les� it is much less important for tempo�
rary data �les� By temporary� we mean that the lifetime of the �le is solely within the course of the
application execution� For example� several of the algorithms listed in Section � perform multiple
passes over the data� Each pass copies the data from one �le to another� reordering or modifying
the data� With the possible exceptions of the input �le for the �rst pass and the output �le for the
last pass� all other �les are temporary from the point of view of these algorithms�

What is the cost of a disk failure during a computation that uses only temporary �les� The
computation needs to be restarted from the last point at which parity information was maintained�
We call this time a paritypoint� by analogy to the term 	checkpoint�
 Disks de�nitely do fail� but
only rarely� Therefore� it pays to avoid the cost of maintaining parity all the time for the rarely
incurred cost of restarting the computation from the last paritypoint� Note that once any �le has
been written to disk� we can choose to paritypoint it at the cost of just one pass�

Furthermore� if a temporary �le is written solely in full stripes� paritypointing is free for that
�le� This observation is signi�cant because some of the algorithms listed in Section � perform some
of their passes with fully striped writes� For example� the BPC algorithm mentioned in Section �
alternates passes that use independent I�O with passes that use fully striped I�O� Every other
pass� therefore� can paritypoint its output �le as it is produced�

Turning o� parity alleviates the problems of RAID level four and the �rst two problems of level
�ve but not the third level��ve problem� the alteration of block addresses due to rotated parity�
Consequently� for the out�of�core algorithms� we prefer RAID level four with the capability to turn
o� parity� We note� however� that turning o� parity in a RAID system is generally more than
just a software issue�parity maintenance and error recovery are usually performed by the RAID
controller� To turn o� parity in a RAID level four disk array� the controller would need to keep
track of which stripes are within temporary �les so that it does not try to maintain their parity or
to reconstruct their contents from garbage on the parity disk in case of a disk failure�

� Conclusion

Since many high�performance parallel applications depend heavily on I�O� whether for out�of�core
operations on large data sets� loading input data� or writing output data� multiprocessors must
have high�performance �le systems� Obtaining maximum performance� however� requires a careful
interaction between the application� which has an understanding of the high�level operations� and

the I�O subsystem� which has an understanding of the architecture�s capabilities� Many high�level
operations can gain signi�cant� even asymptotic� performance gains through careful choreography
of I�O operations� We know of algorithms for many complex high�level operations� such as sorting�
FFT� and matrix transpose� but also for simpler operations such as reading an input matrix into
distributed memories�

We argue that the �le system of a high�performance multiprocessor should include both the
typical primitive operations such as read and write� as well as a library of high�level operations
that optimize I�O� For these operations to be successful� the primitives must include querying about
the con�guration� control over declustering� independent I�O� and turning o� parity� �le caching�
and prefetching� In short� the �le system may provide default strategies� but the programmer must
be able to override them when higher�level knowledge so dictates�

Acknowledgments

Thanks to Michael Best� Peter Corbett� Mike del Rosario� and Ernie Rael for their help in clarifying
the capabilities of existing �le systems�

References

�BCR��� Rajesh Bordawekar� Alok Choudhary� and Juan Miguel Del Rosario� An experimen�
tal performance evaluation of Touchstone Delta Concurrent File System� Technical
Report SCCS���� NPAC� Syracuse University� ����� To appear� ���� International
Conference on Supercomputing�

�CBF��� Peter F� Corbett� Sandra Johnson Baylor� and Dror G� Feitelson� Overview of the Vesta
parallel �le system� In IPPS ��� Workshop on Input�Output in Parallel Computer
Systems� pages ����� �����

�Cor��� Thomas H� Cormen� Virtual Memory for Data�Parallel Computing� PhD thesis� De�
partment of Electrical Engineering and Computer Science� Massachusetts Institute of
Technology� ����� Available as Technical Report MIT�LCS�TR�����

�Cor��� Thomas H� Cormen� Fast permuting in disk arrays� Journal of Parallel and Distributed
Computing� ������������� January and February �����

�CW��� Thomas H� Cormen and Leonard F� Wisniewski� Asymptotically tight bounds for
performing BMMC permutations on parallel disk systems� To appear in SPAA ����
January �����

�dBC��� Juan Miguel del Rosario� Rajesh Borawekar� and Alok Choudhary� Improved parallel
I�O via a two�phase run�time access strategy� In IPPS ��� Workshop on Input�Output
in Parallel Computer Systems� pages ������ �����

�DBMS��� J� Dongarra� J� Bunch� C� Moler� and G� W� Stewart� LINPACK User�s Guide� SIAM�
Philadelphia� PA� �����

�FPD��� James C� French� Terrence W� Pratt� and Mriganka Das� Performance measurement
of the Concurrent File System of the Intel iPSC�� hypercube� Journal of Parallel and
Distributed Computing� ���������������� January and February �����

�GL��� Andrew S� Grimshaw and Edmond C� Loyot� Jr� ELFS� object�oriented extensible �le
systems� Technical Report TR������ Univ� of Virginia Computer Science Department�
July �����

�GP��� Andrew S� Grimshaw and Je� Prem� High performance parallel �le objects� In Sixth
Annual Distributed�Memory Computer Conference� pages �������� �����

�Int��� iPSC�� I�O facilities� Intel Corporation� ����� Order number �����������

�Kot��� David Kotz� Multiprocessor �le system interfaces� In Proceedings of the Second Inter�
national Conference on Parallel and Distributed Information Systems� pages �������
�����

�KSR��� KSR� technology background� Kendall Square Research� January �����

�LIN���� Susan J� LoVerso� Marshall Isman� Andy Nanopoulos� William Nesheim� Ewan D�
Milne� and Richard Wheeler� sfs� A parallel �le system for the CM��� In Proceedings
of the ���� Summer Usenix Conference� ����� To appear�

�Mas��� MP�� family� Massively parallel computers� MasPar Computer Corporation brochure
number PL�������� ����������

�Mas��� Parallel �le I�O routines� MasPar Computer Corporation� �����

�Nit��� Bill Nitzberg� Performance of the iPSC���� concurrent �le system� Technical Report
RND�������� NAS Systems Division� NASA Ames� December �����

�NV��� Mark H� Nodine and Je�rey Scott Vitter� Large�scale sorting in parallel memories� In
Proceedings of the �rd Annual ACM Symposium on Parallel Algorithms and Architec�
tures� pages ������ July �����

�NV��� Mark H� Nodine and Je�rey Scott Vitter� Optimal deterministic sorting on parallel
disks� Technical Report CS������� Department of Computer Science� Brown University�
�����

�PFDJ��� Terrence W� Pratt� James C� French� Phillip M� Dickens� and Stanley A� Janet� Jr� A
comparison of the architecture and performance of two parallel �le systems� In Fourth
Conference on Hypercube Concurrent Computers and Applications� pages ��������
�����

�PGK��� David A� Patterson� Garth Gibson� and Randy H� Katz� A case for redundant arrays
of inexpensive disks �RAID�� In ACM International Conference on Management of
Data �SIGMOD�� pages �������� June �����

�Pie��� Paul Pierce� A concurrent �le system for a highly parallel mass storage system� In
Fourth Conference on Hypercube Concurrent Computers and Applications� pages ����
���� �����

�Rul��� Brad Rullman� April ����� Private communication�

�TMC��� Thinking Machines Corporation� Cambridge� Massachusetts� Connection Machine I�O
System Programming Guide� October �����

�TMC��� CM�� scalable disk array� Thinking Machines Corporation glossy� November �����

�VS��� Je�rey Scott Vitter and Elizabeth A� M� Shriver� Optimal disk I�O with parallel block
transfer� In Proceedings of the Twenty Second Annual ACM Symposium on Theory of
Computing� pages �������� May �����

�VS��� Je�rey Scott Vitter and Elizabeth A� M� Shriver� Algorithms for parallel memory I�
Two�level memories� Technical Report CS������ Department of Computer Science�
Brown University� August ����� Revised version of Technical Report CS�������

�WGWR��� David Womble� David Greenberg� Stephen Wheat� and Rolf Riesen� Beyond core�
Making parallel computer I�O practical� In DAGS ���� June �����

