
Short Paper: The NetSANI Framework for Analysis and
Fine-tuning of Network Trace Sanitization

Phil Fazio, Keren Tan, Jihwang Yeo and David Kotz
ISTS, Dartmouth College, Hanover NH, USA

fazio, keren, jyeo, kotz@cs.dartmouth.edu

ABSTRACT
Anonymization is critical prior to sharing wireless-network
traces within the research community, to protect both per-
sonal and organizational sensitive information from disclo-
sure. One difficulty in anonymization, or more generally,
sanitization, is that users lack information about the qual-
ity of a sanitization result, such as how much privacy risk a
sanitized trace may expose, and how much research utility
the sanitized trace may retain. We propose a framework,
NetSANI, that allows users to analyze and control the pri-
vacy/utility tradeoff in network sanitization. NetSANI can
accommodate most of the currently available privacy and
utility metrics for network trace sanitization. This frame-
work provides a set of APIs for analyzing the privacy/utility
tradeoff by comparing the changes in privacy and utility lev-
els of a trace for a sanitization operation. We demonstrate
the framework with an quantitative evaluation on wireless-
network traces.

Categories and Subject Descriptors: C.2.3 [Network
Operations]: network monitoring, H.4 [Information Systems
Applications]:decision support

General Terms: Design, Measurement, Security

Keywords: sanitization, network traces, APIs, privacy,
utility, tradeoff

1. INTRODUCTION
Computer-network research advances more quickly when

researchers are able to analyze traffic from live networks.
Collecting trace data from production networks is often dif-
ficult, however, because it is difficult to obtain permission to
install infrastructure and collect trace data. Thus, it is crit-
ical for the research community to share traces, leveraging
this effort to benefit multiple research projects. Fortunately,
a culture of sharing network traces exists [4, 9, 16], including
CRAWDAD [8] for wireless networks.

Since traces collected from production networks capture
the everyday business of network users, the privacy of these
users is an increasing concern when sharing trace data. Re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’11, June14–17, 2011, Hamburg, Germany.
Copyright 2011 ACM 978-1-4503-0692-8/11/06 ...$10.00.

searchers who wish to share traces must therefore prop-
erly “anonymize” the trace to remove personally identifiable
information [12]. The researcher may also wish to “sani-
tize” the trace to conceal other sensitive information (e.g.,
network structure, critical server identities). We use the
term sanitization to incorporate both of these goals. It
takes great effort and care to correctly sanitize traces; from
our own experience, and from other examples in the litera-
ture, researchers can make mistakes when sanitizing traces:
they may not understand a tool’s capabilities, be forced
to write their own tools, or miss subtle ways in which in-
formation can leak from a trace. Many recent papers [18,
2, 6, 11] demonstrate methods to extract private informa-
tion from traces thought to be suitably sanitized. Ma et
al. [14] show, through analysis of wireless-network traces,
that even a small amount of external information is enough
for an adversary to infer a victim’s true identity in a set of
anonymized mobility traces from CRAWDAD. In a recent
user survey [21], only 34% of survey participants with ex-
perience sanitizing traces used a third-party tool; the rest
either used home-grown software or manually edited the
traces. These solutions are inevitably likely to include errors
affecting the privacy and/or utility of the resulting trace.
Moreover, 84% of those with experience sanitizing traces
stated that they did not use any quantitative metrics to
measure sanitization strength. For a comprehensive survey
of state-of-art network trace sanitization and de-sanitization
research, we refer interested readers to our previous work [19].

Trace sanitization represents a tradeoff between removing
information to protect privacy interests, and retaining infor-
mation to allow meaningful analysis of the sanitized trace.
Most users lack the means either to determine the privacy
risks or the research utility of a sanitized trace. This infor-
mation would allow the user to understand the quality of the
sanitization result, controlling the tradeoff between privacy
and utility to meet their desired privacy and utility goals.

In this paper, we address the following problems:

1. How can users evaluate sanitized traces in terms of
privacy and utility, especially given the presence of a
variety of existing metrics?

2. How can we provide users an easy framework to control
and fine-tune the tradeoff between privacy and utility?

We thus propose a framework called NetSANI (Network
Trace Sanitization and ANonymization Infrastructure), with
which we can analyze and control this tradeoff between pri-
vacy and utility. To solve the first problem, we take a“frame-
work”approach such that our evaluation tools can accommo-

5

date most currently available privacy metrics [10, for exam-
ple]. We demonstrate that this framework can measure the
degree of utility for some typical uses of network traces (e.g.,
mobility analysis, network intrusion detection), and analyze
the privacy and utility tradeoff by comparing changes in
privacy and utility levels of a trace for a sanitization oper-
ation. To address the second problem, NetSANI provides
tradeoff analysis results from different analyses of the same
trace to allow the user to control and fine-tune this trade-
off. This allows the user to easily repeat the process with
different sanitization parameters. Where possible, we seek
to provide analysis results at several granularity levels, from
encompassing the entire trace to analyzing individual fields
or objects. To the best of our knowledge, NetSANI is the
first framework to systematically support a broad range of
tradeoff analyses for both wired and wireless network traces.

2. PRELIMINARY
In this section, we introduce the trace model and briefly

describe the two broad types of metric in network trace
analysis: privacy metrics measure how well a sanitization
method fulfills predefined privacy or secrecy requirements,
and utility metrics measure how much a sanitized trace re-
mains useful to a researcher performing trace analysis.

Network trace model. We assume that a network trace
has a table structure analogous to a relational database (i.e.,
trace T consists of N rows ofM fields each). For example, in
a packet trace, a packet may be represented by a row whose
fields represent fields located within that packet’s header. A
network object is an entity whose identity the trace publisher
seeks to protect and/or seeks to gain utility (e.g., host, sub-
net, user handle). Network objects may be defined by more
than one packet in the trace; likewise, a packet (or collec-
tion of packets) may belong to one or more network object.
For example, suppose that a TCP/IP packet trace includes
source and destination IP addresses among its fields, then
each host (as a network object) is defined by one or more
packets (as rows) that include the IP address of the host in
either source or destination IP-address field.

Threat models and privacy. There are two well-known
models for privacy in data sets: network-based and micro-
data models, and our framework is designed to accommo-
date either in analyzing the privacy of trace data. In both
models, the adversary’s goal is to identify sanitized objects
using available knowledge about unsanitized objects. How-
ever, the difference between the two lies in the forms of the
available knowledge and how the adversary uses the avail-
able knowledge.

In this paper, due to space limitations, we focus on the
network-based model. In a future expanded version of this
paper, we will address the micro-data model.

In the network-based threat model, one assumes that given
sanitized trace T ′ (corresponding to T), the adversary has
some external knowledge about some unsanitized objects of
trace T . Although secondary traces containing unsanitized
objects are rarely available, knowledge may come in other
forms, including statistical information (e.g., port-usage dis-
tribution) about unsanitized objects or other more generic
information (e.g., network topology).

Several information-theoretic measures of privacy have been
proposed for this threat model [5, 6, 17]. Kelly et al. de-
scribe most of the currently available privacy metrics [10].

One basic indicator of anonymity, agnostic to data type, uses
Shannon’s entropy H(s):

H(s) = −
L∑

j=1

P (s = oj
′) logP (s = oj

′), (1)

where P (s = oj
′) is the probability that sanitized object

s can be obtained by applying a sanitization operation to
raw object oj . Lower entropy values correspond to stronger
similarity between s and oj .

Utility metrics. When anonymizing a network trace, a
researcher must balance the need to protect privacy with
the desire to retain as much useful data in the anonymized
trace as possible. Since anonymization techniques may po-
tentially disturb the analysis of a trace [15], we seek a metric
that quantifies how the research utility of a trace changes
because of the anonymization. Developing universal utility
measures to apply to network traces is difficult due to the
inherent complexity and interdependent nature of a network
trace [7]. Application-dependent utility metrics (that mea-
sure values useful in common cases) may be more applicable
to many network traces [3, 13, 15], such as comparing the
number of alarms generated by an intrusion-detection sys-
tem (e.g., Snort) pre/post anonymization [15]. Compared to
anonymization algorithms, there has been far less research
on utility metrics. A framework like NetSANI allows re-
searchers to try a variety of metrics, or to define their own.

3. METHODS
In this section, we describe the requirements for a net-

work trace-sanitization framework, and introduce the ideas
behind the NetSANI framework.

3.1 Challenges
Properly evaluating the privacy of an anonymized trace

requires the framework to address several specific challenges.
First, the framework should provide a flexible interface

with which to transform trace data T from one of several
formats (e.g., pcap, NetFlow, WLAN user association log)
into a consistent relational table structure.

Second, the framework should allow its users (data pub-
lishers) to define their assumptions about adversary resources
or deanonymization techniques (e.g., access to a portion of
the unsanitized trace, or the distribution of features in the
unsanitized trace). The framework should allow the pub-
lisher a choice of several threat models (e.g., network-based
or microdata-based models) and sanitization configurations
(e.g., different sanitization operations with differing degree
of privacy and utility).

Finally, the toolset must provide a “pluggable” interface
such that publishers may easily define and apply different
metrics to a sanitized trace, and to implement custom met-
rics as a plug-in to the framework without modifying the
core evaluation tool.

NetSANI first requires that its user, the data publisher,
describe the subset of fields to be processed and analyzed
by the system. This includes basic information such as data
type (e.g., IP and MAC addresses, GPS coordinates) and
how to access the field when transforming the raw trace file
into relational database form.

Since a network object may be defined by several fields, we
must provide an abstraction allowing the publisher to define

6

an object as a function of the fields F . Examples of network
objects include network users, mobile hosts, wireless access
points, or network servers.

Finally, the publisher specifies the format of the trace in-
put, and provides a method for converting raw trace data
into table form compatible with the NetSANI database. A
trace parser module should be easily implementable, able
to use external parsing modules (e.g., libpcap), and still be
flexible enough to allow the publisher to create a parser for
custom complex formats. We also store additional informa-
tion about the trace, such as its name, field descriptions,
and network objects.

When choosing the network-based threat model, the pub-
lisher provides assumptions regarding the adversary’s knowl-
edge about unsanitized objects, with two levels of granular-
ity: a unit of knowledge about network objects (e.g., the
distribution of field values across a single object) and about
the trace (e.g., the full collection of distributions across all
objects). Since the adversary’s type of knowledge may vary
greatly in different uses of the framework, the definition of
these types of knowledge is deliberately vague, allowing the
user flexibility.

Given the adversary’s knowledge, the framework calcu-
lates an “uncertainty degree” for the adversary to map be-
tween each sanitized object and its best-matched unsanitized
object. It is assumed that the more uncertain the adversary
is of the mapping, the stronger the privacy of the sanitized
objects is maintained. In other words, the uncertainty de-
gree obtained from a sanitization operation indicates the
degree of privacy the sanitization operation can provide.

To calculate the uncertainty degree, we first calculate a
“knowledge distance”, which indicates a quantitative differ-
ence between the adversary’s knowledge about each unsani-
tized object and the characteristic of the corresponding san-
itized objects. We then determine the uncertainty degree of
the mapping.

3.2 Utility evaluation
Universal utility measures are difficult to interpret due

to their inherently complex and interdependent nature [20].
Supporting all application-specific utility measures is impos-
sible, because the variety of uses for trace data lead to a
broad range of different utility metrics. As a compromise,
our framework allows users to apply their own utility mea-
sure to network traces, as well as the ability to use some com-
mon utility measures. Users explicitly provide the frame-
work with a function to compute per-object utility values in
both the original and sanitized traces, as well a function to
compute distance between the utility values to calculate a
utility measure of each sanitized object.

To put it formally, the users provide a set of values V ,
and a classifier function fv : O ∪ O′ → V , where O and
O′ are sets of objects in T and T ′, respectively. The users
also define a utility distance function Distu : U,U → R.
The utility difference between raw object oi and sanitized
object o′i is thus defined as ΔU(oi) = Distu(fv(oi), fv(o

′
i)),

where Distu is a user-provided function and Dmax is the
(user-provided) maximum value of Distu. The object utility
of sanitized object o′i is defined in range [0..1] as:

Util(o′i) = 1− Dist(oi, o
′
i)

Dmax
(2)

Given the object utilities, one can compute the average,

standard deviation, median and other summary utility met-
rics over all the objects of a sanitized trace.

3.3 Tradeoff analysis
In this section, we describe how to use our framework to

analyze the tradeoff between privacy and utility in a sani-
tized trace. The tradeoff is presented through comparisons
of measured values of privacy and utility. Our framework
can support the tradeoff analysis at three different levels:
objects, fields, and trace.

In the object-level tradeoff analysis, we compare the pri-
vacy and utility values measured on each sanitized object s
using the object privacy metric and the object utility met-
ric, i.e., Util(s). The purpose of the object-level tradeoff
analysis is to identify the sanitized network objects that are
most vulnerable to privacy risk, or those that become much
less usable than other sanitized objects.

The data publisher should not only be able to understand
the vulnerability or utility of a network object, but should
also be able to use the analysis results to apply different san-
itization techniques to better satisfy the privacy and utility
requirements of the sanitized trace. Thus, we need to pro-
vide guidance about which fields contribute more to the ad-
versary’s privacy attack or to the loss of utility than other
fields. NetSANI provides a field-level tradeoff, though only
for fields used by the utility metric function.

Trace-level analysis allows the data publisher to receive a
broad overview of the security and usefulness of a sanitized
network trace. When calculating an overall “score” for pri-
vacy and utility of an entire trace, the metric implemented
within the framework may take into consideration prior cal-
culations (e.g., a trace is as secure as its least secure object)
and/or perform additional analysis of the trace structure
at a level above individual fields or network objects. This
type of analysis can help the user to easily identify and sum-
marize the tradeoff between privacy and utility for a given
sanitization configuration.

3.4 Tradeoff evaluation algorithm
Algorithm 1 shows our tradeoff evaluation algorithm, the

NetSANI Evaluation module. It takes as inputs a raw trace,
a sanitized trace, the adversary’s knowledge file (which con-
tains external knowledge about the raw trace), and a file
for describing the mapping of objects between the raw trace
and the sanitized trace. The evaluation algorithm compares
the adversary’s knowledge and each sanitized object so as to
calculate object privacy for the object-level analysis.

The algorithm also calculates a degree of uncertainty for
mapping a given sanitized object to an unsanitized object,
and the per-object utility Utils(i) according to Equation 2.
Note that to calculate the object utility the actual map-
ping between sanitized objects and corresponding raw ob-
jects must be known to the tool.

3.5 Tradeoff control flow
Users can control the tradeoff between privacy and utility

by selecting different sanitization configurations (e.g., chang-
ing a sanitization method on a trace field) within the frame-
work until they are satisfied with the privacy and utility val-
ues (Privs, Utils) measured by the evaluation algorithm. In
Figure 1, in which we show the overall flow during trace san-
itization and analysis, the outer loop represents this manual
iteration. In the inner loop of Figure 1, the tool adopts an

7

Algorithm 1: The NetSANI Evaluation algorithm

Input: A raw trace RawTr, the corresponding sanitized
trace SaniTr, a file MFile for mapping objects
between RawTr and SaniTr, and the adversary’s
knowledge file KFile.

Output: Per-object privacy values Privs, per-object utility
values Utils

1 Parse RawTr, SaniTr and KFile;
2 Extract from RawTr network objects RObjs; Nr = 0;
3 foreach Network object RObj in RObjs do
4 Calculate a utility value RawUtils[Nr] according to

Equation (2);
5 Extract a knowledge unit KUnit[Nr] from KFile;
6 Nr = Nr+1;
7 Extract from SaniTr network objects SObjs;
8 Extract from MFile the mapping between SObjs and

RObjs as Mappings;
9 i = 0;

10 foreach Network object SObj in SObjs do
11 MinObjIdx = -1;
12 MinDist = ∞;
13 for j = 0 to Nr-1 do
14 Calculate a knowledge distance between SObj and

KUnit[j], into KGap[j];
15 if KGap[j] < MinDist then
16 MinDist = KGap[j];
17 MinObjIdx = j;
18 Calculate a degree of uncertainty for mapping between

SObj and RObjs[MinObjIdx], into Privs[i];
19 Calculate the object utility of SObj into SaniUtil;
20 Calculate utility difference between SaniUtil and

RawUtils[Mappings[i]] into Utils[i];
21 i = i+1;

START

OF ITERATIONS = N
I = 0

EVALUATE
SANITIZATION

I = N ?

DISPLAY MEASURED
PRIVACY/UTILITY

USER SATISFIED?

END

I = I + 1

UPDATE
ADVERSARY
KNOWLEDGE

CHANGE
SANITIZATION

CONFIGURATION

Figure 1: Tradeoff Control Flow

iterative approach to evaluating privacy (much as in Coull’s
work [6]). After assembling an initial adversary knowledge
base, the framework evaluates that knowledge base against
the chosen privacy metric, updating the knowledge base to
reflect any new information derived when computing the
metric. There may be a predetermined number of iterations
(N >= 1 in Figure 1), or the engine may run until a certain
goal is achieved (e.g., all sanitized objects are successfully
mapped to an unsanitized equivalent). Utility is calculated
on the first iteration only.

This approach not only simulates a common de-sanitization
method by the adversary, but (if one were to log the progress
of the algorithm) also shows the changes of privacy risks dur-
ing repeated de-sanitization attempts.

Table 1: NetSANI API – Evaluation Functions
Function Description

MyUtility define a utility value
MyUtilityComp compare two utility values
MyObjectUtility define an object utility value (Util)
MyKDist define a distance between a network ob-

ject and knowledge units (DistF)
MyUncertainty define a degree of uncertainty to map a

sanitized object to a raw object
MyMDMetric calculate an overall microdata metric

Table 2: NetSANI API – Classes
Class Description

NetSANIFramework master class abstracting away inter-
nal data storage and configuration

Field* define a basic data type
DataDescriptor describe a set of columns or fields
NetworkObject* abstract a network object as de-

fined in Section 2
SensitiveField designate an field as “sensitive” as

described in Section 3.1
Trace abstract a trace
TraceParser* transform raw trace data into rela-

tional table model
TraceRow abstract a row in a trace file
KnowledgeUnit* abstract an additional unit of infor-

mation not found in trace itself
AdversaryKnowledge* abstract the adversary’s knowledge

4. THE NETSANI API
In this section, we briefly describe the NetSANI API, pri-

marily by example. When designing the API, we placed
particular emphasis on maintaining balance of the general-
ity, elegance, and efficiency.

We allow users to provide their own code as user-defined
functions (shown in Table 1) or as user-defined subclasses of
the classes shown in Table 2. Each of the starred classes in
Table 2 is the Python equivalent of an abstract base class.
We encourage the publisher (or programmer) to extend, aug-
ment, and reuse as much functionality as possible.

We have space here for only one example, as follows.

4.1 SNMP traces and mobility research
In this example, we used a log of wireless network associa-

tion data collected in Winter 2010 and containing the MAC
address of the user, the identification of the access point
(AP), and timestamps indicating the start and end of that
users’ session at that AP. The access-point identification
is stored in “building.floor.ID” format. We wish to evaluate
sanitization techniques in terms of the tradeoff between pri-
vacy and utility for specific research goals outlined below,
focusing on a network-based privacy metric.

To sanitize the traces, we used a custom anonymization
script that supports the following operations: prefix-preserving
transform (p), zero-truncation (z), and one-to-one mapping
(m). We sanitized four fields: MAC address “user”, access
point name “ap”, and timestamps “start” and “end”.

We evaluated the results for three configurations:

• pm-pm-z: a sanitized trace with the vendor prefix of
the MAC address preserved and three least significant
bytes of randomly mapped (pm), the building and floor
prefix of AP identifier preserved and ID values ran-
domly mapped (pm), and the timestamp truncated
(zero) to the minute (z).

• pz-pz-z: a sanitized trace with the vendor prefix of
the MAC address preserved and three least significant

8

bytes of zeroed (pz), the building prefix of AP identifier
preserved and floor and ID values are zeroed (pz), and
the timestamp truncated (zero) to the hour (z).

• pm-pz-z: a sanitized trace with the vendor prefix of
the MAC address preserved and three least signifi-
cant bytes of randomly mapped (pm), the building and
floor prefix of AP identifier preserved and ID values ze-
roed (pz), and the timestamp truncated (zero) to the
minute (z).

4.1.1 User-defined functions and classes
We implemented the DataDescriptor as a set of four sub-

classes of Field: one of type MACAddr, one of type AP-
Name, and two of type Integer. These correspond to the
fields “user”, “ap”, “start”, and “end” respectively. In this
trace, “ap” consists of a three-tuple of 8-bit integers corre-
sponding to building, floor, and ID, respectively; thus, for
convenience, APName is a simple subclass of IPv4Address.

We needed two NetworkObject classes for this example:
DeviceAddress and AccessPoint. A DeviceAddress object is
defined as a unique MAC address represented in the trace,
and an AccessPoint is a unique access point identifier repre-
sented in the trace.

To parse the raw and sanitized traces (which are in comma-
separated text files) into Trace objects, we used an exist-
ing module built into the NetSANI framework: TraceCSV,
which subclasses TraceParser to serve as a wrapper around
the Python standard library CSV parsing module, csv.

The “adversary’s knowledge” represents what the adver-
sary knows prior to attempting deanonymization. Many
existing network-based metrics are incompatible with this
trace, despite its simplicity. Because this trace does not
consist of sender-receiver pairs, metrics such as combina-
torial anonymity degree (CAD) are unavailable [10]. We
therefore used a non-iterative L1-similarity metric (N = 1)
as described in Kelly et. al [10]. The whole of the adver-
sary’s knowledge is represented in the KellyL1 subclass of
AdversaryKnowledge, described by Equation 3, where X is
an anonymized object, Y is an unanonymized object, and
z ∈ X ∪ Y .

sim(X,Y) = 2−
∑

z

|P (X = z)− P (Y = z)| (3)

Rather than iterate over the sanitized trace several times,
we instead chose to use a threshold value of simmin to rep-
resent the minimum acceptable value of the metric before
an adversary may be able to gain unintended information.
With 2 as the maximum value that sim(X,Y) may take, we
let simmin = 1.8, similar to prior work by Coull [6].

We implemented MyUtilityComp to reflect the use of trace
data by a researcher involved in analysis of wireless-network
mobility behavior. We used an existing paper from Balazin-
ska [1] to simulate various uses of SNMP trace data for use in
wireless network mobility and usage research, and assigned
utility scores for the ability of an object to contribute to
a given experiment present in the paper. Utility scores in-
crease with granularity (e.g., knowledge of user distribution
across all access points is weighted more heavily than user
distribution across buildings). For a listing of utility value
assignments for this experiment, see Table 3, and for details
of each experiment, see Balazinska [1].

Table 3: Value Assignment to Utility Classes
Class Value
users present per day per building 0.1
users present per hour per building 0.2
number of access points per floor 0.1
number of access points per building 0.2
users associated with building at given time 0.1
users associated with floor at given time 0.2
users associated with AP at given time 0.3
idle time per building 0.1
idle time per AP 0.2
buildings visited per user 0.1
access points visited per user 0.2
building prevalence per user 0.1
access point prevalence per user 0.2
building persistence per user 0.1
access point persistence per user 0.2
vmax 2.4

Table 4: Object Privacy and Utility (Normalized)
Privacy Utility

Config DeviceAddress AccessPoint v
pz-pz-z 0.993 0.995 0.000
pm-pz-z 1.0 1.0 0.458
pm-pm-z 0.986 0.984 1.000

4.1.2 Tradeoff analysis/control result
Table 4 displays the analysis of the NetSANI framework

and compares the sanitization configurations in terms of
overall privacy and utility. The overall utility and privacy
results are normalized: the fraction of objects that meet the
minimum privacy threshold simmin, and the utility defined
by methods outlined in Section 3.2.

We see a considerable difference in utility based on the
configuration of trace sanitization. We can infer that the
zero utility values of the pz-pz-z configuration is caused at
least in part by stripping away unique user identity in the
“user” field, since each of the factors in the utility metric
(Table 3) depend on the ability to uniquely identify users.

Configuration pm-pz-z instead applies a one-to-one map-
ping to the least significant bytes of the user’s MAC address.
We see a slight gain in the anonymity of both network ob-
jects; all objects’ privacy values exceeded our minimum sim-
ilarity threshold. From the utility results, we can confirm
that the ability to maintain the identities in the “user” field
is the reason for the considerable increase in utility.

Finally, in configuration pm-pm-z, rather than zeroing the
ID number within the access point name, we applied a one-
to-one mapping to that portion of the field. We may infer
from the framework results that allowing the researcher ac-
cess data accurate down to the access point level, we obtain
our optimum utility values, albeit with a sacrifice in privacy.
It is to be expected, since this configuration reveals the most
information of any, that it also has the lowest privacy for
both network objects analyzed.

5. DISCUSSION
The NetSANI framework can accommodate most of the

currently available privacy metrics; Table 5 shows how to im-
plement other currently available metrics in Kelly et al. [10]
using the NetSANI APIs. Our framework can use network-
based metrics by implementing the user-defined functions
MyKUnit,MyKDist andMyUncertainty. Most of the network-
based metrics can define either the representation and dis-
tance of the adversary’s knowledge (e.g., Anonymity Set Size
or Individual Anonymity Degree) or the uncertainty of an

9

Table 5: Implementation of metrics using NetSANI

Metrics MyKUnit MyKDist MyUncertainty

Anonymity
Set Size

implemented as
binary (known
or unknown)

binary dis-
tance

not needed

Individual
Anonymity
Degree

implemented as
any types

difference be-
tween proba-
bilities

conditional
probabilities
compared

Entropy
Anonymity
Degree

implemented as
any types

any distance
metric

entropies com-
pared

object mapping (e.g., Entropy). Therefore, users can imple-
ment metrics on the adversary’s knowledge using theMyKU-
nit and MyKDist functions, while implementing uncertainty
metrics using the MyUncertainty function.

6. SUMMARY
In this work, we address how to analyze and control the

privacy and utility tradeoff, in general, for network sanitiza-
tion efforts. For this, we propose NetSANI, a network trace
sanitization and anonymization framework, which consists
of built-in classes and extensible user-defined functions for
the analysis and control of the tradeoff in sanitization eval-
uation. The NetSANI framework can work on both wireless
and wired network traces, and it can accommodate most
of the currently available privacy and utility metrics, either
collectively or separately, by providing the metrics as user-
defined functions. Ultimately, NetSANI should make it eas-
ier for wireless-network researchers to share traces with the
broader research community.

Acknowledgements
This paper results from a research program in the Institute
for Security, Technology, and Society (ISTS), supported by
DHS award 2006-CS-001-000001 and by NSF award CNS-
0831409. The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies of DHS or NSF.

7. REFERENCES
[1] M. Balazinska and P. Castro. Characterizing mobility and

network usage in a corporate wireless local-area network. In
Proceedings of the International Conference on Mobile
Systems, Applications, and Services (MobiSys), pages
303–316, 2003.

[2] T. Brekne, A. Årnes, and A. Øslebø. Anonymization of IP
traffic monitoring data: Attacks on two prefix-preserving
anonymization schemes and some proposed remedies. In
Proceedings of the International Symposium on Privacy
Enhancing Technologies (PET), volume 3856 of Lecture
Notes in Computer Science, pages 179–196, 2005.

[3] J. Brickell and V. Shmatikov. The cost of privacy:
destruction of data-mining utility in anonymized data
publishing. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), pages 70–78, 2008.

[4] Cooperative Association for Internet Data Analysis
(CAIDA). www.caida.org, 2008.

[5] S. Clauß. A framework for quantification of linkability
within a privacy-enhancing identity management system. In
Proceedings Emerging Trends in Information and
Communication Security, volume 3995 of Lecture Notes in
Computer Science, pages 191–205, 2006.

[6] S. Coull, C. Wright, F. Monrose, A. Keromytis, and
M. Reiter. Taming the Devil: Techniques for evaluating
anonymized network data. In Proceedings of the Annual
Symposium on Network and Distributed System Security
(NDSS), February 2008.

[7] S. E. Coull, F. Monrose, M. K. Reiter, and M. D. Bailey.
The Challenges of Effectively Anonymizing Network Data.
In Proceedings of the Cybersecurity Applications &
Technology Conference For Homeland Security (CATCH),
pages 230–236, March 2009.

[8] Community Resource for Archiving Wireless Data At
Dartmouth (CRAWDAD). www.crawdad.org, 2010.

[9] Internet measurement data catalog (DatCat).
www.datcat.org, 2010.

[10] D. J. Kelly, R. A. Raines, M. R. Grimaila, R. O. Baldwin,
and B. E. Mullins. A survey of state-of-the-art in anonymity
metrics. In Proceedings of the ACM Workshop on Network
Data Anonymization (NDA), pages 31–40, 2008.

[11] D. Koukis, S. Antonatos, and K. G. Anagnostakis. On the
privacy risks of publishing anonymized IP network traces.
In Proceedings of the International Conference on
Communications and Multimedia Security (CMS), volume
4237 of Lecture Notes in Computer Science, pages 22–32,
2006.

[12] D. Koukis, S. Antonatos, D. Antoniades, E. P. Markatos,
and P. Trimintzios. A generic anonymization framework for
network traffic. In Proceedings of the IEEE International
Conference on Communications (ICC), volume 5, June
2006.

[13] K. Lakkaraju and A. Slagell. Evaluating the utility of
anonymized network traces for intrusion detection. In
Proceedings of the International Conference on Security
and Privacy in Communication Networks (SecureComm),
pages 1–8, 2008.

[14] C. Y. Ma, D. K. Yau, N. K. Yip, and N. S. Rao. Privacy
vulnerability of published anonymous mobility traces. In
Proc. of the International Conference on Mobile Computing
and Networking (MobiCom), pages 185–196, 2010.

[15] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and
packet trace anonymization. ACM SIGCOMM Computer
Communication Review, 36(1):29–38, 2006.

[16] Protected Repository for the Defense of Infrastructure
against Cyber Threats (PREDICT). www.predict.org, 2010.

[17] A. Serjantov and G. Danezis. Towards an information
theoretic metric for anonymity. In Proceedings of the
International Symposium on Privacy Enhancing
Technologies (PET), volume 2482 of Lecture Notes in
Computer Science, pages 41–53, 2002.

[18] K. Tan, G. Yan, J. Yeo, and D. Kotz. Privacy analysis of
user association logs in a large-scale wireless LAN. In
Proceedings of the 30th Annual Joint Conference of the
IEEE Computer and Communications Societies
(INFOCOM) mini-conference, April 2011.

[19] K. Tan, J. Yeo, M. E. Locasto, and D. Kotz. Catch, clean,
and release: A survey of obstacles and opportunities for
network trace sanitization. In Privacy-Aware Knowledge
Discovery: Novel Applications and New Techniques.
Chapman and Hall/CRC Press, December 2010.

[20] M. Woo, J. P. Reiter, A. Oganian, and A. F. Karr. Global
measures of data utility in microdata masked for disclosure
limitation. Journal of Privacy and Confidentiality,
1:111–124, 2009.

[21] J. Yeo, K. Tan, and D. Kotz. User survey regarding the
needs of network researchers in trace-anonymization tools.
Technical Report TR2009-658, Dartmouth College, 2009.

10

