
Poster: Memory Protection in Ultra-Low-Power
Multi-Application Wearables

Taylor Hardin†, Josiah Hester*, Patrick Proctor†, Jacob Sorber*, David Kotz†
†Dartmouth College and *Clemson University

1. INTRODUCTION
An increasing number of wearable devices support the

execution of multiple third-party applications, increasing the
functionality and flexibility of these devices. These multi-
application, multi-tenant devices provide users with more
options, and application developers with a standard plat-
form. Typical ultra-low-power wearable devices, however,
lack the type of hardware memory protection mechanisms –
such as Memory Management Units (MMU) – needed to
safely separate applications. At best, they provide a Memory
Protection Unit (MPU), which allows the user to configure
read/write/execute permissions for a few distinct regions
of memory. At worst, no hardware memory protection is
provided. MPU capabilities vary across hardware platforms,
with many shortcomings: (1) the MPU may only support a
few distinct memory regions (fewer than one per application),
(2) the MPU may not protect all regions of memory, like
hardware registers, and (3) MPU protection boundary rules
can be arcane, because they depend on opaque hardware
implementations. Our key observation is that by supplement-
ing a limited segment MPU with runtime checks, and using
compile-time static analysis to explicitly layout applications
in memory, we can guarantee application isolation (sandbox-
ing) even on these limited MPUs, with lower overhead than
software-only solutions.

2. APPROACH
Ultra-low-power microcontrollers have historically not of-

fered MPUs; only recently have MPUs become more preva-
lent, but many lack the functionality for sufficient mem-
ory management and protection. Thus, those who develop
multi-application, multi-tenant platforms isolate applications
using compile-time or run-time software sandboxing (e.g.,
AmuletOS [1]), imposing limits on application developers
and adding time/space overhead to running applications. We
have developed methods, however, to leverage the limited
MPUs and thereby reduce overhead cost by narrowing the
use of software-based approaches.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MobiSys’17 June 19-23, 2017, Niagara Falls, NY, USA
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4928-4/17/06.

DOI: http://dx.doi.org/10.1145/3081333.3089314

Our prototype solution runs on the MSP430 microcon-
troller (specifically, MSP430FR5989); its MPU supports four
memory regions (with some restrictions). At compile time,
our solution splits memory into three coarse-grained sections:
1) OS stack, 2) OS code, and 3) applications. Each appli-
cation in Section 3 is then further divided into code and
stack segments. By providing each application with its own
stack we can ensure that applications are not able to glean
or modify sensitive stack information from the system or
other applications. This layout allows us to use the MPU
to prevent all illegal accesses above the currently executing
application’s stack. Since we need only check memory ref-
erences below the current application’s stack, our method
eliminates half of the number of compiler-inserted runtime
checks. The compiler inserts code for MPU management,
enabling cross-domain “system calls” from the application to
the OS, and arranging the MPU boundaries when the OS or
another application needs to run next.

3. CONTRIBUTION
The poster summarizes the current state of MPU hard-

ware used in ultra-low-power wearables, and evaluates our
prototype solution. For applications with a high frequency
of memory accesses, our approach induces less overhead than
software-only solutions, and gives more freedom to applica-
tion developers (by avoiding the need for language or compile-
time restrictions imposed by many software solutions). With
minimal changes, our solution can be applied to other MPUs
with varying degrees of functionality. Given these observa-
tions, we propose changes to existing MPU hardware that
would decrease runtime overhead and/or eliminate the need
for software checks. Please follow us at amulet-project.org.

Acknowledgements. This research results from a re-
search program at the Institute for Security, Technology, and
Society, supported by the National Science Foundation under
award numbers CNS-1314281, CNS-1314342, CNS-1619970,
and CNS-1619950. The Amulet logo was designed by the
DALI Lab at Dartmouth College. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the sponsors.

4. REFERENCES
[1] J. Hester et al. Amulet: An Energy-Efficient,

Multi-Application Wearable Platform. In Proceedings of
the ACM Conferences on Embedded Networked Sensor
Systems (SenSys), pages 216-229. ACM, Nov. 2016.

170




