
Copyright 1997 by the authors

A Split�Phase Interface for Parallel File Systems

Sanjay Khanna

David Kotz

Department of Computer Science

Dartmouth College

���� Sudiko� Laboratory

Hanover� NH �����	����

fkaun�dfkg�cs�dartmouth�edu
Technical Report PCS�TR������

March ��� �

�

Abstract

We describe the e�ects of a new user�level library for the Galley Parallel File System� This

library allows some pre�existing sequential programs to make use of the Galley Parallel File

System with minimalmodi�cation� It permits programs to e�ciently use the parallel �le system

because the user�level library groups accesses together� We examine the performance of our

library� and we show how code needs to be modi�ed to use the library�

� Introduction

Many parallel applications are limited by the performance of the I�O system� and the performance of

many I�O systems is currently limited by the �le system� The Galley Parallel File System �NK���

has demonstrated that it can provide parallel applications with high�throughput access to their

data �les� if they use new �le�system interfaces� Unfortunately� it is sometimes inconvenient for

programmers to rewrite their application code to �t the new interface� In this paper� we describe

a new user�level library that runs on top of Galley� that provides programmers with an interface

similar to the traditional interface� and with performance similar to Galley	s interfaces�

� Background

Many scienti�c programs access large data structures 
e�g�� matrices� stored in �les� To obtain the

necessary processing and I�O speed� parallel processes run the application on many processors� and

spread the data �les across many disks� The Galley Parallel File System �NK��� was written both

This research was funded by NSF under grant number CCR��������� by NASA Ames under agreement numbers

NCC ����� and NAG ����	� and by Sandia National Labs contract number AS��
��

�



to provide a parallel �le system that programmers may use� and to provide programmers with the

ability to choose how their �les should be distributed across the disks� Nieuwejaar studied common

workloads �NKP���� and discovered that �les were often accessed in a strided pattern� Strided

patterns occur when �le accesses 
reads or writes� are of a �xed size� and successive accesses are

separated by a �xed number of bytes� As a result� Galley provides an interface to read and write

�les in strided patterns� Unfortunately� it is not always easy to convert legacy applications to use

the new interface� because the programmer must rewrite loops to build a Galley strided�access

speci�cation�

Our user�level library is built on top of the Galley Parallel File System �NK���� which is described

in the next section� We attempt to enable programmers to adapt existing programs to the Galley

Parallel File System� resulting in a programming style similar to that of Split�C �CDG����� In

Split�C� programs communicate data between processors using split�phase get and put operations�

The process makes a series of asynchronous get and put requests� then blocks waiting for all gets

and puts to complete�

Our work may also be compared to the Vesta Parallel File System �CF��� Vesta allows users

to distribute �les on multiple I�O nodes� similar to Galley� Galley requires the user to de�ne the

number of sub�les 
one per I�O node� used for a �le at the time of its creation� Vesta requires

the user to de�ne the basic striping unit 
BSU� and the number of cells 
sequential streams� of the

�le at the time of its creation� The BSU is the smallest unit 
in bytes� of a Vesta �le that can be

accessed� One di�erence is that Vesta provides logical mappings to view BSUs striped across the

cells in a variety of ways� whereas Galley does not provide any such views to the user� 
A user�level

library is required to provide anything other than the raw view of a Galley �le� a Vesta interface

library exists� for example�� When a Vesta �le is opened� it must be opened in a particular view�

which de�nes a two�dimensional stripe across the cells of the �le� By de�ning the same view and

selecting di�erent stripes� a multi�process program is able to ensure that no two parts are accessing

the same bytes of the �le�

��� Galley Parallel File System

The Galley Parallel File System �NK��� is a parallel �le system enabling processes to read and

write �les that are distributed across several disks� The method of distribution of the �les is left

to the user or to a user�level library on top of Galley� The �les are stored on disks connected to

I�O processors 
IOPs�� and the user programs run on compute processors 
CPs�� Each disk is

connected to a separate IOP� A �le is split into sub�les� each of which must reside on a single disk�

and no more than one sub�le for a particular �le may reside on the same disk� The number of

�



sub�les is determined when the �le is created� Each sub�le is split into named forks� which may

be created on an ad�hoc basis� Multiple forks with the same name may exist in multiple sub�les of

the same �le� Each fork in a particular sub�le is a sequential stream of data� and may be accessed

similar to a Unix �le� Galley provides a few di�erent primitives for accessing the forks� and these

are described in detail in the Galley paper �NK���� Only the gfs listio
� primitive is used in the

GFS�GROUP library and elsewhere throughout this paper� The gfs listio
� function allows the

program to request a list of read or write transfers to a single fork� in one request�

� GFS�GROUP library

GFS�GROUP is a user�level library to aid the conversion of existing sequential C programs using

regular Unix�like I�O to use the Galley Parallel File System �NK��� with minor modi�cations� The

library that we provide accumulates the user	s requests and then submits them asynchronously to

Galley as a collection of requests� thereby reducing the overhead for each request� It keeps track of

handles for the requests� Because the requests are sent asynchronously� the user must ensure that

the request is complete before using the information from a read or reusing the bu�er for a write�

Of course� if the original program was not written in this manner� then some signi�cant additions

to the code may be necessary to implement a bu�er� Many programs are already written to use a

large bu�er� and are simply using numerous small I�O requests to access non�contiguous �le data�

The location of the reads or writes need not be changed� and whenever a previously read value is

used or a write bu�er needs to be overwritten� gfs group waitio
� must be called to ensure that the

bu�er is ready to be used� The main purpose of the library is to group the user	s requests together

before submitting them to Galley� thereby reducing the total number of Galley requests� Since each

Galley request becomes a separate message to the IOP� they can become quite expensive�

Because the GFS�GROUP library is a user�level library� and is meant to be portable� it cannot

gain control of the scheduler� Therefore� it is able to submit requests to the Galley Parallel File

system only when it has been called by a user program� The descriptions of the library functions

below also describe when the library submits a request to Galley�

��� The GFS�GROUP library functions

There are �ve function calls provided by the GFS�GROUP library� namely
int gfs group read
int kid� int o�set� char �buf� int size�
int gfs group write
int kid� int o�set� char �buf� int size�
void gfs group doneio
�
int gfs group testio
� and
void gfs group waitio
�

�



These functions are described in the following sections�

����� int gfs group read�int kid� int o�set� char �buf� int size�

This function submits a read request to the GFS�GROUP library� The arguments are as below�

int kid is the id of the fork to read from or write to� Similar to a �le descriptor for regular Unix

�les� a fork must be opened before it can be read or written�

int o�set is the o�set� from the beginning of the fork� where data should be read� Please note

that there are no seeks or accesses relative to the current position� because there is no notion

of �current position� or ��le pointer��

char �buf is the bu�er that will receive what is read from disk�

int size is the number of bytes to read�

The return value is � if there are no errors� and �� if there was an error� An error code is stored

in gfs errno if there was an error� If this request is to access a fork di�erent from the last fork

accessed� all the previous requests that have not yet been submitted to Galley are now submitted to

Galley� This e�ect results from our implementation� which gathers requests into lists for gfs listio
��

and a gfs listio
� request cannot access two di�erent forks� This function submits all the previous

requests in addition to the current request to Galley if the number of requests not submitted is

greater than a threshold 
currently ������ or the total size of all requests not submitted is greater

than a size threshold 
currently �MB�� In addition� depending on a compile�time option� if it is not

waiting for Galley to complete any previous requests� it will also submit all the previous requests

including the current request to Galley 
the intent is to keep Galley busy��

����� int gfs group write�int kid� int o�set� char �buf� int size�

This function submits a write request to the GFS�GROUP library� The arguments are the same

as for a read request� Please note that once a read 
write� request has been submitted� no write


read� requests can be submitted until gfs group doneio
� has been called�

����� void gfs group doneio��

This function tells the GFS�GROUP library that one group of I�O requests has been completed�

forcing any remaining I�O requests to be submitted to Galley� Please note that reads and writes

may not be combined in the same group�

�



����	 int gfs group testio��

This function checks whether all the I�O submitted to the GFS�GROUP library so far has been

completed� It returns TRUE if it has� FALSE if it has not� This function also submits a request

to Galley if it is not waiting for Galley to complete previous requests� Thus� if the GFS�GROUP

library had submitted a large request to Galley� and then the user submitted a few small requests

to Galley and then called gfs group testio
�� this function will not submit the remaining requests

to Galley if it is still waiting for Galley to complete the large request�

����
 void gfs group waitio��

This function will wait for all outstanding I�O to complete� after submitting any unsubmitted

requests to Galley� Please note that I�O may be completed in any order� If one group with writes

was followed by gfs group doneio
�� and then one group with reads� the writes may not have been

completed when the reads were performed unless gfs group waitio
� was also called between the

two groups�

��� Using the GFS�GROUP library

The GFS�GROUP library uses the gfs listio function call provided by the Galley Parallel File

System �NK���� This restricts each set of requests submitted to the Galley Parallel File System to

access the same fork in the same sub�le� and also each set of requests must be either all reads or

all writes� Figure � is an example sequential program that accesses a regular Unix �le� Figure � is

the program in Figure � converted to use the GFS�GROUP library� Figure � is the same program

converted to use Galley without the GFS�GROUP library�

� Experiments and Results

We ran several experiments to evaluate the bene�t of using the GFS�GROUP library� We compared

the times to read from and write to disk� All the programs used four IOPs and one CP� All the

machines were IBM RS���s running AIX ������ The processors communicated via a ��� Mbps

FDDI network� Each program created one fork on each IOP� and wrote a matrix striped across the

IOPs by writing the �rst column to the �rst sub�le� the next column to the next sub�le� and so on�

The writes were veri�ed by another program to ensure that they were correct� The time recorded

includes only the time taken to read or write the �les� The timer was stopped after �ushing the

Galley disk caches� but before closing the �les� Each program wrote a large matrix to the �le� and

then another program read it back� The synchronous program used a bu�er large enough to store

�



main
�
f

int i� j�
int matrix���������
FILE �f�
f � fopen
�my�l�� �w���

for 
i��� i � ��� i��� f
for 
j��� j � ��� j��� f

matrix�i��j� � i � ��� � j�
g

fwrite
matrix�i�� sizeof
int�� ��� f��
g

fclose
f��
g

Figure �� Example Sequential Program

main
�
f

int i� j�
int matrix���������
int �d� kid�

gfs init
NULL�� �� initialize Galley ��

�d � gfs open �le
�my�l���
kid � gfs open fork
�d� �� �matrix���

for 
i��� i � ��� i��� f
for 
j��� j � ��� j��� f

matrix�i��j� � i � ��� � j�
g

�� write row i of matrix ��

gfs group write
kid� i����sizeof
int�� matrix�i�� ���sizeof
int���
g

gfs group doneio
��
gfs close fork
kid��
gfs close �le
�d��

g

Figure �� Example Sequential Program converted to use GFS�GROUP





main
�
f
int i� j�
int matrix���������
gfs handle my handles�����
int �d� kid�

gfs init
NULL�� �� initialize Galley ��
�d � gfs open �le
�my�l���
kid � gfs open fork
�d� �� �matrix���

for 
i��� i � ��� i��� f
for 
j��� j � ��� j��� f

matrix�i��j� � i � ��� � j�
g

�� write row i of matrix ��
my handles�i� � gfs new handle
��
gfs nb write
my handles�i�� kid� i����sizeof
int�� matrix�i�� ���sizeof
int���

g

for 
i��� i � ��� i��� f
gfs wait
my handles�i��� �� wait for I�O to complete ��

g

gfs close fork
kid��
gfs close �le
�d��

g

Figure �� Example Sequential Program converted to use Galley without GFS�GROUP

�



one column� The other programs used a bu�er large enough to store four columns because we used

four IOPs� Each program was run with two sets of arguments to compare the e�ectiveness of using

the GFS�GROUP library when writing small records as well as when writing large records� For

the �rst set of experiments� each program read or wrote a ���x��� matrix where each entry was

� bytes� For the second set of experiments� each program read or wrote a ���x��� matrix where

each entry was ���� bytes� Thus� all the matrices were �� MB in size� or � MB per IOP� Each

program was run ten times with each set of arguments� we report the mean execution times�

��� Programs used to evaluate GFS�GROUP

We used four programs to evaluate the e�ectiveness of GFS�GROUP�

	���� group�send

This program used the GFS�GROUP library� The program submitted one request to the GFS�

GROUP library for each matrix entry� and after every four columns it waited for the requests to

complete so that the bu�er could be �lled with data for the next four columns� The GFS�GROUP

library submitted a request to Galley whenever it was called� if it was not waiting for a previous

request to complete� It also submitted a request whenever it received data for a new column because

it could not submit data for di�erent columns 
forks� in the same gfs listio
� request�

	���� group�nosend

This was the same program as group�send except that the GFS�GROUP library was compiled

di�erently� This made the GFS�GROUP library wait until a new column 
fork� was used before

submitting a request to Galley�

	���� asynchronous

This program was written to measure the overhead of the GFS�GROUP library� It submits requests

similar to the group�nosend program� except that it does not use the GFS�GROUP library�

Rather� the overhead necessary for manipulating asynchronous reads and writes is included in the

same program� Any additional time required by group�nosend was thus the overhead of the

GFS�GROUP library�

	���	 synchronous

This program submits synchronous gfs listio
� requests to the Galley Parallel File System� Each

request contains one column� and there is no overlap of writing to the separate disks because it

�



Write Timings 
�� MB�
���x��� matrix ���x��� matrix

Program mean std dev mean std dev

synchronous ����� ���� ����� ���
asynchronous ����� ��� �� ����
group�nosend ����� ���� ��� ����
group�send ����� ���� ��� ���

Read Timings 
�� MB�
���x��� matrix ���x��� matrix

Program mean std dev mean std dev

synchronous ����� ���� ���� �����
asynchronous ����� ���� ���� ���
group�nosend ����� ���� ���� ����
group�send ���� ��� ���� ����

Table �� Timings of Experiments� Each IOP has a �le system using �K striping across
two � GB disks�

waits for each request to complete before submitting the next one�

The timings of the experiments are shown in Table �� We used an unpaired�observations t�test

to decide whether the di�erences are signi�cant at the ��� con�dence level� We show the results

in Table �� The approximate speedups of the programs are given in Table �� We regard programs

to have the same speed if there was no signi�cant di�erence between the timings of the programs�

Looking at the write timings for the large 
���x���� matrix with small elements� we see

that the group�nosend and synchronous programs perform about the same� the asynchronous

program is faster� and the group�send program is slower� Clearly asynchronous is faster than

synchronous because it can overlap I�O time on all four IOPs� and overlap I�O with computing

the next column to be written� The overhead of the GFS�GROUP library makes group�nosend

about the same time as the synchronous program� Allowing GFS�GROUP to submit requests

whenever it is not waiting for Galley 
group�send� was not worthwile because the requests were

so small that it was always worth waiting so multiple requests could be grouped�

Reading was slower because reads cannot complete until the physical I�O is complete� while

writes can complete once the data reaches Galley	s IOP cache 
we include the time to �ush the

cache at the end but meanwhile there is some extra concurrency available at the CPs�� As a result�

the synchronous program slows to about the same as group�send�

On the other hand� from the write timings for the small 
���x����matrix with large elements� we

see that all but the synchronous programs were equivalent and much faster than the synchronous

program� because synchronous had no overlap between I�O on one IOP and another�

�



Write Results 
�� MB each�
���x��� matrix ���x��� matrix

Program synch asynch nosend send synch asynch nosend send

synchronous � yes yes yes � yes yes yes
asynchronous yes � yes yes yes � no no
group�nosend yes yes � yes yes no � no
group�send yes yes yes � yes no no �

Read Results 
�� MB each�
���x��� matrix ���x��� matrix

Program synch asynch nosend send synch asynch nosend send

synchronous � yes yes no � yes yes yes
asynchronous yes � yes yes yes � yes yes
group�nosend yes yes � yes yes yes � no
group�send no yes yes � yes yes no �

Table �� Results of ��� signi�cance t�tests� �yes� means that the di�erent performance was
signi�cantly di�erent at the ��� con�dence level� Each IOP has a �le system using �K striping
across two � GB disks�

When reading the small 
���x���� matrix with large elements� the asynchronous program

was fastest� followed by the two 
equivalently fast� group programs� and synchronous was again

slowest� The two group programs were slower than asynchronous due to library overhead� which

appears to be about ������ Group�send was not slower than group�nosend because there was

rarely an opportunity to submit a request when Galley was not busy� It was not faster probably

because there was little delay in our programs between the GFS�GROUP calls� so Galley was rarely

idle�

� Conclusions

The GFS�GROUP library provides an easier way to convert some sequential I�O loops into parallel

than to use pure Galley routines� It appears to have acceptable overhead for large requests� but

somewhat disappointing overhead for tiny requests� We found it unhelpful to use an aggressive


group�send� approach� at least in our experiments�

� Future Work

When using the GFS�GROUP library� it would be nice to be able to select at runtime whether to

submit requests to Galley only if there are too many requests on hand 
as in group�nosend� or

to submit them immediately if the library is not waiting for Galley to complete a previous request

��



Write Results 
�� MB each�
���x��� matrix ���x��� matrix

Base Program � synch asynch nosend send synch asynch nosend send

synchronous ���� ���� ���� ���� ���� ��� ��� ���
asynchronous ���� ���� ���� ���� ���� ���� ���� ����

group�nosend ���� ���� ���� ���� ���� ���	 ���� ���

group�send ���� ���� ���� ���� ��� ���
 ���� ����

Read Results 
�� MB each�
���x��� matrix ���x��� matrix

Base Program � synch asynch nosend send synch asynch nosend send

synchronous ���� ��� ���� ���� ���� ��� ��� ���
asynchronous ���� ���� ���� ���� ���� ���� ���� ����
group�nosend ��� ���� ���� ���� ��� ���� ���� ����
group�send ���� ���� ���� ���� ��� ���� ���	 ����

Table �� Approximate Speedups of programs� If the number is in italics� then there is no signi�cant
di�erence between the base program and the program being compared�


as in group�send�� Currently� the library must be compiled with the appropriate option�

We could also perform more experiments to be able to better analyze the e�ects of using the

GFS�GROUP library on di�erent kinds of �le system accesses� The current experiments have

focused only on simple �le reading and writing� but other possibilities include writing data to

existing �les� and accessing �les in a non�sequential order�

References

�CDG���� David E� Culler� Andrea Drusseau� Seth Copen Goldstein� Arvind Krishnamurthy�

Steven Lumetta� Thorsten von Eicken� and Katherine Yelick� Parallel programming

in Split�C� In Proceedings of Supercomputing ���� pages ������� Portland� OR� �����

IEEE Computer Society Press�

�CF�� Peter F� Corbett and Dror G� Feitelson� The Vesta parallel �le system� ACM Transac

tions on Computer Systems� ��
���������� August ����

�NK��� Nils Nieuwejaar and David Kotz� The Galley parallel �le system� Parallel Computing�

��
��� ����� To appear�

�NKP��� Nils Nieuwejaar� David Kotz� Apratim Purakayastha� Carla Schlatter Ellis� and Michael

Best� File�access characteristics of parallel scienti�c workloads� IEEE Transactions on

Parallel and Distributed Systems� �
�������������� October ����

��


