
Copyright 1993 by the authors

The Expected Lifetime of �Single�Address�Space�

Operating Systems

David Kotz and Preston Crow

Dartmouth College

Hanover� NH

Technical Report PCS�TR������

Revised March ��� �����

Abstract

Trends toward shared�memory programming paradigms� large ����bit� address spaces� and memory�
mapped �les have led some to propose the use of a single virtual�address space� shared by all processes
and processors� To simplify address�space management� some have claimed that a ���bit address space
is su�ciently large that there is no need to ever re�use addresses� Unfortunately� there has been no data
to either support or refute these claims� or to aid in the design of appropriate address�space management
policies� In this paper� we present the results of extensive kernel�level tracing of the workstations on our
campus� and discuss the implications for single�address�space operating systems� We found that single�
address�space systems will probably not outgrow the available address space� but only if reasonable
space�allocation policies are used� and only if the system can adapt as larger address spaces become
available�

� Introduction

Many researchers have proposed single�address�space operating systems� With such systems� the entire

memory hierarchy is mapped into a single large address space� including �les and processes� and often

remote memories of other machines� A good discussion of the advantages� disadvantages� and other issues

concerning such systems can be found in �Chase et al� ������

One of the major problems with single�address�space operating systems is managing the address space�

Once space has been allocated� it is often preferable not to reallocate the same space for other purposes�

Hence� over time� the address space will eventually be consumed� Previous work has not studied the rate at

which this consumption will take place�

In this paper� we examine the issue of address�space consumption� based on traces of Ultrix�based

workstations running computer�science� numerical�analysis� and server workloads� Though we recognize that

�Revisions from the original release of this report include additional data for server �� extensive modi�cations to the text�
and the addition of Figure ���

This research was supported in part by NASA Graduate Student Research Assistantship NGT������� and by Digital
Equipment Corporation through ERP contract number ��	
�

�



applications under a single�address�space operating system would behave somewhat di	erently� we believe

that the data gathered from these workloads lays a basic foundation for understanding consumption rates�

In the next section we examine some of the previous work in single�address�space operating systems�

focusing on their assumptions of address�space usage� In Section 
� we discuss our trace collection and the

analysis of current usage patterns� In Section �� we show how we used this data to predict the lifetime of

single�address�space operating systems� Finally� in Section �� we summarize�

� Background

The MONADS�PC project �Broessler et al� ���� Rosenberg et al� ����� Rosenberg ����� was one of the �rst

systems to place all storage �all processes and all �les� in a single� distributed� virtual�address space� They

use custom hardware that partitions the bits of an address into two �elds� a 
��bit address�space number

and a ���bit o	set� The address�space numbers are never re�used� A newer version of the system� MONADS�

MM �Koch and Rosenberg ������ uses ����bit addresses� extending the address�space numbers to �� bits and

the o	sets to 
� bits� The MONADS project does not report on any experience with a long�running system

and its address�space consumption�

Hemlock �Garrett et al� ����� proposes a single ���bit address space� Persistent and shared data are

allocated a non�reusable segment of the address space� Files are mapped into contiguous regions in the

address space� requiring them to allocate a large address range �� GB� for each �le to leave room for

potential expansion� This fragmentation may limit the e	ective size of their ����bit� address space� Another

characteristic of their model is that they �reserve a 
��bit portion of the ���bit virtual address space for

private code and data�� This exception from the otherwise single address space simpli�es some relocation

issues and provides a limited form of re�use� Hemlock dynamically links code at run time to allow for di	erent

instances of global data�

Opal �Chase et al� ����� uses other techniques to avoid Hemlock�s �private� 
��bit subspace and dynamic

linking� For example� all global variables are referenced as an o	set from a base register� allowing separate

storage for each instance of the program �this technique is also used in the Macintosh operating system

�Wakerly ������� They concede that conserving and re�using address space is probably necessary�

Bartoli et al� point out that that �if ten machines create objects at a rate of ten gigabytes a minute� the

����bit� address space will last 
�� years� �Bartoli et al� ���
�� Hence� a collection of ��� machines would

�



only last �� years� and larger collections would likely be out of the question�

Patterson and Hennessy claim that memory requirements for a typical program have grown by a factor

of ��� to � every year� consuming ����� address bits per year �Patterson and Hennessy ������ At this rate�

an expansion from 
� bits to �� bits would only last 
���� years for traditional operating systems� and a

single�address�space operating system would run out sooner�

Though most researchers recognize that even a ���bit address space presents limits for a single�address�

space operating system� there is not any real understanding of the rate of address�space consumption� and

that some data is needed� This problem was the motivation for our work�

� Current usage

To provide a basis for our analysis of single�address�space systems� we �rst measured address�space usage in

current operating systems� Our goals were to determine the rate that address space was used in our current

operating systems� and to collect traces to use in trace�driven simulations of future address�management

policies� For two servers and two workstation clusters on campus� we traced the events that may consume

address space in a single�address�space system� recording every system call that could create or change the

size of �les� shared�memory segments� process data segments� and process stack segments�

The data we collected di	ers from most previous studies in that it measures virtual rather than physical

resources� We did not take into account the text�segment size� assuming that it would be allocated at compile

time�� Table � summarizes the traces we collected�

To collect this data� we modi�ed the DEC Ultrix ��
 kernel� to generate a trace record for all relevant

activities� In particular� we recorded every exec� fork� exit� sbrk� stack increase� shared�memory creation�

shared�memory deallocation� unlink� open �for write only�� close� truncation� and write�

Our method was modeled after the Ultrix error�logging facility� The kernel stored trace records in an

internal �� KB bu	er� which was accessible through a new device driver that provided a �le�like interface to

the bu	er� A user�level trace daemon opened the device� and issued large ��� KB� read requests� When the

internal bu	er contained su�cient data ��� KB�� the kernel triggered the device driver� which then copied the

data to the trace daemon�s bu	er� and woke the trace daemon� The kernel bu	er was then available for new

data� while the trace daemon wrote its bu	er to a trace �le� The activity of the trace daemon� and thus of

�With dynamic linking� as in Hemlock� the addresses allocated for the text segment could likely be re�used�
�DEC and Ultrix are trademarks of Digital Equipment Corporation� Ultrix 	�
 is a variant of Unix 	��BSD� Unix is a

trademark of X�Open�






Group Days Records Lost records Processes Lost processes

Server � �
�� 
������� ����� ������� ����� �
� �������
Server � ���
 ������� ���� ������� ����
� �� �������

���� ����� ��� ������ 
���� � �������
���� 
����� � ������� ����� � �������
���� 
��
� ���� ���
�� 

� � �������
���� 
��
��� ��
�� ������� ������ �� �������
���� ����� �� ������� ����
 
 �������

Cluster � �
�� ���
�
 � ������� ����� � �������
���� ������� �
���� ������� ����� � �������
���� �
�
��� 
��� ������� ����� � �������
�
�� ������ ���� ������ ���� � �������
���� ����� ���� ���
��� ��� ��� �������
�
�� �����
� � ������� ������ � �������
���� ������ �� ������� ����� � �������
Total �������
 �����
 ������� ����� 

� �������
���� ������ ���� ������� ���
�� ��� ����
��
���� ������� ����� ������� ����� � �������

Cluster � ���� ������ ���� ������� ����� �� �������
���� ����
 ���� ������� ����� � ����
��
Total ������� ��
�
� ������ ���
�
 
�� �������

Table �� Summary of the traces collected� Server � was used as a general�purpose Unix compute server by many people on

campus� Server � was the primary �le� mail� and ftp server in our computer�science department� Cluster � included general�

use workstations in the computer�science department� most located in faculty o�ces� Cluster � contained workstations used

primarily by a compute�intensive signal�processing research group� All workstations were DECstation ����s running Ultrix 	�
�

A small fraction of records were lost in the collection process� accounting for a generally even smaller fraction of processes not

being accounted for see Section 
 for details�� These data were collected in fall ���
�

the trace �les� was explicitly excluded from the trace by the kernel� This bu	ering strategy decoupled trace

generation from disk writes so that no activity was ever signi�cantly delayed to write trace records to disk�

and so that the overhead was amortized across large groups of trace records� While it is not a new technique�

we highly recommend this simple� unobtrusive� portable mechanism for other trace�collection e	orts�

To measure the performance overhead of our tracing activity� we ran �� trials of the Andrew bench�

mark �Satyanarayanan ����� on the standard Ultrix ��
 kernel and on our instrumented kernel� The Andrew

benchmark extensively uses most of the system calls we modi�ed for tracing� by creating� searching� and

deleting �les� and compiling programs� We ran �� trials with the standard kernel and with the tracing

kernel� We discarded the �rst trial in each case� due to a cold �le cache� An unpaired t�test �Jain �����

showed the di	erence to be insigni�cant at the ��� con�dence level� implying that our tracing apparently

had no signi�cant e	ect on performance� This result matches our qualitative experience �no users reported

any perceived di	erence��

�



bytes per second records per second
Group mean ��th max mean ��th max

Server � �� ���� ���� ��� �� 
���
Server � ��� �
� ����� 
�� �
 ����

�� � ��
�� ��� � ���
� ��� ����� ��� �� ��
� � ��
�� ��� � ��

�� �� ����� �� � ����
�� � 
�
�� ��� � ��

Cluster � �� � ����� ��� � ��

�� �� ����� �� � 
���
� � ����� �� � ���

� � ����� ��� � 
�
�
�� � ����� ��
 � 
��
�� ��� 
���� ��� 
 ���
�� � ����� ��
 � ����

All �� �� ����� �� � 
���
��� ��� ����� 
�� 
� �
��
�� � ����� ��� � ���

Cluster � �� � ��
�� ��� � ���
� � ����� ��� � �

All �� � ����� ��� � �
��

Table �� Amount of trace data collected per second in bytes and records� The mean� ��th percentile� and maximum values

are listed for each machine� The relatively low ��th percentiles indicate that trace data generation was very bursty� Figures

are listed for each machine� as well as the overall �gure for each cluster�

After collection� the raw trace �les were post�processed to clean up the data� In particular� the raw trace

�les were missing a small percentage of the trace records� as indicated by record�sequence numbers� This

loss was caused by the trace bu	er occasionally �lling up before the trace daemon could read it� or� in one

case� the trace disk running out of space� In most cases� the e	ect of the missing records was simulated�

the data being inferred from subsequent events� For example� a missing process�fork record was inferred

from a subsequent process�exec or process�exit record� Only a fraction of a percent of processes were missed

entirely due to the missing records� When a large number of records were lost� the usage that they would

have re�ected was not recorded� As shown in Table �� trace data generation was very bursty� suggesting that

a larger collection bu	er may have been preferable� Fortunately� fewer than two percent of the records were

missing from any trace group� with less than a tenth of a percent of processes unaccounted for� indicating

that the e	ect on the usage rates should be quite small� most likely underestimating usage by less than ���

�



0

5

10

15

20

25

T W T F S S M T W T F S S M T W T F S S M T W

G
ig

ab
yt

es

Day of Week

Cluster 1 Memory Use

Data Segment
Stack Segment

File Writes

0

50

100

150

200

250

300

350

400

450

T F S S M T W T F S S M T W T F S S M T W T F S S

G
ig

ab
yt

es

Day of Week

Server 1 Memory Use

Data Segment
Stack Segment

File Writes

0

5

10

15

20

25

30

T W T F S S M T W T F S S M T W T F S S M T W T F S S M T

G
ig

ab
yt

es

Day of Week

Cluster 2 Memory Use

Data Segment
Stack Segment

File Writes

0

5

10

15

20

25

30

35

M T W T F S S M T W T F S S M T W T F S S M T W T

G
ig

ab
yt

es

Day of Week

Server 2 Memory Use

Data Segment
Stack Segment

File Writes

Figure �� Cumulative address�space usage for all workstations in each trace group� separated by category of memory usage�

Curves for Cluster � and Cluster � are scaled down by the number of machines in each cluster� for easier comparison� Shared

Memory� if plotted� would be indistinguishable from zero� x�axis tic�marks represent midnight before the given day of the week�

��� Results

In Figure �� we show the raw amount of address space allocated �in units of � KB pages� over time� for each

of the four trace groups de�ned in Table �� This �gure is based on a running sum of the size of private�data

segments� stack segments� shared�data segments� and �le creations or extensions� Clearly� most of the usage

was from data segments� with stack segments second� Shared data was rarely used on our systems �only by

the X�windows server� apparently to share the frame bu	er with the device driver�� and is not shown in the

�gure� Daily and weekly rhythms are clearly visible� Server �� heavily used for timesharing� used over ten

times as much space� Cluster �� used by a signal�processing research group� occasionally saw large bursts of

activity caused by applications with large data segments�

�



To discover the nature of the signi�cant address�space users� we compiled a list of the top �� programs by

address�space allocated� shown in Table 
� Most of the big users were not huge user applications� but instead

common programs like the shells sh and csh� which were run often for scripts� the gzip compression program�

which was run by nightly space�saving scripts� is able� which was run by nightly system jobs on server ��

pieces of the C compiler �ugen���� cc�� ccom���� as����� and ld����� and periodic background processes �init�

sendmail� in�c�ngerd� amd� named�xfer� in��ngerd� and atrun�� Only two programs on this list �mm�� a

signal�processing application� and ip� an image�processing application�� were user�written applications� all of

the others were common applications used by many users� Only one �ip� could be called a large application�

These data make it clear that policies that statically allocate a large region to every process would waste a

lot of virtual�address space on many small but common applications�

In determining the amount of address space consumed by a process� we had to select a model for

interpreting the fork and exec system calls� There were several alternatives�

� Both a fork and an exec would be interpreted as creating a new process� using new address space for

stack and data segments� This would result in an overestimation of the space consumed due to the

frequent use of a fork�exec pair of calls in creating a new process�

� The address space consumed by a fork call duplicating the data and stack segments of the parent

process could be ignored� assuming that the use of a combined fork�exec call in a newer operating

system would eliminate that usage� While this does e	ectively model the fork�exec paradigm� we

found that some programs� accounting for ��� of all processes� did not follow this paradigm� and

would have their space usage ignored by this interpretive model�

� The address space consumed by an exec call could be ignored� assuming that the process could overwrite

the previous data and stack segments� only recording address�space consumption if the resulting process

had a larger data or stack segment than the old process� This is the model we selected�

In attributing consumption to a program� all consumption by a process was attributed to the last

program that was exec�d� In the case where a process did not call exec� the consumption was attributed to

the program that the parent process was running when the fork that created the process was issued� This

means that while a shell may have fork�d itself for each non�intrinsic command that the user issued� the

space consumption for the new process was credited to the program the user ran� not to the shell�





Program Pages Used CPU Seconds Used
Name Instances Total Per Instance Total Per Instance

sh ������ �������� ���� ���� ����
init 
����� �
����� �
��� �
�
�� ����
sendmail ����� 
������� ����� ��
��� �����
mm� ���� �������
 ��� ��
��� �����
gzip �
��� �������� �
�� ���� ����
csh ����� �������� ���� 
��
 �����
in�c�ngerd ������ ������ ���� ����� �����
awk ���
 ������ ���� ����� �����
amd ������ ������ ��� 
��� ���
�
mail 
���� 
������ ����� ����� �����
tset 
��� 
�����
 ���� ����� �����
ip �
 

����� �
����� ������ ��
��
ls �
�
� ���� ���
 ���� �����
elm ����� �

��� ��� ����� �����
virtex ���� ������ ����
 ���� ����
nn ���� ������ �

�� ��� 
��
test ��
��� �����
 ���� ��� �����
named�xfer ���� ������� 
��� ��� �����
cat ����� ������ 

�� �� �����
ugen��� 
�� �
�

 
���� ��� ����
compress ���� �
��
�� ����� ���� ����

�nger 
�
�
 �
����� 
��
 
���
 ����
�lter 
���� ������� 
��� ���� ����
is able ����� ������� ��� ��� �����
cc� 
��� ����� ����� ���� �����
stty 
���� ������ 
�� ��� �����
df 
��� ������ ���� �� �����
rn �
�� �����
 ��� ��
�� �����
as���� ��� ������� �
��� ��� ����

tcsh ����� ����
 ��� ��� �����
msgs ����� �����
 ��� �� ����
ccom��� ��
� ����� ����� ��� �����
ld��� ���� ���� ����� ���� ���
�
grep 
���� �
���� ���� ���� ����
echo ����� �
���
 ��� ���� �����
emacs ���� ��
�� ��� ������ 
�����
uptime 

� ����
 ���� 
�� �����
hostname ����� ������ 
�� ��
 �����
in��ngerd ����� ����
 ��
 ���
 �����
movemail �
�� ���� ����� �� ���
��

Table 
� Top 	� programs by total pages used� init was periodically forking a new process for the usually unused� serial

port on some workstations� mm� was a user�s signal�processing application� gzip is a �le�compression program� in�c�ngerd

was run every minute to update status information used by the GNU ��nger� server� in��ngerd is the result of a query� amd

is the auto�mount daemon� managing remote �le�system mounts� ip was a user�s image�processing program� is able was part

of a nightly system accounting program on Server �� cc� and programs with ��� in their names are part of the C compiler�

named�xfer is a daemon associated with network name services�

�



4

16

64

256

1024

4096

16384

65536

262144

1048576

0 1 10 100 1000 10000 100000 1000000

K
by

te
s

CPU Seconds

Space vs. Time

Figure �� Scatter plot of the address space consumed and the CPU time consumed� for all processes traced in all groups� The

correlation coe�cient is ����
�� The illusion of horizontal lines arises from the allocation of space in 	 KB pages� The illusion

of vertical black lines and white gaps� we believe� arises from scheduler anomalies�

From Table 
� one wonders whether address space usage was correlated to CPU time used� Figure �

demonstrates a lack of such a correlation in a scatter plot of these two measures for each process traced�

The lack of correlation �coe�cient ����
�� between usage and CPU time meant that we could not expect to

simply extrapolate per�process usage as a function of CPU speed�

� Single�address�space systems

To be able to predict the lifetime of single�address�space systems� we had to consider more than just the

current usage rate� First� we considered some space�allocation policies that might be used in a single�address�

space system� to add the cost of fragmentation to the usage rate� Then we considered appropriate methods

to extrapolate the current usage rate into the future� We begin by describing our methods�

��� Methods

����� Allocation policies

Clearly� systems that manage a single virtual�address space by allocating virtual addresses to processes

and �les without ever reclaiming the addresses for re�use will eventually run out of the �nite address space�

Allocation policies with signi�cant fragmentation would shorten the expected lifetime� and allocation policies

that allow some re�use would extend the expected lifetime� We used trace�driven simulations to measure the

net rate of address�space usage under a variety of likely allocation policies� Each trace event allocates or

�



extends a region of virtual�address space� in multiples of � KB pages� called a segment�� We were concerned

with the internal fragmentation caused by allocating too many pages to a segment� but ignored the small

internal fragmentation in the last � KB page of a segment�

Base allocation� For each processor in the distributed system� we allocated a generous 
��bit �� GB�

subspace to the kernel and its data structures� We also allocate � GB for every machine�s initial collection

of �les� as a conservative estimate of what each new machine would bring to the address space� Note that

this � GB was counted only once per machine�

Process allocation� Processes allocated four types of virtual�memory segments� text �code�� shared data�

private data �heap�� and the stack� We assumed that the text segment did not require the allocation of new

virtual memory� since it was either allocated at compile time or was able to be re�used �as in Hemlock��

Shared libraries� though not available on the systems we traced� would be treated the same as text segments�

We assumed that shared�data segments would never be re�used� but could be allocated with the exact

number of pages necessary� The actual policy choice made essentially no di	erence in our simulations�

because our trace data contained only a tiny amount of shared data� In a single�address�space operating

system� shared�data segments could be managed in much the same manner as private�data segments�

Private�data and stack segments have traditionally been extendible �to a limit�� and thus an allocation

policy in a single�address�space system may need to allocate more than the initial request to account for

growth� Overestimates lead to fragmentation losses �virtual addresses allocated but never used�� We ex�

amined several alternative policies� composed from two orthogonal characteristics� The �rst characteristic

contrasted exact�size allocation� where each segment was allocated exactly the maximum number of pages

used by that segment in the trace� and �xed�size allocation� where each process was allocated a �� MB data

segment and a � MB stack segment�� The exact policy could be approximated with reasonable user�supplied

stack sizes and non�contiguous heaps� The second characteristic contrasted no re�use� where no segment

was ever re�used� with re�use� where all freed private�data and stack segments were re�used for subsequent

private�data or stack segments� Note that� of the four possible combinations� the two re�use policies are

similar� in that neither causes any space to be lost from external or internal fragmentation over the long

�We assume a �at not segmented� address space� We use the word �segment�� in the tradition of names like �text segment�
and �stack segment�� to mean a logical chunk of virtual address space�

�These sizes are the default limits for these segments under Ultrix� Di�erent sizes would not alter the qualitative results
observed�

��



term� �Note that the 
��bit subspace of Hemlock �Garrett et al� ����� is also similar to the �xed re�use

policy�� Thus� we measured only re�use� exact no�reuse� and �xed no�reuse�

File allocation� Though Figure � implies that �le data were insigni�cant� it does not account for fragmen�

tation caused by address�space allocation policies in a single�address�space system� We considered several

policies to determine their e	ect on fragmentation�

A �le is traditionally an extendible array of bytes� Newly created �les can grow from an initial size of

zero� so in a single�address�space system� a new �le must be allocated space with room to grow� These ��le

segments� can never be re�used or moved� because a pointer into a deleted �le�s segment may be stored

in another �le� or because the �le may be restored from a backup tape� With this limitation in mind� we

considered several policies �note that a higher�level interface could provide a conventional read�write �le

abstraction on top of any of these �le�system policies��

exact� Each �le was allocated exactly as much space as its own lifetime�maximum size �in pages�� This

unrealistic policy was useful for comparison�

�xed� A �xed � GB segment was allocated for each �le when it was created �as in Hemlock �Garrett et al� �������

Any extraneous space was never recovered�

chunked� Growing �les were allocated virtual�address space in chunks� beginning with a one�page chunk

for a new �le� Once the latest chunk was full� a new chunk of twice the size was allocated� When

the �le was closed� any unused pages at the end of the last chunk were reserved for future growth�

This reservation strategy limited the number of chunks� and hence the amount of metadata needed to

represent a �le� by doubling the size of each chunk as the �le grew� but did cause some fragmentation�

Distributed allocation� When a single address space spans multiple machines there must be a coordi�

nated mechanism for allocating addresses� The dynamic allocation of space by a centralized allocation server

is clearly inadequate� for both performance and reliability reasons� The other extreme� a static division of

the entire address space among all machines� does not allow the addition of new machines to the system�

or for any one machine to allocate more than its original allotment� A compromise policy seems feasible�

in which a centralized �or perhaps hierarchical� allocation system allocates medium�sized chunks of address

space to machines� from which the machines allocate space for individual requests� When the current chunk

��



is consumed� another chunk is requested� Careful selection of the chunk size would limit fragmentation� If�

for example� every machine requested as much space as it might need for one week� the centralized service

would not be overly busy� and the resulting fragmentation would reduce the overall lifetime of the system

by only a week or two�

To compute the current rates� we played back our trace data through a simulator that kept track of all

allocation� We used a di	erent version of the simulator for each combination of policies�

����� Extrapolating to the future

Any attempt to extrapolate computing trends by more than a few years is naturally speculative� Previous

speculations have been crude at best� most of the back�of�the�envelope calculations in Section � extrapolate

address�space usage by assuming that the yearly address�consumption rate remains constant� A constant

rate seems unlikely� given continuing increases in available technology �faster CPUs� larger primary and

secondary memory�� sophistication of software� usage of computers� and number of computers� A simple

linear extrapolation based on the current usage rate would overestimate the lifetime of single�address�space

systems�

On the other hand� it is not clear that we could extrapolate based on the assumption that usage increases

directly in proportion to the technology� Figure � shows that the address�space usage was not correlated with

CPU usage� so a doubling of CPU speed �as happens every few years� does not imply a doubling of address�

consumption rate on a per�process basis� Of course� a faster CPU presumably would allow more processes

to run in the same time� increasing consumption� but our data cannot say by how much� Acceleration in the

rate of address�space consumption is likely to depend signi�cantly on changing user habits �for example� the

advent of multimedia applications may encourage larger processes and larger �les�� This phenomenon was

also noticed in a retrospective study of �le�system throughput requirements �Baker et al� ������ �The net

result is an increase in computing power per user by a factor of ��� to ���� but the throughput requirements

only increased by about a factor of �� to 
�� ��� Users seem to have used their additional computing resources

to decrease the response time to access data more than they have used it to increase the overall amount

of data that they use�� These uncertainties make it impossible to extrapolate with accuracy� but we can

nevertheless examine a range of simple acceleration models that bound the likely possibilities�

Disks have been doubling in capacity every three years� and DRAMs have been quadrupling in ca�

pacity every three years� while per�process �physical� memory usage doubles about every one to two years

��



�Patterson and Hennessy ������ It seems reasonable to expect the rate of address�space consumption to grow

exponentially as well� though perhaps at a di	erent rate� Suppose a is the acceleration factor per year� for

example� a � � models linear growth� and a � � models an exponential growth exceeding even the growth

rate of disk capacity �a � ����� or DRAM capacity �a � ������ If r is the current rate of address�space

consumption �in bytes per year per machine�� and n is the number of machines� then the number of bytes

consumed in year y �year � being the �rst year� is

u�y� � nray ���

and the total address�space usage after year y �i�e�� after y � � years� is

T �y� �

yX
i��

u�i� ���

� nr

yX
i��

ai �
�

�

�
nr ay����

a�� if a �� �

nry if a � �
���

We extend this model by assuming that the number of machines� n� is not constant but rather a function

of y� Here� a linear function seems reasonable� For simplicity we choose n�y� � my� i�e�� there are m machines

added each year� We can further extend this model by adding in a k�byte allocation for each machine�s kernel

and initial �le set� This extension adds km to u�y��

u�y� � km�myray ���

T �y� �

yX
i��

u�i� ���

� kmy �mr

yX
i��

iai ��

�

�
kmy �mr

yay����y���ay���a

�a���� a �� �

kmy �mr
y�y���

� a � �
���

In the next section we compare equation �� for a variety of parameters� to the available address space�

It is reasonable to assume that the size of the address space will also increase with time� Siewiorek et al

�




8

16

32

64

128

1965 1970 1975 1980 1985 1990 1995 2000

A
dd

re
ss

 b
its

Year of introduction

Virtual-address bits of leading microprocessors

Industry leaders
[Siewiorek]: one bit per year

Linear fit, 2.676 bits per year

Figure 
� The number of address bits supported by various CPUs� and two curves �t to the data� The points represent the

Intel 	��	 �� bits�� Intel ���� �	 bits�� Intel ���� �� bits�� Intel ���� �� bits�� Motorola ����� 
� bits�� Intel ��
�� 	�

bits�� and MIPS R�	��� and HP �������� �	 bits�� The data come from �Siewiorek et al� ����� page ��� �Tanenbaum ������

and �Glass ������

noticed that available virtual address space has grown by about one bit per year �Siewiorek et al� ������ but

their conclusions are based on old data� In Figure 
� we plot the virtual�address�bit count of microprocessor

chips against the �rst year of introduction� for those chips that set a new maximum virtual address space

among commercial� general�purpose microprocessors� We also plot two possible growth curves� the original

from �Siewiorek et al� ����� �one bit per year�� and a new a linear regression �t ����� bits per year� with

correlation coe�cient ��������

address bits�year� � ����� �year � ����� �����

Address bits generally become available in increments� every few years� rather than continuously� So� for

increments of b bits�

available address bits�year� � b� b
address bits�year�

b
c

This is the formula we use in Section ����� below�

��� Results

����� Allocation policies

Figure � shows the cumulative address space consumed by hypothetical single�address�space operating sys�

tems operating under each of the policies described above �except the ��xed� policies� which used orders of

��



0

5

10

15

20

25

30

T W T F S S M T W T F S S M T W T F S S M T W

G
ig

ab
yt

es

Day of Week

Cluster 1 Average Use by Policy

Chunked Files

Exact Files

Without Re-use
(exact)

With Re-use

Chunked Files > Exact Files

0

50

100

150

200

250

300

350

400

450

500

T F S S M T W T F S S M T W T F S S M T W T F S

G
ig

ab
yt

es

Day of Week

Server 1 Total Used by Policy

Chunked Files

Exact Files

Without Re-use
(exact)

With Re-use
Chunked Files > Exact Files

0

5

10

15

20

25

30

35

T W T F S S M T W T F S S M T W T F S S M T W T F S S M T

G
ig

ab
yt

es

Day of Week

Cluster 2 Average Use by Policy

Chunked Files

Exact Files

Without Re-use
(exact)

With Re-use

Chunked Files > Exact Files

0

5

10

15

20

25

30

35

40

M T W T F S S M T W T F S S M T W T F S S M T W T

G
ig

ab
yt

es

Day of Week

Server 2 Total Used by Policy

Chunked Files

Exact Files

Without Re-use
(exact)

With Re-use
Chunked Files > Exact Files

Figure �� Cumulative address space consumed under di�erent management policies� for each tracing group� over the interval

traced� Curves for Cluster � and Cluster � are scaled down by the number of machines in each cluster� for easier comparison�

x�axis tic�marks represent midnight before the given day of the week� The ��xed� �le and process policies were so much worse

that they are not shown see Table 	��

magnitude more space� and hence are not shown�� for each tracing group� Clearly� those that re�use data

segments consume address space much more slowly� Also� the �chunked� �le policy is remarkably close to

the �unattainable� �exact� �le policy�

To understand the burstiness of address�space usage� we computed each policy�s usage for each �ve�

minute interval on each machine� Figure � shows the distribution of this �instantaneous� usage across all

��minute intervals on all workstations in each trace group� for each policy� on a logarithmic scale� Several

interesting results appear� First� the �re�use� policies reduce the consumption by an order of magnitude or

more� Second� the �chunked� �le policy is not much worse than the �unattainable� �exact� policy� Third�

��



0.1

0.3

0.5

0.7

0.9

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

C
D

F

Bytes used per 5-minute interval

Cluster 1 Total Memory Consumed

With Re-use

Exact Files
Chunked Files

Without Re-use
(exact)

0.1

0.3

0.5

0.7

0.9

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

C
D

F

Bytes used per 5-minute interval

Server 1 Total Memory Consumed

With Re-use

Exact Files

Chunked Files

Without Re-use
(exact)

0.1

0.3

0.5

0.7

0.9

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

C
D

F

Bytes used per 5-minute interval

Cluster 2 Total Memory Consumed

With Re-use

Exact Files

Chunked Files

Without Re-use
(exact)

0.1

0.3

0.5

0.7

0.9

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

C
D

F

Bytes used per 5-minute interval

Server 2 Total Memory Consumed

With Re-use

Exact Files

Chunked Files

Without Re-use
(exact)

Figure �� The cumulative distribution function CDF� for the distribution of �instantaneous� address�usage rates across all

��minute intervals on all workstations in each trace group� for each policy� for each trace group� Note the logarithmic scale� The

mean rates are indicated by the box markers� Mean values signi�cantly larger than median values indicate many intervals where

little or no address space was consumed� Though both the �chunked� and �exact� �le policies were plotted for the �exact� no

re�use� process policy� there is no signi�cant di�erence� The ��xed� �le and process policies were so much worse that they are

not shown see Table 	��

in the clusters� the machines were frequently idle� as implied by the ������ of intervals where the reuse

policies consumed at most one page�

Based on these results� we estimate the yearly rate of address�space consumption for each policy� given

the current workload� Table � shows two rates for each tracing group� and for each policy� the �rst is the

mean consumption rate �representing the situation where some machines are idle some of the time� as they

were in our trace� computed by a linear extrapolation of the observed rates� and the second is the ��th

percentile consumption rate �representing the situation where all machines are heavily used� taken from the

��



Process File bytes	year	machine
Policy Policy Mean ��th 
ile

exact chunked S� �������� �������

no re�use S� �������� ��������

C� �������� ��������

C� �������� ��
�����

exact exact S� �������� ��������

no re�use S� �������� �������

C� �������� ��������

C� ��
����� �������

reuse chunked S� 
������� ��������

S� 
������ ��������

C� �������� ��
�����

C� �������� 
������

reuse exact S� �������� �������

S� �������� ��������

C� �������� 
�������

C� �������	 ��
�����

reuse �xed S� �����
 ��������

S� ������� �������


C� �������� ��������

C� �������� ��������

�xed exact S� ������� 
�
�����

no re�use S� �������� 
�������

C� ������� ��������

C� �������� ��������

Table �� Address�space consumption rate of various policies� given the current workload� in bytes per year per machine� We

include both the mean rate� across all times on all machines in each group� and the ��th percentile rate� across all ��minute

intervals on all machines in each group� The other ��xed��policy combinations� not shown� had worse usage than anything

shown� and were not considered further�

distributions in Figure �� The table makes it clear that both the ��xed� process policy and the ��xed� �le

policy were� as expected� consuming space extremely fast� The table recon�rms that re�using private�data

and stack segments cut about one to one and a half orders of magnitude o	 the consumption rate� and that

there was little di	erence between the �exact� and �chunked� �le policies� Also� the ��th percentile rate was

about one�half order of magnitude larger than the mean rate� and Server � was about an order of magnitude

larger than the other machines� due to its heavy multi�user load�

����� Extrapolating to the future

We can compare the growth of available address space with the consumption of a single�address�space system

that began in ����� It is di�cult to choose an appropriate value for parameters a and m� but by examining a

�



32

64

128

256

2000 2005 2010 2015

A
dd

re
ss

 b
its

 n
ee

de
d/

av
ai

la
bl

e

Year (y = Year - 1994)

Growth rates; m=100, a=1, various r

Available address bits

r=1e10
r=1e11
r=1e12
r=1e13
r=1e14
r=1e16

Figure �� Comparison of available address bits with the consumption of address space for a variety of current rates� r� assuming

no acceleration a � �� andm � ���� The solid consumption curve indicates the r value used in the other graphs� The available

address bits grow in increments of �� 
�� or �	 bits�

wide range of values we can bound the likely behavior of future systems� For the acceleration a� we chose ��

���� ���� ���� �� and 
� i�e�� ranging from linear growth �a � �� to tripling the rate every year �a � 
�� �To put

these rates in perspective� recall that DRAM capacity grows at a � ������ We chose m � ��� as the growth

rate for the machine population� although we show below that there was little di	erence when varying m

from � to ������ From Table �� we selected a range of representative rates r �in bytes�year�machine�� as

follows�

r Clusters roughly representing
���
 all ��xed� �le policy
���� all ��xed� process policy
���� Server � �exact� no re�use� process policy
���� others �exact� no re�use� process policy
���� Server � �re�use� process policy
���� others �re�use� process policy

Note that these rates are dependent on the nature of our workload� workstations in a computer science

department� We speculate that the rate of a di	erent workload� such as scienti�c computing� object�oriented

databases� or world�wide�web servers� may di	er by perhaps ��
 orders of magnitude� and have a similar

growth rate� If so� our conclusions would be qualitatively similar for these other workloads�

Figures ��� display the models� using a logarithmic scale to compare address bits rather than address�

space size� Note that we plot the available address space as growing in increments of �� 
�� or �� bits �see

Section �������

��



32

64

128

256

2000 2005 2010 2015

A
dd

re
ss

 b
its

 n
ee

de
d/

av
ai

la
bl

e

Year (y = Year - 1994)

Growth rates; m=100, a=1.6, various r

Available address bits

r=1e10
r=1e11
r=1e12
r=1e13
r=1e14
r=1e16

Figure � Comparison of available address bits with the consumption of address space for a variety of current rates� r� but

with an acceleration factor of a � ���� m � ���� The solid consumption curve indicates the r value used in the other graphs�

32

64

128

256

2000 2005 2010 2015

A
dd

re
ss

 b
its

 n
ee

de
d/

av
ai

la
bl

e

Year (y = Year - 1994)

Growth rates; m=100, r=1e11, various a

Available address bits

a=1
a=1.1
a=1.2

a=1.6

a=2

a=3

Figure �� Comparison of available address bits with the consumption of address space for a variety of acceleration factors� a�

The solid consumption curve indicates the a value used in the other graphs� Other parameters were r � ���� and m � ����

Figure � examines the simple case of a � �� where the yearly consumption remains constant at current

levels� We see that a ���bit address space is su�cient �that is� the �address bits needed� curve remains

below the �address bits available� curve� only if the ��xed� �le policy was avoided� or if a ���bit address

space were available soon� If the current consumption rate� r� accelerated �Figures ��� or if the number of

machines grew especially fast �Figure ��� it would be even more important to avoid ��xed� policies or to

migrate to a ���bit address space soon�

Although the acceleration factor a of course has the most profound e	ect on address consumption� in

the long term address�space growth should outpace even a � �� and in the short term reasonable allocation

��



32

64

128

256

2000 2005 2010 2015

A
dd

re
ss

 b
its

 n
ee

de
d/

av
ai

la
bl

e

Year (y = Year - 1994)

Growth rates; a=1.6, r=1e11, various m

Available address bits

m=1
m=10
m=100
m=1000
m=10000

Figure �� Comparison of available address bits with the consumption of address space for a variety of m� where the number

of machines ny� � my� The solid consumption curve indicates the m value used in the other graphs� Other parameters were

r � ���� and a � ����

1995

2000

2005

2010

2015

2020

1e+171e+151e+131e+11 1e+161e+141e+121e+10

Y
ea

r

Consumption rate, r

64-bit address space lifetime; m=100, various a

a=1a=1.1a=1.2a=1.6

a=2

a=3

Figure ��� Comparison of various acceleration factors a�� showing the year in which a �	�bit address space will be completely

consumed based on the initial rate r�� The solid curve indicates the a value used in the other graphs� We assume a ���	 start�

and add m � ��� machines per year�

policies can keep the consumption rate low enough to last until the available address�space doubles again

to ��� bits� Nevertheless� an intermediate jump to �� bits would accommodate the most aggressive growth

trends�

In short� Figures ��� tell us that it is possible to build a long�lived single�address�space system without

complex space�allocation policies� Figure �� presents the lifetime of a ���bit address space for various a and

r� It seems necessary only to re�use data and stack segments� and to use �chunked� �le allocation� for a

system to last more than �� years� To accommodate maximum growth� however� the system should be able

��



to adapt to larger addresses as they became available�

� Summary

We traced several campus workstation clusters to gain an understanding of the current rate of address�

space consumption� and the behavior of several likely policies under the current workload� Most of the

current usage is from private�data and stack segments� with �les using more than an order of magnitude less

space� and shared data an essentially negligible amount� Fortunately� we found realizable allocation policies

��chunked� �le allocation and ��xed� re�use� process allocation� that allowed re�use of the private�data and

stack segments� leading to yearly consumption rates of �� to ��� gigabytes per machine per year� Because

of their simplicity� and low overhead� we recommend these policies�

We used an extrapolation model that assumed an exponential acceleration of the usage rate� linear

growth in the number of machines involved� and linear growth in the number of virtual�address bits� to

predict the future of a single�address�space system� Our model predicts that a single�address�space system

would not run out of virtual�address space� as long as it used reasonable allocation policies �such as the

ones we suggest� and adapted gracefully to larger addresses �e�g�� �� or ��� bits� as they become available�

Indeed� Figure �� shows that a system with a single ���bit address space could add ��� machines each year�

triple its usage rate each year �a � 
�� and still last for �� years� by re�using data and stack segments and

using our �chunked� �le allocation policy�

Although our results necessarily depend on speculation about trends in technology and user behavior�

and may or may not apply to workloads di	erent from the typical o�ce�workstation environment� we believe

that our fundamental predictions are fairly robust� For example� we measured only one workload during one

brief period� yet Figures �� provide fundamentally the same conclusion for a wide range in the value of r�

Similarly� Figure � shows that our ultimate conclusions hold for a wide range of the parameter m� Potential

developers of a single�address�space system who have a better understanding of their system�s workload can

use our model to determine whether simple policies su�ce� Only systems with unpredictable or extremely

aggressive workloads should consider developing more sophisticated allocation policies�

Although there are many other issues involved in building a single�address�space operating system that

are beyond the scope of this paper� it appears that address�space consumption will not be an impossible

hurdle�

��



Acknowledgements

Many thanks to DEC for providing the Ultrix ��
 source code and for providing a workstation and disk space

for the data collection and analysis� and to our campus computer users for allowing us to run an experimental

kernel and to trace their activity� Thanks also to Wayne Cripps and Steve Campbell for their help with the

tracing� Finally� many thanks to the anonymous reviewers for their helpful feedback�

References

�Baker et al� ����� M� Baker� J� Hartman� M� Kupfer� K� Shirri	� and J� Ousterhout� Measurements of a

distributed �le system� In Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles�

pages �������� �����

�Bartoli et al� ���
� A� Bartoli� S� Mullender� and M� van der Valk� Wide�address spaces � exploring the

design space� ACM Operating Systems Review� ������� January ���
�

�Broessler et al� ���� P� Broessler� F� Henskens� J� Keedy� and J� Rosenberg� Addressing objects in a very

large distributed virtual memory� In Distributed Processing� Proceedings of the IFIP WWG ���� Working

Conference� pages �������� ����

�Chase et al� ����� J� Chase� H� Levy� M� Baker�Harvey� and E� Lazowska� How to use a ���bit virtual

address space� Technical Report ����
���� University of Washington� March �����

�Chase et al� ����� J� Chase� H� Levy� M� Feeley� and E� Lazowska� Sharing and protection in a single address

space operating system� ACM Transactions on Computer Systems� ��� May �����

�Garrett et al� ����� W� Garrett� R� Bianchini� L� Kontothanassis� R� McCallum� J� Thomas� R� Wisniewski�

and M� Scott� Dynamic sharing and backward compatibility on ���bit machines� Technical Report ����

Univ� of Rochester Computer Science Department� April �����

�Glass ����� B� Glass� The Mips R����� Byte Magazine� ���������� December �����

�Jain ����� R� Jain� The Art of Computer Systems Performance Analysis� page ���� Wiley� �����

�Koch and Rosenberg ����� D� Koch and J� Rosenberg� A secure RISC�based architecture supporting data

persistence� In Proceedings of the International Workshop on Computer Architectures to Support Security

and Persistence of Information� pages �������� �����

��



�Kotz and Crow ���
� D� Kotz and P� Crow� The expected lifetime of �single�address�space� operating

systems� Technical Report PCS�TR�
����� Dept� of Math and Computer Science� Dartmouth College�

October ���
� Revised in ���� to appear in SIGMETRICS ���� and revised again on March ��� �����

�Lee ����� R� Lee� Precision architecture� IEEE Computer� �������� January �����

�Mullender ���
� S� Mullender� editor� Distributed Systems� pages 
���
��� Addison�Wesley� second edition�

���
�

�Patterson and Hennessy ����� D� Patterson and J� Hennessy� Computer Architecture A Quantitative Ap�

proach� pages ����� Morgan Kaufmann� �����

�Rosenberg et al� ����� J� Rosenberg� J� Reedy� and D� Abramson� Addressing mechanisms for large virtual

memories� The Computer Journal� 
�����
�� November �����

�Rosenberg ����� J� Rosenberg� Architectural and operating system support for orthogonal persistence�

Computing Systems� ��
���

�� Summer �����

�Satyanarayanan ����� M� Satyanarayanan� Andrew �le system benchmark� Carnegie�Mellon University�

�����

�Siewiorek et al� ����� D� Siewiorek� C� Bell� and A� Newell� editors� Computer Structures� principles and

examples� McGraw�Hill� second edition� �����

�Sites ���
� R� Sites� Alpha AXP architecture� Communications of the ACM� 
��

���� February ���
�

�Tanenbaum ����� A� Tanenbaum� Structured Computer Organization� page �� Prentice Hall� third edition�

�����

�Wakerly ����� J� Wakerly� Microcomputer Architecture and Programming� The 	
��� Family� page ����

John Wiley and Sons� �����

�



