
doi:10.1007/3-540-61695-0_1. Copyright 1996 Springer-Verlag.�
Appeared in the Third International Conference of the Austrian Center for Parallel Computation (ACPC).�
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION;�
it may differ slightly from the official published version.�

Flexibility and Performance

of Parallel File Systems

David Kotz and Nils Nieuwejaar

Department of Computer Science
Dartmouth College

Hanover� NH ����� USA
fdfk�nilsg�cs�dartmouth�edu

Abstract� As we gain experience with parallel �le systems� it becomes
increasingly clear that a single solution does not suit all applications� For
example� it appears to be impossible to �nd a single appropriate interface�
caching policy� �le structure� or disk�management strategy� Furthermore�
the proliferation of �le�system interfaces and abstractions make applica�
tions di�cult to port�
We propose that the traditional functionality of parallel �le systems be
separated into two components	 a �xed core that is standard on all plat�
forms� encapsulating only primitive abstractions and interfaces� and a set
of high�level libraries to provide a variety of abstractions and application�
programmer interfaces 
APIs��
We present our current and next�generation �le systems as examples of
this structure� Their features� such as a three�dimensional �le structure�
strided read and write interfaces� and I�O�node programs� are speci�cally
designed with the exibility and performance necessary to support a wide
range of applications�

� Introduction

Scienti�c applications are increasingly dependent on multiprocessor computers
to satisfy their computational needs� Many scienti�c applications� however� also
use tremendous amounts of data ����� input data collected from satellites or seis�
mic experiments� checkpointing output� and visualization output� Worse� some
applications manipulate data sets too large to �t in main memory� requiring
either explicit or implicit virtual memory support� The I�O system becomes the
bottleneck in all of these applications� a bottleneck that is worsening as processor
speeds continue to improve more rapidly than disk speeds�

Fortunately� it is now possible to con�gure most parallel systems with suf�
�cient I�O hardware �		�� Most of today
s parallel computers interconnect tens

This research was funded by NSF under grant number CCR�������� and by NASA
Ames under agreement numbers NCC ����� and NAG ������
This paper appeared previously in ACM Operating Systems Review ��
��� April
����� pp� ������ The only changes are the format� a shorter abstract� and updates
to Section � and the references�



or hundreds of processor nodes� each of which has a processor and memory� with
a high�speed network� Nodes with attached disks are usually reserved as I�O
nodes� while applications run on some cluster of the remaining compute nodes�

In the past few years� many parallel �le systems have been described in
the literature� including Bridge�PFS ��	�� CFS ����� nCUBE ��� OSF�PFS �����
sfs �	��� Vesta�PIOFS ���� HFS �	��� PIOUS ����� RAMA �	�� PPFS ���� Scotch �����
and Galley ���� �	�� Many more techniques for improving the performance of
parallel �le systems have been described� including caching and prefetching �	��
	�� ���� two�phase I�O ����� disk�directed I�O �	��� compute�node caching �����
chunking ����� compression ����� �ltering �	�� 	�� and so forth�

The diversity of current systems and techniques indicates that there is clearly
no consensus about the structure of� interface to� or even functionality of parallel
�le systems� Indeed� it seems that no one interface or structure will be appro�
priate for all parallel applications� for maximum performance� �exibility of the
underlying system is critical �	��� It is important that applications be able to
choose the interface and policies that work best for them� and for application
programmers to have control over I�O ���� ���

This diversity of current systems� particularly of the application�programmer
s
interface �API�� also makes it di�cult to write portable applications� Nearly ev�
ery �le system mentioned above has its own API� A standard interface is being
developed� MPI�IO ���� but even that interface is appropriate only for a certain
class of applications�

� Solution

We believe that �exibility is needed for performance� An application programmer
should be able to choose the interfaces and abstractions that work best for that
application� To be practical� however� these interfaces and abstractions should
be available on all platforms� so the application is portable� and each platform
should support multiple interfaces and abstractions� so the platform is usable by
many applications�

Consider Figure �� Most traditional parallel �le�system solutions attempt to
provide a common �le system that hopes to �t all applications� This common
�core� �le system is �xed� in that it must be used by all applications accessing
parallel �les�� To increase �exibility� we propose to move much of the function�
ality out of the core and into application libraries� Our new Galley Parallel File
System takes this �RISC��like approach�

The new core �le system provides only a minimal set of services� leaving
higher�level interfaces� semantics� and functionality to application�selectable li�
braries� While the implementation of the core is platform dependent� and pro�
vided by the platform vendor� its interface is standard across all platforms� This
approach has proven successful with the MPI message�passing standard �	���

� We avoid the term �kernel�� as the core may be comprised of user�level libraries�
server daemons� and kernel code�



Compute
node

I/O node

application

core
file

system
core FS

application

application
library

application

application
library

core FS

Traditional Galley Galley2

a) b) c)

Fig� �� Our proposed evolution of parallel �le�system structure� Traditional systems
depend on a �xed �core� �le system that attempts to serve all applications� In our
Galley File System� we shrink the core to leave the API and many of the parallel features
to an application�selectable library� In our next�generation Galley� File System� we
shrink the core further to allow user�selected code to run on the I�O nodes�

Application programmers may then choose from a variety of di�erent lan�
guages and libraries� to select one that best �ts the application
s needs� Some
languages or libraries would provide a traditional read�write abstraction� others
�probably with compiler support� would provide transparent out�of�core data
structures� still others may provide persistent objects� Some libraries may be
designed for particular application classes like computational chemistry ���� or
to support a particular language ��� ��� Finally� some compilers and program�
mers may choose to generate application�speci�c code using the core interface
directly�

The concept of I�O libraries is not new� the C stdio library and the C��
iostreams library are common examples� both layered above the �core� kernel
interface� Yet few parallel �le systems have been designed speci�cally to support
a variety of high�level libraries� The di�culty is in deciding how to divide fea�
tures between the core and the application libraries� and then in designing an
appropriate core interface� In our research to explore this issue� we are building
two generations of �le systems� In the �rst� Galley� we investigate the underlying
�le abstraction� a low�level read�write interface� and resource�scheduling alter�
natives� In the second� with the tentative name Galley	� we go a step further
and allow user code to run on the I�O nodes� The next two sections discuss each
�le system in more detail�

� The Galley Parallel File System

Our current parallel �le system� Galley ���� �	�� looks like Figure �b� A more
detailed picture is shown in Figure 	� The core �le system includes servers that
run on the I�O nodes and a tiny interface library that runs on the compute nodes�
The I�O�node servers manage �le�system metadata� I�O�node caching� and disk



scheduling� The interface library translates library calls into messages to servers
on the I�O nodes and arranges the movement of data between compute and I�O
nodes� The higher�level application library� if any� is responsible for providing a
convenient API� data declustering� �le�access semantics� and any compute�node
caching�

Compute Nodes

Interconnection
Network

I/O Nodes

kernel

I/O server

kernel

I/O library B

application B

interface

kernel

I/O library B

application B

interface

kernel

I/O library B

application B

interface

kernel

I/O library B

application B

interface

kernel

I/O library A

application A

interface

kernel

I/O library A

application A

interface

kernel

I/O library A

application A

interface

kernel

I/O library A

application A

interface kernel

I/O server

kernel

I/O server

kernel

I/O server

kernel

I/O server

kernel

I/O server

Fig� �� The structure of the Galley parallel �le system includes a tiny interface library
on the compute node� which coordinates communication between application I�O li�
braries on the compute nodes and servers on the I�O nodes�

Galley
s servers provide a uni�ed global �le�name space� Each �le is actually
a collection of sub�les� each of which resides entirely on one I�O node� Each
sub�le is itself a collection of one or more named forks� Each fork is a sequence
of bytes� the traditional �le abstraction� Galley
s core �le system provides no
automatic data declustering� a library may choose to stripe data across sub�les�
for example�

Galley
s forks are speci�cally designed to support libraries� In particular�
some libraries may wish to store metadata in one or more forks of the sub�le�
with data in other forks� The traditional approach is to place the metadata
in an auxiliary �le or in a �header� at the beginning of the data� The former
approach makes �le management awkward� as there is more than one �le name
involved in a single data set� The latter approach makes it di�cult to access the
�le through multiple libraries� each of which expects its own header� and can
complicate declustering calculations� In Galley each library can add its own fork
to the sub�les� containing its own metadata�

The structure of parallel �les� beyond the fact that they are collections of local
�les� is completely determined by library code� Multiple applications wishing



to use the same parallel �les must maintain a mutually agreed structure� by
convention�

In an extensive characterization of parallel scienti�c applications ����� we
found that many applications access �les in small pieces� typically in a regular
�strided� pattern� To allow application libraries to support these patterns e��
ciently� the Galley interface supports both structured �e�g�� strided and nested
strided� and unstructured read and write requests� This interface leads to dra�
matically better performance ��	��

Galley
s features� including the global name space� three�dimensional �le
structure� and structured read and write requests� make it a suitable and ef�
�cient base for constructing parallel �le systems� much more so than building
directly on distributed Unix systems�

More information about Galley is available on the WWW� and in forthcom�
ing papers ���� �	��

� The Galley� Parallel File System

Our next�generation �le system� which we so far call �Galley	� for lack of a better
name� goes beyond Galley to allow application control over I�O�node activities�
We keep the same three�dimensional �le structure of sub�les and forks� and we
keep the global name space� but we otherwise reduce the core �le system to a
minimal local �le system on each I�O node� and allow application�supplied code
to run on the I�O nodes �see Figure �c�� Indeed� we expect that an I�O node
would have an active process �or thread� for each application with �les on that
I�O node� Figure � gives a more detailed picture of this structure�

This structure breaks away from the traditional client�server structure to
allow for �programmable� servers� A �xed� common server always forces design�
ers to choose between speci�c high�level services that may not �t the needs of
all applications� and primitive low�level operations that permit �exibility in the
clients but at the cost of extensive client�server communications� Galley makes
a reasonable choice here� but �for example� uses a �xed caching policy�

In Galley	 the core �le system is extremely simple� there is no caching�
prefetching� or remote access� It provides a �local� interface to open� close� read
and write forks through a block�level interface� and it arbitrates among I�O�
node programs competing for processor time� memory� disk access� and network
access� In short� it focuses on the shared aspects of the �le system�

Thus� Galley	 applications can choose nearly all features of the parallel �le
system� including the API� caching� prefetching� declustering� inter�node com�
munication protocols� synchronization and consistency� and so forth� Again� we
expect most applications to choose from pre�de�ned libraries� but we also en�
courage use of application�speci�c code written by application programmers�
generated automatically by compilers� or generated at run time ����� We refer to
all of these choices as �application�selected code��

� http���www�cs�dartmouth�edu��nils�galley�html



Compute Nodes

Interconnection
Network

I/O Nodes

kernel

I/O manager

BA

kernel

I/O library B

application B

kernel

I/O manager

BA

kernel

I/O manager

BA

kernel

I/O manager

BA

kernel

I/O manager

BA

kernel

I/O manager

BA

kernel

I/O library B

application B

kernel

I/O library B

application B

kernel

I/O library B

application B

kernel

I/O library A

application A

kernel

I/O library A

application A

kernel

I/O library A

application A

kernel

I/O library A

application A

Fig� �� The structure of the Galley� parallel �le system depends on application I�O
libraries that have components on both the compute and I�O nodes� The I�O�node
servers shrink down to simple I�O managers that arbitrate resources among the local
user�selected library modules�

There are many reasons to allow application�selected code on the I�O node�
Application�speci�c optimizations can be applied to I�O�node caching and prefetch�
ing�Mechanisms like disk�directed I�O �	�� can be implemented� using application�
speci�c data�distribution information� File data can be distributed among mem�
ories according to a data�dependent mapping function� for example� in applica�
tions with a data�dependent decomposition of unstructured data �	��� Incoming
data can be �ltered in a data�dependent way� passing only the necessary data
on to the compute node� saving network bandwidth and compute�node mem�
ory �	�� 	�� Blocks can be moved directly between I�O nodes� for example� to
rearrange blocks between disks during a copy or permutation operation� without
passing through compute nodes� Format conversion� compression� and decom�
pression are also possible� In short� there are many ways that we can optimize
memory and disk activity at the I�O node� and reduce disk and network tra�c�
by moving what is essentially application code to run at the I�O node in addition
to the compute nodes�

Although it would be feasible to use a Unix �le system as the local �le system�
the semantics and interface are not appropriate for the highest performance� In
particular� the Unix �le�system interface does not give the applications enough
control� would have no global name space� and has an ine�cient copy�based
interface�



� Research directions

The success of our design clearly depends on the ability of the I�O�node oper�
ating system to e�ciently manage its resources while providing the necessary
functionality� We are exploring the following issues�

� resource management� how should the I�O node manage its shared resources
in the presence of competing applications� The result must be a tradeo�
between overall system throughput and individual application performance�
Traditional uniprocessor policies do not directly apply to this distributed
situation� local resource decisions can have a disproportionate global impact
on performance�

� physical memory allocation� how should we best allocate physical memory
among I�O�node programs�

� processor scheduling� how shall we schedule the CPU among I�O�node pro�
grams� What about applications that choose to move some non�I�O�related
computation to the I�O node�

� disk transfers� what is an appropriate interface for requesting I�O to and
from bu�ers�

� message�passing� what is the best interface for I�O�node programs to com�
municate with the compute nodes� and with each other�

� What is the appropriate mechanism to support I�O�node programs� We are
considering three alternatives� processes� threads within a safe language like
Java ���� or Python�� and threads running sandboxed code ����� There are
three primary issues in this consideration�
�� how is the I�O�node manager protected from I�O�node programs� With

normal hardware protection� in the case of processes� with type�safe lan�
guages like Java� or with sandboxing�

	� how is the code loaded onto the I�O node� Presumably they can be
loaded from disk in the same way as the compute�node code� The tricky
part might be dynamic linking of sandboxed code�

�� what is the overhead�

� Related work

The Hurricane File System �HFS� �	��� a parallel �le system for the Hector mul�
tiprocessor� is also designed with the philosophy that �exibility is critical for
performance� Indeed� their results clearly demonstrate the tremendous perfor�
mance impact of choosing the right �le structure and management policies for
the application
s access pattern� HFS is actually a collection of building�block
objects that can be plugged together di�erently according to application needs�
For example� some building blocks distribute data across multiple disks� others
provide prefetching policies� and others de�ne an API� HFS allows the program�
mer to replace or extend application�level building blocks� but these do not

� http���www�python�org�



include the objects that control declustering� replication� parity� or other server�
side attributes� Galley permits� but does not enforce� a building�block approach
to library design� other approaches are possible� Finally� the Hurricane operating
system does not dedicate nodes to I�O� so it is not unusual for application code
to run on �I�O� nodes�

The Portable Parallel File System �PPFS� ��� is a testbed for experimenting
with parallel �le�system issues� It includes many alternative policies for declus�
tering� caching� prefetching� and consistency control� and allows application pro�
grammers to select appropriate policies for their needs� It also supports user�
de�ned declustering patterns through an upcall function� Unlike Galley� however�
there is no clearly de�ned lower�level interface to which programmers may write
new high�level libraries� Unlike Galley	� it does not allow application�selected
code �beyond that already included in PPFS� to execute on the I�O nodes�

In the Transparent Informed Prefetching �TIP� system ���� an application
provides a set of hints about its future accesses to the �le system� The �le
system uses these hints to make intelligent caching and prefetching decisions�
While this technique can lead to better performance through better prefetching�
it only a�ects prefetching and caching behavior� It is possible to provide �hints
that disclose�� in their words� for other aspects of the system� but it is unclear
that these hints can provide the same amount of �exibility o�ered by Galley and
Galley	�

All three of these systems provide the application programmer some control
over the parallel �le system� primarily by selecting existing policies from the
built�in alternatives�

Galley	 promotes the use of application�selected code on the I�O nodes� Sev�
eral operating systems can download user code into the kernel ���� 	�� ��� Other
researchers have noted that it is useful to move the function to the data rather
than to move the data to the function ��� �	� ���� Some distributed database
systems execute part of the SQL query in the server rather than the client� to
reduce client�server tra�c �	�� Hatcher and Quinn hint that allowing user code
to run on nCUBE I�O nodes would be a good idea �����

� Status

Galley runs on the IBM SP�	 and on workstation clusters ����� and has so far
been extremely successful ��	�� We have ported several application libraries on
top of Galley� including a traditional striped��le library� Panda ��� ���� Vesta ����
and SOLAR ����� We are also using Galley to investigate policies for managing
multi�application workloads�

We are building a simulator for Galley	� to evaluate some of the key ideas�
and a full implementation� to experiment with real applications� There is no
question that it will be a much more �exible system than Galley and its prede�
cessors� We will declare success if that �exibility provides better performance on a
wider range of applications� That will occur if the bene�ts of application�speci�c



I�O�node programs outweigh the cost of the extension mechanism �sandboxing�
context switching� or interpretation�� We are optimistic�

More information about our research can be found at

http���www�cs�dartmouth�edu�research�pario�html

References

�� B� Bershad� S� Savage� P� Pardyak� E� G�un Sirer� M� E� Fiuczynski� D� Becker�
C� Chambers� and S� Eggers� Extensibility� safety and performance in the SPIN
operating system� In Proc� of the ��th ACM SOSP� pages �������� Dec� �����

�� A� J� Borr and F� Putzolu� High performance SQL through low�level system inte�
gration� In Proc� of the ACM SIGMOD Conf�� pages �������� �����

�� J� B� Carter� J� K� Bennett� and W� Zwaenepoel� Techniques for reducing
consistency�related communication in distributed shared�memory systems� ACM
TOCS� ��
��	�������� Aug� �����

�� A� Choudhary� R� Bordawekar�
M� Harry� R� Krishnaiyer� R� Ponnusamy� T� Singh� and R� Thakur� PASSION	
parallel and scalable software for input�output� Technical Report SCCS����� ECE
Dept�� NPAC and CASE Center� Syracuse University� Sept� �����

�� P� Corbett� D� Feitelson� Y� Hsu� J��P� Prost� M� Snir� S� Fineberg� B� Nitzberg�
B� Traversat� and P� Wong� MPI�IO	 a parallel �le I�O interface for MPI� Techni�
cal Report NAS�������� NASA Ames Research Center� Jan� ����� Version ����

�� P� F� Corbett� D� G� Feitelson� J��P� Prost� G� S� Almasi� S� J� Baylor� A� S� Bol�
marcich� Y� Hsu� J� Satran� M� Snir� R� Colao� B� Herr� J� Kavaky� T� R� Morgan�
and A� Zlotek� Parallel �le systems for the IBM SP computers� IBM Sys� Journal�
��
��	�������� Jan� �����

�� T� H� Cormen and A� Colvin� ViC�	 A preprocessor for virtual�memory C�� Tech�
nical Report PCS�TR������� Dept� of Computer Science� Dartmouth College� Nov�
�����

�� T� H� Cormen and D� Kotz� Integrating theory and practice in parallel �le systems�
In Proc� of the ���� DAGS�PC Symposium� pages ������ Hanover� NH� June �����
Dartmouth Inst� for Adv� Graduate Studies� Revised as Dartmouth PCS�TR���
��� on ��������

�� E� DeBenedictis and J� M� del Rosario� nCUBE parallel I�O software� In Proc� of
the ��th IPCCC� pages ���������� Apr� �����

��� J� M� del Rosario� R� Bordawekar� and A� Choudhary� Improved parallel I�O via a
two�phase run�time access strategy� In IPPS ��� Workshop on I�O in Par� Comp�
Sys�� pages ������ ����� Also published in Computer Architecture News ��
���
December ����� pages ������

��� J� M� del Rosario and A� Choudhary� High performance I�O for parallel computers	
Problems and prospects� IEEE Computer� ��
��	������ Mar� �����

��� P� C� Dibble� A Parallel Interleaved File System� PhD thesis� University of
Rochester� Mar� �����

��� I� Foster and J� Nieplocha� ChemIO	 High�performance I�O for computational
chemistry applications� WWW http	��www�mcs�anl�gov�chemio�� Feb� �����

��� R� S� Gaines� An operating system based on the concept of a supervisory computer�
Comm� of the ACM� ��
��	�������� Mar� �����



��� G� A� Gibson� D� Stodolsky� P� W� Chang� W� V� Courtright II� C� G� Demetriou�
E� Ginting� M� Holland� Q� Ma� L� Neal� R� H� Patterson� J� Su� R� Youssef� and
J� Zelenka� The Scotch parallel storage systems� In Proc� of ��th IEEE Computer
Society International Conference 	COMPCON ��
� pages �������� San Francisco�
Spring �����

��� J� Gosling and H� McGilton� The Java language	 A white paper� Sun Microsys�
tems� �����

��� R� S� Gray� Agent Tcl	 A transportable agent system� In Proceedings of the CIKM
Workshop on Intelligent Information Agents� Fourth International Conference on
Information and Knowledge Management 	CIKM ��
� Baltimore� Maryland� Dec�
�����

��� P� J� Hatcher and M� J� Quinn� C��Linda	 A programming environment with mul�
tiple data�parallel modules and parallel I�O� In Proc� of the ��th HICSS� pages
�������� �����

��� J� Huber� C� L� Elford� D� A� Reed� A� A� Chien� and D� S� Blumenthal� PPFS	
A high performance portable parallel �le system� In Proc� of the �th ACM Int�l
Conf� on Supercomp�� pages �������� Barcelona� July �����

��� D� Kotz� Disk�directed I�O for MIMD multiprocessors� In Proc� of the ���� Symp�
on OS Design and Impl�� pages ������ Nov� ����� Updated as Dartmouth TR PCS�
TR������ on November �� �����

��� D� Kotz� Expanding the potential for disk�directed I�O� In Proc� of the ���� IEEE
SPDP� pages �������� Oct� �����

��� D� Kotz� Introduction to multiprocessor I�O architecture� In R� Jain� J� Werth�
and J� C� Browne� editors� Input�Output in Parallel and Distributed Computer
Systems� chapter �� pages ������� Kluwer Academic Publishers� �����

��� D� Kotz and C� S� Ellis� Caching and writeback policies in parallel �le systems� J�
of Par� and Dist� Comp�� ��
����	�������� January and February �����

��� D� Kotz and C� S� Ellis� Practical prefetching techniques for multiprocessor �le
systems� J� of Dist� and Par� Databases� �
��	������ Jan� �����

��� O� Krieger and M� Stumm� HFS	 A performance�oriented exible �le system based
on building�block compositions� In �th Workshop on I�O in Par� and Dist� Sys��
pages ������� Philadelphia� May �����

��� C� H� Lee� M� C� Chen� and R� C� Chang� HiPEC	 High performance external
virtual memory caching� In Proc� of the ���� Symp� on OS Design and Impl��
pages �������� �����

��� S� J� LoVerso� M� Isman� A� Nanopoulos� W� Nesheim� E� D� Milne� and
R� Wheeler� sfs	 A parallel �le system for the CM��� In Proc� of the ���� Summer
USENIX Conf�� pages �������� �����

��� Message Passing Interface Forum� MPI A Message�Passing Interface Standard�
��� edition� May � ����� http	��www�mcs�anl�gov�Projects�mpi�standard�html�

��� E� L� Miller and R� H� Katz� RAMA	 Easy access to a high�bandwidth massively
parallel �le system� In Proc� of the ���� Winter USENIX Conf�� pages ������ Jan�
�����

��� S� A� Moyer and V� S� Sunderam� PIOUS	 a scalable parallel I�O system for dis�
tributed computing environments� In Proc� of the Scalable High�Perf� Comp� Conf��
pages ������ �����

��� N� Nieuwejaar and D� Kotz� The Galley parallel �le system� In Proc� of the ��th
ACM Int�l Conf� on Supercomp�� pages �������� May �����

��� N� Nieuwejaar and D� Kotz� Performance of the Galley parallel �le system� In �th
Workshop on I�O in Par� and Dist� Sys�� pages ������ May �����



��� N� Nieuwejaar� D� Kotz� A� Purakayastha� C� S� Ellis� and M� Best� File�access
characteristics of parallel scienti�c workloads� Technical Report PCS�TR�������
Dept� of Computer Science� Dartmouth College� Aug� ����� To appear in IEEE
TPDS�

��� R� H� Patterson� G� A� Gibson� E� Ginting� D� Stodolsky� and J� Zelenka� Informed
prefetching and caching� In Proc� of the ��th ACM SOSP� pages ������ Dec� �����

��� P� Pierce� A concurrent �le system for a highly parallel mass storage system� In
Proc� of the Fourth Conf� on Hypercube Concurrent Comp� and Appl�� pages ����
���� Golden Gate Enterprises� Los Altos� CA� Mar� �����

��� C� Pu� T� Autrey� A� Black� C� Consel� C� Cowan� J� Inouye� L� Kethana�
J� Walpole� and K� Zhang� Optimistic incremental specialization	 Streamlining
a commercial operating system� In Proc� of the ��th ACM SOSP� pages ��������
Dec� �����

��� A� Purakayastha� C� S� Ellis� and D� Kotz� ENWRICH	 a compute�processor write
caching scheme for parallel �le systems� In �th Workshop on I�O in Par� and Dist�
Sys�� pages ������ May �����

��� P� J� Roy� Unix �le access and caching in a multicomputer environment� In Proc�
of the Usenix Mach III Symposium� pages ������ �����

��� K� E� Seamons� Y� Chen� P� Jones� J� Jozwiak� and M� Winslett� Server�directed
collective I�O in Panda� In Proc� of Supercomp� ���� Dec� �����

��� K� E� Seamons and M� Winslett� An e�cient abstract interface for multidimen�
sional array I�O� In Proc� of Supercomp� ���� pages �������� Nov� �����

��� K� E� Seamons and M� Winslett� A data management approach for handling large
compressed arrays in high performance computing� In Proc� of the �th Symp� on
the Frontiers of Massively Par� Comp�� pages �������� Feb� �����

��� J� W� Stamos and D� K� Gi�ord� Remote execution� ACM TOPLAS� ��
��	����
���� Oct� �����

��� J� T� Thomas� The Panda array I�O library on the Galley parallel �le system�
Technical Report PCS�TR������� Dept� of Computer Science� Dartmouth College�
June ����� Senior Honors Thesis�

��� S� Toledo and F� G� Gustavson� The design and implementation of SOLAR� a
portable library for scalable out�of�core linear algebra computations� In �th Work�
shop on I�O in Par� and Dist� Sys�� pages ������ Philadelphia� May �����

��� R� Wahbe� S� Lucco� T� E� Anderson� and S� L� Graham� E�cient software�based
fault isolation� In Proc� of ��th ACM SOSP� pages �������� �����

��� D� Womble� D� Greenberg� R� Riesen� and S� Wheat� Out of core� out of mind	
Practical parallel I�O� In Proc� of the Scalable Par� Libraries Conf�� pages ������
Mississippi State University� Oct� �����

This article was processed using the LaTEX macro package with LLNCS style


