
Copyright 1992 by the authors

Multiprocessor File System Interfaces�

David Kotz

Department of Math and Computer Science
Dartmouth College

Hanover� NH ����������
David�Kotz�Dartmouth�edu

Dartmouth PCS�TR	
���	 �revised�
�Abstract appeared in �		
 USENIX Workshop on File Systems�

March ��� �		

Revised May �	� �		


Abstract

Increasingly� �le systems for multiprocessors are designed with parallel access to multiple
disks� to keep I�O from becoming a serious bottleneck for parallel applications� Although �le
system software can transparently provide high�performance access to parallel disks� a new �le
system interface is needed to facilitate parallel access to a �le from a parallel application� We
describe the di�culties faced when using the conventional �Unix�like� interface in parallel appli�
cations� and then outline ways to extend the conventional interface to provide convenient access
to the �le for parallel programs� while retaining the traditional interface for programs that have
no need for explicitly parallel �le access� Our interface includes a single naming scheme� a mul�

tiopen operation� local and global �le pointers� mapped �le pointers� logical records� multi�les�
and logical coercion for backward compatibility�

� Introduction

Multiprocessors have increased in computational power to match that of �traditional� vector�

processing supercomputers� and are beginning to be used for production supercomputing� Super�

computer applications often have tremendous �le I�O requirements� involving many megabytes or

even gigabytes of data� In some applications I�O accounts for a signi�cant portion of the execution

time�

The new multiprocessors have renewed interest in parallel programming methodology� Much

attention has been given to programming languages� environments� debuggers� operating systems�

�This research was supported in part by startup research funds from Dartmouth College and by DARPA�NASA
subcontract of NCC������

�



and support libraries� all with the intent of simplifying parallel programming and increasing perfor�

mance� I�O was all but ignored in many early multiprocessors� with all I�O handled by a �host� or

�master� processor� creating a signi�cant bottleneck�� Newer multiprocessors have disks attached

directly to the multiprocessor� and decluster �le data across multiple disks�� Although this archi�

tecture permits parallel �le access� �le system software often lacks convenient parallel access to the

parallel disks�

Most existing multiprocessor �le systems are based on the conventional �le system interface

�which has operations like open� close� read� write� and seek	� These hide the underlying parallel

nature of the �le� providing portability� Although sequential applications can access parallel �le

systems with high performance� parallel applications with all processes participating in reading or

writing the �le are more successful 
KE��b� KE��a�� To scale without the limitations of Amdahls

Law� parallel programs must parallelize �le access�

For concreteness� we use the Unix �le system interface 
RT��� as an example of a conventional

interface� Advantages to using the Unix �or similar	 interface for a multiprocessor include applica�

tion portability� programmer familiarity� and simplicity� This interface does not� however� directly

support parallel �le access� Thus we propose an extension to the conventional interface� which

supports the most common parallel access patterns while hiding the details of the underlying par�

allel disk structure� It is implementable on both uniprocessors and multiprocessors� and on single�

and multi�disk systems� Finally� since it is an extension� it still supports programs ported from

other systems� programmers who do not require the expressive power of the extended interface�

and access via a standard network �le system�

In the next section we give some basic background information on multiprocessor I�O archi�

tecture and �le systems� In Section � we de�ne the kind of workloads that a multiprocessor �le

system may have to support� Section � outlines many problems with using the Unix interface for

programming these access patterns� In Section � we describe the strengths and weaknesses of exist�

ing or proposed multiprocessor �le system interfaces� Then in Section � we describe our proposed

interface� and Section � concludes with some ideas for future work�

�Consider� for example� the earliest BBN Butter�y� Intel iPSC� Connection Machine� and MasPar computers�
�Declustering distributes 	le data across multiple disks in units of one bit� byte� or block� Interleaving is a

declustering that allocates the bits or blocks in a round�robin ordering�

�



� Background

Much of the previous work in I�O hardware parallelism involves disk striping� In this technique�

a �le is interleaved across numerous disks and accessed in parallel to simultaneously obtain many

blocks of the �le with the positioning overhead of one block 
SGM��� Kim��� PGK���� All of these

schemes rely on a single controller to manage all of the disks� and are intended for uniprocessors�

There are two ways to attach multiple disks to a multiprocessor� The �rst is to use a striped

array of disks �e�g�� a Redundant Array of Inexpensive Disks� or RAID 
PGK���	� and attach

the arrays controller to a processor or to the interconnection network� as shown in Figure ��

The second is to attach independent controllers and disks to separate processors or ports on the

interconnection network� as shown in Figure �� In either case �les are declustered over many disks�

We call the latter structure Parallel Independent Disks �PID�� Examples of multiprocessors using

a PID architecture include the Intel 
Int��� Int���� nCUBE 
nC��� DdR��� PFDJ���� and Kendall

Square Research 
KSR��� multiprocessors�

� The Workload

Parallel �le systems and the applications that use them are not su�ciently mature for us to know

what access patterns might be typical� Here we de�ne our expectations for parallel �le access

patterns in a scienti�c workload� This is important� since they motivate many features in our

interface� Since we concentrate on the programmers interface to the �le system� we work with �le

access patterns� rather than disk access patterns�

In our research we do not investigate read�write �le access patterns� because most �les are

opened for either reading or writing� with few �les updated 
Flo��� OCH����� We expect this to

be especially true for the large �les used in scienti�c applications� Thus� we consider primarily

sequential� read�only and write�only patterns of access to the records of a �le�

All sequential patterns consist of a sequence of accesses to sequential portions� A portion is

some number of contiguous records in the �le� Note that the whole �le may be considered one large

portion� The accesses to this portion may be sequential when viewed from a local perspective� in

which a single process accesses successive records of the portion� We call these locally sequential

access patterns� or just local access patterns� This is the traditional notion of sequential access used

in uniprocessor �le systems�

Alternatively� the pattern of accesses may only look sequential from a global perspective� in

�



Memory

Processor

NetworkMemory

Processor

Memory

Processor

DiskDisk

RAID

Figure �� A RAID attached to an MIMD multiprocessor�

Network

Memory

Processor

Memory

Processor

Memory

Processor

Disk

Disk

Disk

Figure �� Parallel Independent Disks �PID	 in an MIMD multiprocessor�

�



which many processes share access to the portion� reading disjoint records of the portion� Typically�

these arise from self�scheduled access to the �le 
Cro���� We call these globally sequential access

patterns� or just global access patterns�

Examples of local access patterns include� reading �or writing	 the whole �le sequentially� read�

ing large sequential portions with jumps between portions� dividing the �le into disjoint segments�

with each process process reading �or writing	 its own segment sequentially� and an interleaved pat�

tern where processes access records in a strictly round�robin ordering� Global access patterns are

based on self�scheduled access to records� either through the whole �le� or within large sequential

portions with jumps between portions�

� The Conventional Interface

We use the Unix �le system interface as an example of a conventional interface� The Unix �le

system interface is in increasingly widespread use� even in multiprocessors �e�g�� those made by

Sequent� Encore� BBN� Intel� nCUBE� Kendall Square Research� Alliant� MasPar� and Thinking

Machines	� Note that some of these implement the Unix �le system interface without the Unix �le

system or the rest of the Unix operating system�

In the Unix �le system a �le is modeled as an addressable sequence of bytes �sometimes referred

to as a �seekable stream�	� The interface is de�ned by the kernel �le system calls 
RT���� The

operations provided are open� create �called creat in Unix	� close� read� write� and seek �called lseek

in Unix	� The open and close operations mark the start and end of activity on a given �le� Create

creates a �le if necessary� Open is provided a �le name and an intention �read� write� append� or

read�write	� and returns a �le descriptor that is used in all of the other operations� Associated with

the �le descriptor is an implicit �le pointer that maintains the current �le position� The �le pointer

is used and updated by read and write� and reset by seek� Read and write take a �le descriptor�

a user bu�er� and a length in bytes� and return the actual number of bytes read or written �zero

at end of �le	� The data are transferred from or to the �le position indicated by the �le pointer�

and the �le pointer is updated to point just after the last byte read or written� Seek requires a �le

descriptor� a byte o�set� and a mode indicating that the o�set is relative to the beginning of the

�le� to the end of the �le� or to the current �le position� Seek returns the new �le position� Extra

features� such as support for logical records and indexed �les� are not part of the basic Unix �le

system�

Depending on the particular multiprocessor implementation of the Unix interface� there are

�



many di�culties in using the interface to program a parallel �le access pattern� Note that our

complaints are not with Unix speci�cally� but with the Unix �le system model �which was never

intended for a multiprocessor environment	� We discuss several problems here� sometimes by con�

sidering how one would specify parallel �le access patterns using the Unix interface�

��� Sharing open �les

In our model of parallel applications� all processes that are part of a single parallel program access

a common �le� Typically� each process must open the �le independently� This requires all processes

to have access to the �le name and read�write intention� It also generates many open requests that

must be processed by the �le system� Thus� it is both inconvenient and ine�cient to depend on a

single�process open operation�

Note that with Unix process semantics� not necessarily included in a system supporting Unix�

like �le semantics� a �le open at the time of a fork is also open in the new process created by the

fork �
LMKQ���� page ���	� They also share the same �le pointer� For systems supporting this

or some other form of open��le inheritance� the multitude of single�process open operations can be

avoided� It is� however� limited to �les open before the fork� and thus to closely related process

groups� It is not a general�purpose mechanism for opening �les in arbitrary process groups� In Unix

���BSD� an open �le can be shared with an arbitrary process by passing it through a Unix�domain

socket �
LMKQ���� page ���	� although this mechanism is complicated�

��� Self�scheduled access

Global access patterns arise when the processes read or write the �le in a self�scheduled order� The

ideal mechanism for this is a �le pointer that is shared by all processes� and atomically updated by

the read and write operations� Although some versions of Unix do have shared �le pointers� there

is not enough concurrency control in most implementations of this mechanism to make accesses to

the shared �le pointer atomic�� Unix ���BSD supports an atomic�append mode �
LMKQ���� page

���	� which handles one common case� but not the general case�

A general self�scheduled access order can be implemented using only the Unix �le system se�

mantics� A shared counter is used to indicate the next byte of the �le to be read or written� The

counter is atomically incremented by the length of the record a process wishes to read �write	� using

�One would expect the individual read and write operations to be atomic� but we found that this was not always
true� File locking is supported by some Unix versions� and could be used to enforce atomic access�

�



a fetch�and�add operator�� The original value of the counter� obtained from the fetch�and�add� is

used in a seek operation� which is followed by the read or write� There are three problems with this

implementation� First� it requires shared memory�� Second� it requires care by the programmer to

properly maintain the atomicity of the overall operation� Third� the record length must be known

in advance� which is di�cult when reading variable�length records� This case requires either a

separate record index or more serialization� Note that a strictly interleaved pattern� which is �in

some sense	 a special case of the self�scheduled pattern� avoids the shared memory requirement��

the fetch�and�add� and some of the atomicity problems� but still forces the user to compute �le

positions for seek � It also has the problem with variable�length records� Finally� if the global pat�

tern has sequential portions� additional synchronization is needed to detect the end of a portion�

to choose the next portion� and to reset the shared counter used above�

��� Declustering

We assume that each �le is declustered across many disks in the system� If the �le system does

not maintain the declustering information for each �le� forcing the programmer to specify the set

of disks� disk �les� or disk blocks� then transparency is lost and the interface is much harder to use�

An example of this situation is in 
Cro���� Another example is the nCUBE �le system prior to

����� which does not distribute a single �le across disks 
PFDJ���� We believe that it is important

to have a single name �e�g�� Unix pathname	 that de�nes the parallel �le� and to leave the rest to

the �le system�

��� Segmented �les

Consider programming the read�only segmented access pattern� In this pattern� the �le is divided

into disjoint segments� one per process� Each process must open the �le� then locate and read its

segment� The process �or some master process	 must �nd the length of the �le� use the length to

compute the length of the segments� determine the segment it is to read� seek to the beginning

of its segment� and read bytes of the �le until the end of its segment is reached� If the division

into segments is a simple matter of dividing the �le length by the number of processes� then little

work is needed� If� however� the �le contains logical records� care must be used to divide the �le at

�Fetch�and�add is described in 
GLR��� Note that it can� if necessary� be implemented on top of an existing lock
primitive�

�Although a shared counter could be implemented by sending messages to a �master� process� this is not likely
to be e�cient�

�This is probably one reason why it is used in many distributed�memory 	le applications�

�



record boundaries� Another problem is assigning segments to processes� which may be facilitated

by a shared counter or by predetermined process identi�ers�

Now consider programming the write�only segmented access pattern� Here� each process writes

a separate segment of the �le� The assignment of segments to processes is similar to the read�only

case� but this time it is much more di�cult to determine the starting position and length of each

segment� Unless the eventual length of each segment is known in advance� the starting positions of

the segments are impossible to compute�

��� Bu�ering

User�level bu�ering� such as that in the Unix stdio interface� can lead to incorrect results� If the

user�level bu�ers are allocated on a per�process� per��le basis� then bu�er consistency problems

arise� For example� one process writes some data to a �le� but the data remains in the user�level

bu�er� Another process then tries to read that part of the �le� and receives outdated data since

it �and the �le system	 has no knowledge of the new data in the �rst processs bu�er� Thus� any

user�level bu�ering must be carefully integrated with the �le system caching mechanism�

��	 Summary

Overall� the Unix �le system interface and semantics either cannot support our expected parallel

I�O access patterns� or can only support them with great di�culty� Programmers need a higher�

level interface to easily take advantage of parallel I�O�

� Existing Multiprocessor File System Interfaces

Several researchers have discussed parallel I�O interfaces for MIMD multiprocessors� Dibble� in

his design of the Bridge �le system 
Dib���� de�nes three interfaces� standard� which is essentially

our conventional interface� parallel open� in which a control process issues all the read and write

requests� automatically transferring one record in or out of every process� and tools� Tools have

access to the local �le systems of each disk� allowing the data on each disk to be handled by the

attached processor� minimizing data �ow in the processor interconnection network� The standard

interface is there for compatibility� the tools for performance� and the parallel�open interface for a

compromise�

Intels �le system for their iPSC�� and iPSC���� multiprocessors� CFS 
Pie���� also provides

three interfaces 
AS���� standard �conventional	� random�sequential access� which uses a self�

�



scheduled shared �le pointer �allowing atomic append	� and coordinated� which is for interleaved

access with either a �xed or variable record size� CFS forces each process to open the �le indepen�

dently� This is particularly di�cult when creating a �le� one process creates the �le� all processes

synchronize at a barrier� and then the others open the �le� The �le system for the newer Intel

Paragon appears to be a Unix �le system� based on the OSF�� operating system 
Int���� although

CFS access modes are still available�

Another parallel �le system is based on ways to lay out a �le on parallel disks 
Cro��� Cro����

One interface provides self�scheduled access with a shared �le pointer� Another provides individual

�le pointers� A uni�ed access mode provides the standard interface for compatibility� One de�ciency

in this interface is that the user must supply a list of disks to the open operation�

The original �le system for the nCUBE hypercube multiprocessor 
PFDJ��� is primitive� in the

sense that each disk has a local �le system independent of the others� and no global �le system is

provided� In a new nCUBE �le system 
DM��� DdR��� dR���� designed around the Unix model�

each process speci�es a mapping from the bytes of the �le to the bytes in its own access stream�

The �le system speci�es a similar mapping� from the bytes in the �le to positions on the disks�

The combination of these mappings provides routing information for each byte in the �le� and a

convenient renumbering of the bytes from the programmers point of view� This mechanism is

extended to pipes between parallel programs and to graphics output� Self�scheduled global access

is not possible�

The CUBIX �le system for the CrOS system on hypercubes 
FJL���� connects a sequential

�le server on a host processor to a parallel application program on the hypercube� It has two

interfaces� singular� in which all processes simultaneously write the same data� and multiple� in

which variable�length records are interleaved by process� Variable�length records are bu�ered until

complete� then atomically written to the �le�

To the best of our knowledge� the interface on the BBN� Sequent� and Encore multiprocessors

is simply the conventional interface�

The Kendall Square Research KSR� multiprocessor 
KSR��� uses a PID structure with a RAID

attached to individual processors� Files are mapped into the shared memory address space and

accessed with normal memory operations� While memory�mapped �les have many advantages� they

have many disadvantages as a general solution� Unless the address space is segmented� writing

segmented �les may be di�cult� Files typically have di�erent access patterns than virtual memory�

possibly requiring di�erent memory management techniques 
Arm���� If �les are mapped into a

�



distributed shared memory �DSM	 system� consistency protocols may need adjustment �since they

are normally designed for virtual memory access patterns	� Indeed� many operating systems for

distributed memory machines do not support DSM� and thus could not easily support memory�

mapped �les�

Grimshaw� Loyot� and Prem 
GP��� GL��� outline an extensible object�oriented interface based

on a simple low�level� Unix�like �le system interface� The object�oriented front�end encapsulates

access methods� caching� prefetching� and �le layout in application�speci�c ways� They focus on

providing the mechanism without specifying particular access methods� This scheme has a lot of

promise� but does not solve all of the problems we have mentioned �for example� the segmented

�le problem� which must be supplied by the low�level �le system	� Our interface ideas could be

combined with their framework to provide a powerful� extensible interface�

It is not possible in any of these interfaces to write segmented �les without foreknowledge of

the segment size�

� Our Proposed Interface

We have shown that the conventional interface is inconvenient for parallel programming� and

pointed out some problems with other proposals� Now we outline the concepts behind our proposed

interface� exact syntax is language and system dependent and thus is not considered here� Each

concept directly addresses one or more of the problems outlined in the previous sections�

	�� Concepts

Directory Structure� There should be a single �le�naming directory structure for the entire

parallel �le system� The user should not have to specify the list of disks involved 
Cro��� or the

list of local disk �les 
PFDJ��� when opening a �le� The name structure should be the same for

parallel applications as for sequential applications �such as �le�maintenance and directory�listing

tools	� For maximum portability and interoperability� it should appear to be a Unix �le system�

Multiopen� For a �le to be accessed by all processes in an application� it must somehow be

opened for all processes in that application� It is inconvenient and ine�cient for every process to

open the �le independently� We should not depend on open��le inheritance �as part of process

creation	� which is limited to �les that are open before the processes are created� to process groups

that are created from one master process� and to systems that have open��le inheritance�

��



We propose adding amultiopen operation� which opens the �le for the entire parallel application

when run from any process in the application� This assumes a way to group the processes into

an �application�� presumably more general than the set of children of one parent process� Most

signi�cantly� the multiopen is executed after the process group exists� so the group is not limited

to pre�opened �les� In most applications the multiopen would be executed in the �master� pro�

cess� Multiopen opens the �le only once� avoiding repeated directory searches and other overhead�

and gives each process in the application its own �le descriptor �through some implementation�

dependent mechanism� e�g�� shared memory� Symunix II supports a pdup system call 
ELS���	� If

processes may join the process group� then they must be able to access previously�opened �les� and

participate in future multiopens� Multiopen can optionally create a �le if it does not exist�

File pointer� When a �le is opened with multiopen� the programmer speci�es whether the �le

pointer should be local �providing each process with an independent� local �le pointer	� or global

�providing a single shared �le pointer for all processes	� These two choices correspond directly

to local and global access patterns� A global �le pointer provides the synchronization needed to

implement global �le access patterns� a read or write operation on a global �le pointer combines

the transfer and �le pointer update into a single atomic action� facilitating self�scheduled access

patterns� Either type of �le pointer can be changed with the seek operation�

A process has no control over exactly which record is read or written when it uses read or write

on a global �le pointer� Since it may need to know the position of the transfer� the original value

of the �le pointer should be returned after the transfer is complete� along with the number of bytes

transferred� For compatibility� we do not change the interface of read and write� We de�ne the

readp and writep operations� which are the same as read and write� respectively� except that they

also return the original �le pointer position�

Mapped File Pointers� One of the advantages of the nCUBEs mapping functions 
DdR��� is

their ability to remap the address space of the whole �le into smaller� contiguous address spaces

for each process� Their mapping function maps from �process� pointer� to �position�� Each process

then sees a single byte stream� indexed by its �le pointer� whereas the �le is indexed by position�

We propose to specify a mapping function for each �le pointer� mapping from �pointer� to

�position�� Thus� a global �le pointer has one mapping function� and local �le pointers have one

mapping function per process� The actual �le position is computed as a function of the current �le

��



pointer and a parameter�

�le position � f�pointer� parameter	

This function� and its parameter� are either provided as part of themultiopen operation or through a

separate interface� Mapping functions may be changed while the �le is open� The function is called

on every �le access� to perform the mapping� It is provided with the �le pointer� the parameter�

the �le descriptor� the operation �read or write	� and length� It returns the �le position� Built�in

functions are also available� For example� interleaved� which has the record size as a parameter�

de�nes a round�robin pattern of access to records� Each process remaps the appropriate records

into a single byte stream� accessed by its local �le pointer� This is probably the most important

use for mapped �le pointers� Another built�in functions parameter is a pointer to a table or list�

For example� sequential portions �if known in advance	 could be speci�ed in a list� The application

then appears to read a single byte stream� although actually reading a collection of portions� This

is most useful for handling portions in global patterns�

Note that this mechanism simply maps a �le pointer to a �le position� and does not directly

specify a mapping from process to position� as in the nCUBE mappings� A given �le position

may be mapped by any number of processes �including zero	� Also note that self�scheduled access�

through a global �le pointer� is still possible�

Logical Records� Dibble 
Dib��� argues for direct support for logical records in the �le system�

The Unix �le system does not have any built�in support for logical records� in contrast to some

traditional systems �typi�ed by commercial mainframes	� Such support increases the complexity

of the �le system� but there are good reasons for logical record support in a parallel �le system�

even when not supported in a similar uniprocessor �le system�

� The record support can be combined with global �le pointer synchronization to provide atomic

operations for reading and writing records� This is particularly useful if the records have

variable length�

� By understanding logical records� the �le system can avoid splitting a record over two blocks�

This increases concurrency in some parallel access patterns 
Kot���� It can also increase

performance in random access patterns �at the cost of wasted space	�

In our interface� then� we divide the �les into byte �les and record �les� The �le type is an

attribute of the �le� All references to �position� in a record �le are record numbers instead of

��



byte o�sets� This a�ects the read� readp� write� writep� seek� and �le pointer mapping operations�

Fixed�size logical records are trivial to support� since the location of any record is easily calculated

from the record number� Variable�sized records are more di�cult� since an implementation must

be able to atomically read the next record and update the �le pointer� with high concurrency� Intel

CFS and CUBIX support interleaved �le writing with variable�sized records� which solves a similar

problem�

Multi�les� In most parallel programs� a data set is divided among the processes in the program�

In the conventional �le system� however� a single data set is usually represented as a single �le� For

a parallel program to use a conventional �le system� the individual process subsets of the data set

must either be combined into one �le or stored in separate �les� one per process� Neither option

is convenient� as we show in our examples in Section ���� We provide a new type of �le called a

multi�le for these situations� To the �le system a multi�le is a single �le� with one directory entry�

but it is di�erent from a plain �conventional	 �le in that it is not a single sequence of bytes� Instead�

it is a collection of sub�les� each of which is a separate sequence of bytes� A multi�le is created by a

parallel program with a certain number of sub�les� usually equal to the number of processes in the

program� Each process writes its own sub�le� Later� when the multi�le is opened for reading� each

process reads its own sub�le�� Each process has the illusion of reading an independent small �le�

since each sub�le is independently addressed with its own �rst byte and end�of��le marker� Each

sub�le can be extended or truncated without a�ecting the addressing in any of the others� Thus�

a multi�le combines the advantages of a single �le �single name for a single data set	 with those of

multiple �les �independently addressable and extendible� easily located beginning and end	�

Note that a multi�le cannot be easily simulated on top of a conventional �le system� Storing it

as multiple �les clutters up the directories� and storing it as a single �le limits the extensibility of

each sub�le� due to the linear address space provided by the conventional �le�

When opening an existing multi�le� an optional mapping �unrelated to �le pointer mapping	

may be speci�ed that indicates the assignment of sub�les to processes� With the default mapping�

the number of sub�les must match the number of processes� and a one�to�one mapping is used�

With a user�speci�ed mapping� there is no requirement on the number of processes� In fact� the

mapping may specify that some sub�les are not used� or that some processes have no sub�le� For

applications that want to manipulate many sub�les with few processes� we provide an operation

�Note that a multi	le implies local 	le pointers� File pointer mappings apply within sub	les� not across sub	les�

��



usesub�le�x� that switches the mapping for the calling process to sub�le x� When created� the

sub�les are logically numbered according to the logical ordering of the processes creating them�

Multi�les are most useful between parallel programs� so data can be written as separate subsets

and later read as separate subsets� They are also useful for output intended for sequential programs�

An example is a single �le that contains debugging output� with a separate sub�le for each process�

Type Coercion� Our �le system interface supports four �le types�

byte record
plain byte plain �le record plain �le

multi�le byte multi�le record multi�le

Note that the �byte plain �le� is the same as conventional �les� Every �le in the �le system is

stored as one of these four types� These �le types also represent four access modes that can be

speci�ed at the time the �le is opened� For compatibility� all �les in the �le system can be read as

a byte plain �le� In fact� for convenience we allow any �le to be read in any mode� with the �le

system coercing the stored �le into that mode� Note that coercion is just a mapping operation� the

stored �le does not change� Files may be opened for writing in the mode corresponding to their

type� or be coerced to plain byte �les�

Although most coercions are done transparently� some applications may want to adjust them�

selves to the stored �le type� The type operation can be used to request information about �le type

�plain or multi�le� byte or record	� This operation may be merged with existing mechanisms that

query other �le attributes �stat in Unix	�

To coerce a record �le into a byte �le� we ignore record boundaries� fragmentation overhead

�empty space in blocks	� and any other overhead� such as length �elds or indexes� To coerce a byte

�le into a record �le� the user provides either a �xed record size or a record delimiter character

�e�g�� newline	� The details depend on the particular implementation of records�

To coerce a multi�le into a plain �le� the sub�les are logically concatenated together to form the

illusion of one long �le� using the numbering de�ned on sub�les� A plain �le can also be coerced into

a multi�le� This is a useful way to divide a �les data into contiguous chunks for a variable number

of processes� The user speci�es the desired number of sub�les �usually the number of processes	�

and the �le is divided roughly evenly among the sub�les� with each sub�le assigned a contiguous

portion of the original �le� If the �le is a byte �le� the division is by bytes� if the �le is a record

�le� or coerced into a record �le� the division is made at record boundaries� In any case� the end of

a coerced sub�le appears as an end�of��le to the process assigned to the sub�le�

��



Coercing writable �les is di�cult� We allow coercion to byte plain �les only� since the semantics

of the other coercions are unclear� This allows normal programs to write to multi�les and to record

�les� although we suspect that such writing would not be common� If a multi�le is coerced to

a plain �le� the sub�les are logically concatenated into a single �le� Appends �anything written

past the end of �le	 a�ect the last sub�le� and overwrites a�ect the corresponding positions in the

corresponding sub�les� If coercing a record �le to a byte �le� record boundaries are ignored for

overwrites� and each write appending to the �le creates a new record�

Although some of the semantics of coercion appear stretched� coercion makes multi�les a viable

part of a �le system that is still compatible with traditional �le systems� It also makes the power

of multi�les available for conventionally stored �les�

Hints� Some mechanism should be available to provide hints to the �le system� e�g�� the ioctl

mechanism in Unix� Possibilities include the storage layout� number of disks to use� access pattern�

caching strategies� and so forth�

	�� Implications

Within the interface� there are many synchronization issues� In particular� the support of global

�le access patterns requires atomic access to a shared �le pointer� This is particularly complicated

if the �le�pointer update involves a user�de�ned �le�pointer mapping� or �nding the length of the

next logical record� The latter may require reading data from disk� unless there is a separate record

index� Global �le pointers are particularly di�cult in a distributed�memory system� By loosening

semantics� self�scheduled access can be provided in parallel by using an interleaved �le pointer

until EOF is reached by some process� then rebalancing the load through negotiations between �le

servers�

Unix�like �le access remains� with the original open� read� write� seek� and close calls� using

coercion to provide byte�stream semantics to all �les� This also allows the parallel �le system to

be accessed remotely� Network �le access �e�g�� NFS	 is supported through coercion to byte plain

�les� Only byte plain �les can be created through NFS� Tools �variants of rcp� for example	 should

be created for receiving a �le from the network and writing multi�les or record �les�

��



� Summary

A new �le system interface is necessary for convenient parallel �le access� Our proposed interface

allows for parallel open �with multiopen	� synchronization for global �le access patterns� mapped

�le pointers� support for logical records� and a new �le organization �multi�les	� All of the new

features are compatible with the conventional interface� so that a �le can be used by sophisticated�

high�performance parallel applications� by general�purpose sequential �le�maintenance tools� and

by remote systems through a network �le system� This interface makes the task of programming

parallel �le applications much easier� and thus should also increase application performance�

Future work involves implementing and testing these ideas� considering SIMD interfaces� and a

workload study to determine the types of access patterns actually used by parallel applications�

Acknowledgements� Thanks to Carla Ellis for many readings and discussions of this material�

to Rick Floyd for early feedback� to the Duke BUG group for picking apart my earliest ideas� and

to Mike del Rosario for valuable discussions�

References


Arm��� Katherine Jean Armstrong� Improving �le access performance� Cache management for

mapped �les� Masters thesis� Univ� of Washington� �����


AS��� Raymond K� Asbury and David S� Scott� FORTRAN I�O on the iPSC��� Is there

read after write� In Fourth Conference on Hypercube Concurrent Computers and

Applications� pages �������� �����


Cro��� Thomas W� Crockett� Speci�cation of the operating system interface for parallel �le

organizations� Publication status unknown �ICASE technical report	� �����


Cro��� Thomas W� Crockett� File concepts for parallel I�O� In Proceedings of Supercomputing

���� pages �������� �����


DdR��� Erik DeBenedictus and Juan Miguel del Rosario� nCUBE parallel I�O software� In

Eleventh Annual IEEE International Phoenix Conference on Computers and Commu�

nications �IPCCC�� April ����� To appear�


Dib��� Peter C� Dibble� A Parallel Interleaved File System� PhD thesis� University of

Rochester� March �����

��




DM��� Erik DeBenedictus and Peter Madams� nCUBEs parallel I�O with Unix capability� In

Sixth Annual Distributed�Memory Computer Conference� pages �������� �����


dR��� Juan Miguel del Rosario� High performance parallel I�O on the nCUBE �� Institute of

Electronics� Information and Communications Engineers �Transactions�� August �����

To appear�


ELS��� Jan Edler� Jim Lipkis� and Edith Schonberg� Memory management in Symunix II� A

design for large�scale shared memory multiprocessors� In Proceedings of the 	��� Usenix

Supercomputer Workshop� pages �������� �����


FJL���� G� Fox� M� Johnson� G� Lyzenga� S� Otto� J� Salmon� and D� Walker� Solving Problems

on Concurrent Processors� volume �� chapter � and ��� Prentice Hall� Englewood Cli�s�

NJ� �����


Flo��� Rick Floyd� Short�term �le reference patterns in a UNIX environment� Technical Report

���� Dept� of Computer Science� Univ� of Rochester� March �����


GL��� Andrew S� Grimshaw and Edmond C� Loyot� Jr� ELFS� object�oriented extensible �le

systems� Technical Report TR������� Univ� of Virginia Computer Science Department�

July �����


GLR��� Allan Gottlieb� B� D� Lubachevsky� and Larry Rudolph� Basic techniques for the ef�

�cient coordination of very large numbers of cooperating sequential processors� ACM

Transactions on Programming Languages and Systems� ���	��������� April �����


GP��� Andrew S� Grimshaw and Je� Prem� High performance parallel �le objects� In Sixth

Annual Distributed�Memory Computer Conference� pages �������� �����


Int��� iPSC�� I�O facilities� Intel Corporation� ����� Order number �����������


Int��� Paragon XP�S product overview� Intel Corporation� �����


KE��a� David Kotz and Carla Schlatter Ellis� Caching and writeback policies in parallel �le

systems� In 	��	 IEEE Symposium on Parallel and Distributed Processing� pages ������

December ����� Submitted to the Journal of Parallel and Distributed Computing�

��




KE��b� David Kotz and Carla Schlatter Ellis� Practical prefetching techniques for parallel �le

systems� In Proceedings of the First International Conference on Parallel and Dis�

tributed Information Systems� pages �������� December ����� To appear in Distributed

and Parallel Databases�


Kim��� Michelle Y� Kim� Synchronized disk interleaving� IEEE Transactions on Computers�

C������	��������� November �����


Kot��� David Kotz� Prefetching and Caching Techniques in File Systems for MIMD Multi�

processors� PhD thesis� Duke University� April ����� Available as technical report

CS����������


KSR��� KSR� technology background� Kendall Square Research� January �����


LMKQ��� Samuel J� Le�er� Marshall Kirk McKusick� Michael J� Karels� and John S� Quarterman�

The Design and Implementation of the 
��BSD UNIX Operating System� Addison�

Wesley� �����


nC��� nCUBE Corporation� nCUBE � supercomputers� Technical overview� nCUBE

brochure� �����


OCH���� John Ousterhout� Herv�e Da Costa� David Harrison� John Kunze� Mike Kupfer� and

James Thompson� A trace driven analysis of the UNIX ��� BSD �le system� In Pro�

ceedings of the Tenth ACM Symposium on Operating Systems Principles� pages ������

December �����


PFDJ��� Terrence W� Pratt� James C� French� Phillip M� Dickens� and Stanley A� Janet� Jr�

A comparison of the architecture and performance of two parallel �le systems� In

Fourth Conference on Hypercube Concurrent Computers and Applications� pages ����

���� �����


PGK��� David Patterson� Garth Gibson� and Randy Katz� A case for redundant arrays of

inexpensive disks �RAID	� In ACM SIGMOD Conference� pages �������� June �����


Pie��� Paul Pierce� A concurrent �le system for a highly parallel mass storage system� In

Fourth Conference on Hypercube Concurrent Computers and Applications� pages ����

���� �����

��




RT��� D� M� Ritchie and K� Thompson� The UNIX time�sharing system� The Bell System

Technical Journal� ���	����������� July�August �����


SGM��� Kenneth Salem and Hector Garcia�Molina� Disk striping� In IEEE 	��� Conference on

Data Engineering� pages �������� �����

��


