
Copyright 1995 by the authors

Interfaces for Disk�Directed I�O

David Kotz

Department of Computer Science

Dartmouth College

Hanover� NH ����������

dfk�cs�dartmouth�edu

Technical Report PCS�TR������

September ��� ����

Abstract

In other papers I propose the idea of disk�directed I�O for multiprocessor �le systems� Those
papers focus on the performance advantages and capabilities of disk�directed I�O� but say little
about the application�programmer�s interface or about the interface between the compute pro�
cessors and I�O processors� In this short note I discuss the requirements for these interfaces� and
look at many existing interfaces for parallel �le systems� I conclude that many of the existing
interfaces could be adapted for use in a disk�directed I�O system�

� Introduction

In other papers I propose the idea of disk�directed I�O for multiprocessor �le systems �Kot���

Kot��a� Kot��b�	 Those papers show that disk�directed I�O can be used to substantially improve

performance 
higher throughput� lower execution time� or less network tra�c� when reading input

data� writing results� or executing an out�of�core computation	 They show that the concept of

disk�directed I�O can be extended to include data�dependent �ltering� data�dependent distribution

patterns� and both regular and irregular requests	

Those papers do not address the interfaces necessary to make disk�directed I�O work	 In

particular� what would the application�programmers interface 
API� look like� What interface is

appropriate for communicating between the compute processors 
CPs� and I�O processors 
IOPs��

This paper discusses these issues� and the possibility of using existing interfaces for disk�directed

I�O	

This research was funded by NSF under grant number CCR��������� and by NASA Ames under agreements
numbered NCC ������

�



I �nd that many existing interfaces could be adapted for use in a disk�directed I�O system	 For

most purposes� no additional or unusual interfaces are necessary to make disk�directed I�O work	

A quick summary of disk�directed I�O� Disk�directed I�O is primarily intended for use in

multiprocessors that look like that in Figure �	 In a system supporting disk�directed I�O� a parallel

application 
running on compute processors� makes a single collective request for I�O to the �le

system� which passes the request on to servers 
running on I�O processors�	 Each IOP examines the

request independently� makes a list of local disk blocks that will be read or written� and sorts the list

to produce an I�O schedule	 Then� using double bu�ering� each IOP runs through its I�O schedule

to transfer data between its disks and the appropriate remote compute�processor memories	 To

do so� it needs to understand how the data is distributed among and within compute�processor

memories	 In particular� it needs to be able to compute a mapping function from a �le�block

number to the set of 
CP number� CP o�set� locations of the data in that �le block	 For a

complete understanding of disk�directed I�O� see �Kot��� Kot��a� Kot��b�	

� Application�programmer�s interface �API�

The concept of disk�directed I�O depends on the ability of the programmer to specify large� col�

lective� possibly complex I�O activities as single �le�system requests	 Since there are many pro�

gramming languages� paradigms� and styles� I do not believe that there is any one speci�c interface

that is best	 Thus� I examine the characteristics of an appropriate interface� and then discuss the

capabilities of existing interfaces	

Large��� Clearly� it is not di�cult to specify a large I�O request	 Simply provide a large bu�er

and ask for a lot of data	

Collective��� It is also not di�cult to specify a collective I�O request	 In a SIMD or SPMD

language 
such as CM Fortran� High�Performance Fortran 
HPF�� Maspar MPL� and so forth��

all actions 
including I�O� are collective by de�nition	 In a MIMD�style language 
typically C

or Fortran plus some form of message passing or shared memory�� each process 
or thread� acts

independently of all other processes	 A collective activity requires all participating processes to call

the same function� preferably at nearly the same time	 In my experience �Kot��a�� it it sometimes

useful to require only a subset of processes to contribute to a collective request	 MPI�IO will have

�



Network

Memory

Memory

Memory

Disk

Disk

Disk

I�O Processor

I�O Processor

I�O Processor

Memory

Memory

Memory

Compute Processor

Compute Processor

Compute Processor

Interconnection

Figure �� A multiprocessor architecture with compute processors �CPs� and dedicated I�O processors

�IOPs��

�



such support �CFH����� as may Intel PFS for the Paragon �RP���	 It would also be useful to have

some control over whether the collective request enforces a barrier synchronization	

Complex��� The interesting characteristic of the API is its capability to specify which part of the

�le is desired� and how the data is distributed among the CPs bu�ers	 Perhaps the most common

behavior is to collectively transfer a data set that is contiguous within the �le� but distributed

among processor memories in some interesting way	 There are at least three fundamental styles of

API for parallel I�O� each of which provides a di�erent kind of solution to this problem	

The �rst style allows the programmer to directly read and write data structures such as matrices�

Fortran provides this style of interface� as do many libraries �GGL��� KGF��� BdC��� BBS����

SCJ���� TBC����	 Some object�oriented interfaces go even further in this direction �Kri��� KGF���

SCJ����	 As long as your data structure can be described by a matrix� and the language or library

also provides ways to describe distributed matrices� this interface provides a neat solution	

The second style provides each processor its own �view� of the �le� in which non�contiguous

portions of the �le appear to be contiguous to that processor	 By carefully arranging the processor

views� the processors can use a traditional I�O�transfer call that transfers a contiguous portion

of the �le 
in their view� to a contiguous bu�er in their memory� and yet still accomplish a non�

trivial data distribution	 The most notable examples of this style include a proposed nCUBE �le

system �DdR���� IBM PIOFS 
Vesta� �CFP����� and MPI�IO �CFH����	

The third style has neither an understanding of high�level data structures� like the �rst� nor

per�process views of the �le� like the second	 Each call speci�es the bytes of the �le that should

be transferred	 This interface is common when using the C programming language in most MIMD

systems� although many have special �le�pointer modes that help in a few simple situations 
Intel

CFS �Pie���� Intel PFS �RP���� and TMC CMMD �BGST���� for example�	 None of these allow the

processor to make a single �le�system request for a complex distribution pattern	 More sophisticated

interfaces� such as the nested�batched interface �NK���� can specify a list� or a strided series� of

transfers in a single request	 This latter interface is perhaps the most powerful 
e�cient and

expressive� of this style of interface	

Any of the above interfaces that support collective requests and can express non�trivial dis�

tributions of data among the processor memories� would be su�cient to support disk�directed

I�O	 These include 
at least� HPF and other SPMD languages� the nested�batched inter�

face �NK���� IBM PIOFS 
Vesta� �CFP����� MPI�IO �CFH����� and most of the matrix li�

�



braries �GGL��� KGF��� BdC��� BBS���� SCJ���� TBC����	 The new nCUBE �DdR��� interface

would work if it was extended to support collective I�O	 Of course� each of these interfaces has

distributions that it can express easily� distributions that it can express with di�culty� and distri�

butions that it cannot express at all	 While the �best� interface for a programmer depends on the

particular needs of that programmer� any of them could be used to drive an underlying disk�directed

I�O system	

� CP�IOP interface

Once the application programmer has expressed the desired data transfer� how do the compute pro�

cessors communicate that information to all of the IOPs� and how do the IOPs use the information

to arrange the data transfer�

In my original disk�directed I�O study �Kot���� all of the possible data�distribution patterns


e	g	� block�cyclic� were understood by the IOPs� so the CPs needed only to request a particular

distribution pattern and to provide a few parameters	 A more realistic system should be more

�exible� it should support the common matrix distributions easily� and it should support arbitrary

distributions and irregular data structures	

Fortunately� several compiler groups have developed compact parameterized formats for describ�

ing matrix distributions �BMS��� BdC���	 This compact description of the distribution pattern�

generated by a compiler or matrix�support library� can be passed to the IOPs	 A few calculations

can tell the IOP which �le blocks it should be transferring� and for each �le block� the location of

the data 
CP number and o�set within that CPs bu�er�	

To support more complex distributions� or irregular requests� each CP can send a single nested�

batched request �NK��� to each IOP	 Such requests can capture complex but regular requests in a

compact form� but can also capture completely irregular requests as a list	 A nested�batched request

is essentially a nested list� or 
looked at another way� a tree	 Indeed� with some preprocessing it

can be treated much like an interval tree �CLR��� section ��	��� which can be used to perform the

necessary mapping from �le�block numbers to 
CP number� CP o�set� tuples	� For a collective

request� an IOP receives one such request from each CP	 It is easy to traverse the trees to produce

�Rather than expanding a nested�strided request into a set of intervals� and building a large interval tree� it is
better to augment the interval�tree data structure to deal with strided intervals� This very compact data structure can
represent and search a large set of intervals extremely quickly� In arbitrarily irregular requests� the nested�batched
request is simply a list of n intervals� which can be preprocessed into an interval tree 	in O	n
 time if the list is
already sorted
 so that each lookup only requires O	log n
 time� which is still likely to be small compared to the I�O
time�

�



a list of �le blocks that should be transferred	 Then� as each block is transferred� the IOP uses

the trees to determine which CP
s� requested parts of that block� and where in the CP the data is

located	

The combination of the compact parameterized descriptions for common matrix distributions�

and the fully general nested�batched interface �NK���� are su�cient to e�ciently support disk�

directed I�O	

� Conclusion

While I do not propose any speci�c API or internal interface in this paper� I believe it is possible to

use any of a number of existing such interfaces in the construction of a disk�directed I�O system	

Many existing interfaces support the common case of distributed multidimensional matrices� and

there are compact forms for representing the common distributions	 For more unusual 
or irregular�

distributions or data structures� the nested�batched interface �NK��� provides at least an internal

representation for communicating between the CP and the IOP� ideally� an application�speci�c

library would support the programmer when manipulating such data structures	

There are some capabilities of disk�directed I�O which cannot be represented as a set of read

and write transfers� including data�dependent �ltering and distribution functions �Kot��b�	 To

support this level of functionality essentially requires the user to specify an arbitrarily complex

function 
a program�� rather than a simple set	 This topic represents future work	

References

�BBS���� Robert Bennett� Kelvin Bryant� Alan Sussman� Raja Das� and Joel Saltz	 Jovian� A
framework for optimizing parallel I�O	 In Proceedings of the Scalable Parallel Libraries
Conference� pages �����	 IEEE Computer Society Press� October ����	

�BdC��� Rajesh Bordawekar� Juan Miguel del Rosario� and Alok Choudhary	 Design and evalua�
tion of primitives for parallel I�O	 In Proceedings of Supercomputing ���� pages ��������
����	

�BGST��� Michael L	 Best� Adam Greenberg� Craig Stan�ll� and Lewis W	 Tucker	 CMMD I�O�
A parallel Unix I�O	 In Proceedings of the Seventh International Parallel Processing
Symposium� pages �������� ����	

�BMS��� Peter Brezany� Thomas A	 Mueck� and Erich Schikuta	 Language� compiler and parallel
database support for I�O intensive applications	 In High Performance Computing and
Networking ���� Europe� pages ������ Springer�Verlag� LNCS ���� May ����	

�



�CFH���� Peter Corbett� Dror Feitelson� Yarson Hsu� Jean�Pierre Prost� Marc Snir� Sam Fineberg�
Bill Nitzberg� Bernard Traversat� and Parkson Wong	 MPI�IO� a parallel �le I�O in�
terface for MPI	 Technical Report NAS�������� NASA Ames Research Center� January
����	 Version �	�	

�CFP���� Peter F	 Corbett� Dror G	 Feitelson� Jean�Pierre Prost� George S	 Almasi� Sandra John�
son Baylor� Anthony S	 Bolmarcich� Yarsun Hsu� Julian Satran� Marc Snir� Robert
Colao� Brian Herr� Joseph Kavaky� Thomas R	 Morgan� and Anthony Zlotek	 Parallel
�le systems for the IBM SP computers	 IBM Systems Journal� pages �������� ����	

�CLR��� Thomas H	 Cormen� Charles E	 Leiserson� and Ronald L	 Rivest	 Introduction to Algo�
rithms	 McGraw Hill� ����	

�DdR��� Erik DeBenedictis and Juan Miguel del Rosario	 nCUBE parallel I�O software	 In Pro�

ceedings of the Eleventh Annual IEEE International Phoenix Conference on Computers
and Communications� pages ���������� April ����	

�GGL��� N	 Galbreath� W	 Gropp� and D	 Levine	 Applications�driven parallel I�O	 In Proceedings
of Supercomputing ���� pages �������� ����	

�KGF��� John F	 Karpovich� Andrew S	 Grimshaw� and James C	 French	 Extensible �le systems
ELFS� An object�oriented approach to high performance �le I�O	 In Proceedings of the
Ninth Annual Conference on Object�Oriented Programming Systems� Languages� and

Applications� pages �������� October ����	

�Kot��� David Kotz	 Disk�directed I�O for MIMD multiprocessors	 In Proceedings of the ����
Symposium on Operating Systems Design and Implementation� pages ������ November
����	 Updated as Dartmouth TR PCS�TR������ on November �� ����	

�Kot��a� David Kotz	 Disk�directed I�O for an out�of�core computation	 In Proceedings of the
Fourth IEEE International Symposium on High Performance Distributed Computing�
pages �������� August ����	

�Kot��b� David Kotz	 Expanding the potential for disk�directed I�O	 In Proceedings of the ����

IEEE Symposium on Parallel and Distributed Processing� October ����	 To appear	
Currently available as Dartmouth PCS�TR������	

�Kri��� Orran Krieger	 HFS� A 	exible 
le system for shared�memory multiprocessors	 PhD
thesis� University of Toronto� October ����	

�NK��� Nils Nieuwejaar and David Kotz	 Low�level interfaces for high�level parallel I�O	 In
IPPS ��� Workshop on Input�Output in Parallel and Distributed Systems� pages ������
April ����	

�Pie��� Paul Pierce	 A concurrent �le system for a highly parallel mass storage system	 In
Proceedings of the Fourth Conference on Hypercube Concurrent Computers and Appli�
cations� pages �������	 Golden Gate Enterprises� Los Altos� CA� March ����	

�RP��� Brad Rullman and David Payne	 An e�cient �le I�O interface for parallel applications	
DRAFT presented at the Workshop on Scalable I�O� Frontiers ��� February ����	

�SCJ���� K	 E	 Seamons� Y	 Chen� P	 Jones� J	 Jozwiak� and M	 Winslett	 Server�directed collec�
tive I�O in Panda	 In Proceedings of Supercomputing ���� December ����	 To appear	

�



�TBC���� Rajeev Thakur� Rajesh Bordawekar� Alok Choudhary� Ravi Ponnusamy� and Tarvinder
Singh	 PASSION runtime library for parallel I�O	 In Proceedings of the Scalable Parallel
Libraries Conference� pages �������� October ����	

Many of the above references are available via URL http���www�cs�dartmouth�edu�pario�html

�


