
Copyright 1996 by the author

Tuning STARFISH

David Kotz

Technical Report PCS�TR������

Department of Computer Science

Dartmouth College

Hanover� NH ����������

dfk�cs�dartmouth�edu

October �	� �

�

Abstract

STARFISH is a parallel �le�system simulator we built for our research into the concept of
disk�directed I�O� In this report� we detail steps taken to tune the �le systems supported by
STARFISH� which include a traditional parallel �le system �with caching� and a disk�directed
I�O system� In particular� we now support two�phase I�O� use smarter disk scheduling� increased
the maximumnumber of outstanding requests that a compute processor may make to each disk�
and added gather�scatter block transfer� We also present results of the experiments driving the
tuning e�ort�

� Introduction

STARFISH is a parallel �le�system simulator� based on the Proteus simulator �BDCW���� It was

originally developed by the author for research into the concept of disk�directed I�O �Kot�	a�

Kot�	b� PEK�
� Kot��b� KC��� Kot��c� Kot��a�� In the course of preparing a more complete

paper about disk�directed I�O �Kot�
�� we made several modi�cations to both of the parallel �le

systems supported by STARFISH �traditional caching�� which we now call the traditional parallel

�le system�� and disk�directed I�O��� This report details those changes� and the results of the

experiments driving the tuning e�ort�

Most of the e�ort was applied to improving the performance of the traditional parallel �le

system� as disk�directed I�O needed little improvement�

This research was funded by NSF under grant number CCR��������� by NASA Ames under agreement number

NCC ������

�



This paper assumes that you are familiar with the disk�directed I�O papers� but not necessarily

with the STARFISH code�

� Major changes to STARFISH

The earlier disk�directed I�O papers report results from STARFISH version ���� with some small

extensions� In ���
� we made several signi�cant changes to STARFISH� STARFISH ���� released

in conjunction with this report� includes all of these changes��

��� Disk scheduling

The disk�scheduling algorithm only a�ects the traditional parallel �le system� because disk�directed

I�O builds a �possibly sorted� list of disk requests in advance� for each disk� and feeds that entire

list to the disk driver at once�

STARFISH ��� used a simple FCFS disk�scheduling algorithm� Each disk had its own queue

of disk requests� read by its own disk�driver thread �see Figure ��� The cache�management code

on the I�O processors �IOPs� fed requests into the appropriate disk�request queue� one at a time�

as they occurred� The disk�driver thread serviced requests� one at a time� in the order they were

inserted into the queue� Poor performance resulted� especially in contiguous disk layouts� unless

the requests happened to be enqueued in increasing disk�block order� Although� in the tested

workloads� each compute processor �CP� requested its blocks in increasing �le�block order� which

in a contiguous layout translates into increasing disk�block order� the interleaving of requests from

multiple CPs may not have resulted in an increasing disk�block order at the disk�request queue�

In STARFISH ��� we added a new disk�queuing module� Each disk has a single queue as before�

but it is a priority queue rather than a simple FCFS queue� New disk requests were placed into the

per�disk priority queue using the Cyclical Scan algorithm �SCO���� The implementation actually

uses two priority queues� each maintained in order of increasing disk�block number� one for requests

ahead� of the current disk�head position� which will be serviced in the current pass of the disk

head� and another for requests behind� the current disk position� which will be serviced on the

next pass of the disk head�

��� Increased number of outstanding requests

This section applies only to the traditional parallel �le system�

�The STARFISH code and papers are available at http���www�cs�dartmouth�edu��dfk�STARFISH��

�



Request
Thread

Request
Thread

Request
Thread

Request
Thread

request
message

from
CP

Disk
Thread

Disk
Thread

Disk queue

Disk queue

Figure �� Structure of an I�O processor �IOP� in STARFISH� when running the traditional parallel �le

system� Each incoming request is handled by a separate thread� That thread examines the cache� and

possibly inserts a request in one of the disk requests queues� There is one queue� and a thread to service it�

for each local disk�

In our traditional parallel �le system implementation� each CP receives requests from the ap�

plication� each for some contiguous range of bytes in the �le� Call these �le requests�� The �le is

striped� block by block� across all of the disks� Thus� the CP �le�system code must translate the

�le request into a sequence of IOP requests�� each requesting one block �or less� of data and each

directed at a particular disk on a particular IOP�

In STARFISH ��� each CP was limited to a maximum of one outstanding request to each disk�

This provided a simple static �ow�control solution� because each IOP knew it would not receive

more than NCP�NLocalDisks requests at any given time� Thus� each IOP cache contained twice

that many bu�ers� each holding one block� allowing the IOP to double�bu�er a separate stream of

requests from each CP to each disk� The double bu�ering was necessary because the IOP caches

attempted to prefetch on each read� and write behind on each write�

The CPs attempted to maximize their potential by working through the sequence of blocks

necessary to satisfy the current �le request� sending up to one IOP request to each disk� then

waiting for a IOP request to complete� As such� one CP could keep all of the disks busy� if the

request involved at least one block from each disk�

Nonetheless� with only one request from each CP� the IOPs� disk queues were fairly short� which

�



seemed to justify the use of FCFS disk queuing�

Few of our workload�s access patterns presented the CP with requests larger than one stripe�

many of them presented the CP with an ��byte request� So it was not often possible to send more

than one request to each disk� even if it were allowed�

Nonetheless� in STARFISH ��� we rewrote the CP code that services �le requests� It now

generates up K outstanding IOP requests to each disk� if the current �le request so requires� where

K is a constant integer � �� As soon as a disk replies that it has completed a given IOP request�

another IOP request is sent to that disk� With a large request �larger than KD blocks on D disks��

each CP can keep each disk supplied with K requests until it has made all of the IOP requests

necessary for the current �le request� That concurrency should �ll the disk queues� and enable

better disk scheduling�

Each IOP cache now contain K times as many bu�ers as before� to accommodate the potential

�ood of data and to retain the same static �ow�control solution�

��� Queued Memput and Memget

This section a�ects only disk�directed I�O and two�phase I�O �we used Memgets and Memputs to

implement the permutation phase��

STARFISH supports two remote DMA� operations� Memput allows a processor to store a

block of data into a remote processor�s memory� and Memget allows a processor to fetch a block of

data from a remote processor�s memory� In both cases� the remote processor must be expecting such

transfers� and must supply a base address in advance� The Memput or Memget request supplies

an o�set and a length� the o�set is added to the base address by the remote processor�s interrupt

handler before transferring the data�

This arrangement is extremely convenient for disk�directed I�O� Each CP sets its base address

to the address of its user�supplied bu�er� Then the IOPs� using their knowledge of the access

pattern� can compute for each byte of the �le read or written� the location �CP number and o�set

within the CP� of the corresponding byte in memory� There is no need for every IOP to know the

base address of every CP bu�er�

Nontheless� we saw poor performance in some access patterns involving ��byte records� because

they used Memput or Memget operations to transfer only � bytes at a time� The overhead was

overwhelming�

STARFISH ��� supports an alternative Memput and Memget system� which we call queued

	



Memget� and queued Memput�� This system essentially supports gather�scatter block transfer�

Queued Memgets and Memputs have the potential to be faster for small requests� although they

require extra data copying and processing on both sides of the transfer�

With this arrangement� each processor has a collection of bu�ers� one for each other processor

�allocated as needed�� Each bu�er is large enough to hold one �le�system block� The processor may

make a series of queued Memputs� to any set of processors� of any size� Requests larger than one

block are broken into smaller requests� Each resulting Memput request �o�set� length� and data�

is appended to the bu�er for the appropriate destination processor� Once the bu�er �lls� it is sent

to the remote processor� where the requests are unpacked and processed� each o�set is added to

the base address� and then the data is copied into that address� An acknowledgement is returned�

Similarly� a processor may make a series of queued Memget requests� Requests larger than one

block are broken into smaller requests� Each request �o�set� length� is appended to the outgoing

bu�er for the appropriate destination processor� Once the outgoing bu�er is full� that is� it would

result in a full reply bu�er� it is sent to the destination processor� Once there� a reply bu�er is

allocated and the requests are unpacked and processed� each o�set is added to the base address�

and the data is copied from that address into the reply bu�er� The reply bu�er is then sent to the

requesting processor� where the data is copied into the desired location�

In both cases� the requesting processor restricts itself� for �ow control reasons� to one outstand�

ing request per destination processor� It avoids waiting as much as possible� by avoiding the check

for a reply until it needs to send a new request�

� Other features of STARFISH

STARFISH ��� included several features that were not used in the original disk�directed I�O papers�

In this report� we experimentally re�examine those features to decide which features o�er the best

performance�

��� Memget writes

This section applies only to the traditional parallel �le system�

When writing a �le� each CP sent write requests to many IOPs� Each request could transfer up

to one block of data� The data was included in the request message� so the IOP had to be prepared

to accept the data� That requirement led to the static �ow�control policies outlined above� Once

the data was safely entered into the cache� the IOP replied to the CP� allowing it to make a new

�



request�

The alternate method did not include data with a write�request message� The IOP had to be

prepared to accept the same number of requests� but the requests were substantially smaller� Once

the IOP had a chance to process the request� it used Memget requests to fetch the data from the

CP�s memory� Once the IOP had all of the data from the CP� it replied to the CP� allowing it to

make a new request�

We call this alternate Memget writes�� The potential bene�ts of this approach include reduced

memory usage on the IOPs� and possibly higher throughput due to reduced memory�memory copies�

�With Memget writes� the data arrived at the IOP in a Memget reply� and was deposited directly

into the appropriate cache bu�er� without Memget writes� the data arrived in a request message�

was copied into a thread stack� and then was copied again into the appropriate cache bu�er��

��� Queued requests vs� thread requests

This section applies only to the traditional parallel �le system�

The IOPs were multi�threaded� There was a permanent thread for each disk� acting as a disk

driver� New IOP requests arrived as inter�processor interrupts� The interrupt handler started a

new thread� and copied the rest of the interrupt message onto the stack of the new thread� before

returning from the interrupt� Thus� each request had its own thread to shepherd the request

through the process of checking the cache and waiting for the disk� Thread�creation overhead in

STARFISH was quite low� but not insigni�cant� If the requests were for � bytes� as they were in

some patterns� thread creation overhead could drag down performance�

The alternate structure had each IOP pre�allocate a pool of threads� The interrupt handler

would not create a new thread for each arriving IOP requests� but instead enqueue the request in

a queue� Each thread would repeatedly service requests from the queue� The IOPs allocated as

many threads as there were bu�ers in the IOP cache� Thus� there were likely many more threads

allocated at one time than there were in the previous structure� which required a lot of memory�

but the startup latency for each request was reduced�

We call this structure queue requests� rather than thread requests��

� Experiments

We ran a series of experiments� for each of the above improvements or alternatives� to measure

the performance �throughput� of the system under all of the access patterns we used in the other






Table �� Parameters for simulator�

MIMD� distributed�memory �� processors
Compute processors �CPs� �

I�O processors �IOPs� �

CPU speed� type �� MHz� RISC

Disks �

Disk type HP ���
�
Disk capacity ��� GB
Disk transfer rate ���� MB�s� for multi�track transfers
File�system block size � KB
I�O buses �one per IOP� �

I�O bus type SCSI
I�O bus peak bandwidth �� MB�s

Interconnect topology 
� 
 torus
Interconnect bandwidth ���� ��� bytes�s

bidirectional
Interconnect latency �� ns per router
Routing wormhole

Memput call �IOP� 	
��
 cycles
Memput handler �CP� �� cycles � � cycle�word
Memput return �IOP� �� cycles � thread wakeup

Memget call �IOP� ���

 cycles
Memget handler �CP� ��� cycles � background DMA
Memget return �IOP� �� cycles � � cycle�word � thread wakeup

disk�directed I�O papers� The parameters for each set of experiments are shown in Table �� These

are the same parameters used in the other disk�directed I�O papers�

�



��� Disk scheduling

We compared FCFS to the new Cyclic�Scan disk�scheduling algorithm� for all of our access patterns�

both ��byte and �����byte records� on both contiguous and random disk layouts� for the traditional

parallel �le system� Again� disk�directed I�O is independent of the choice of disk�scheduling algo�

rithm�

The results for the contiguous disk layout are shown in Table �� The new disk�scheduling

algorithm was nearly always faster� it was �� slower in the ��byte wc pattern� The most dramatic

improvements came in patterns like rb� where each CP was working in a di�erent region of the �le�

With FCFS disk scheduling� the disk head was constantly jumping from one region of the disk to

another� defeating the disk�s own caching and prefetching� and adding seek and rotational latency

to every access� With the new disk�scheduling algorithm� these requests were reordered to allow

one a group of requests from one CP� in one region� to be processed before jumping to a new region�

The disk schedule was still not optimal� but it was much better� Table � compares the number of

disk movements �including rotational delays� in the two cases�

The results for the random disk layout are shown in Table 	� The new disk�scheduling algorithm

made less di�erence here� because the random disk layout forced a fairly long seek on every access�

and the disk�s own cache was useless in either case� Only the ��byte wc pattern was substantially

slower� losing �
� of its throughput� Table � compares the number of disk movements �including

rotational delays� in the two cases� both require a disk movement for each disk access because of

the random�access pattern�

The ��byte wc pattern involved the CPs making ��byte IOP requests� in an interleaved pattern�

so that the CPs were working through the �le in approximately the same place� Each IOP was

slowly building one block at a time� � bytes at a time� as each message arrived� As each block

became ready� it was stuck on the disk queue� The message�passing and cache processing for the

next block� however� took longer than the disk took to �nish writing the block� So the disk queue

was empty and the disk was idle long before the next block was available to write� Thus� the

disk�scheduling policy did not matter� every disk write had substantial seek and�or rotational

latency� The throughput appears to be lower due to the increased computational overhead of the

new disk�scheduling algorithm�

In any case� we chose to use the new disk�scheduling algorithm in all of the other experiments

in this paper� and in our revised disk�directed I�O experiments �Kot�
��

�



Table �� Throughput of the traditional parallel �le system under all access patterns� with both �� and

�	
��byte records� and with both the FCFS and the Cyclic Scan �CS� disk�scheduling algorithm� on the

contiguous �le layout� The throughput of ra seems high because it broadcasts the same data to all CPs�

The ratio of the throughput of CS to that of FCFS is greater than 	�� if CS was faster than FCFS�

Throughput in MB�s
��byte records �����byte records

Pattern FCFS CS CS�FCFS FCFS CS CS�FCFS

ra � � � 	�	�� ����� ����

rn � � � ���	 ���	 ����
rb ��� ���� 	�	� ��� ���� 	�	�
rc ��� ��� ���� ���	 ���	 ����
rnb �
�� �
�� ���� ���	 ���	 ����
rbb 
�� 
�	 ���� ��� �	�� ����
rcb �
�� �
�� ���� ���	 ���	 ����
rbc ��� ��� ���� ��� ��	 ����
rcc ��� ��� ���� ��	 �	�
 ����
rcn ���	 ���	 ���� ���� ���	 ����

wn � � � ���� ���� ����
wb ��� ���� ���� ��� ���� ����
wc ��� ��
 ���� ���	 ���	 ����
wnb ���� ���� ���� ���� ���� ����
wbb ��� ���� ���� ��� ���� ����
wcb ���	 ���	 ���� ��� ���
 ���	
wbc ��� ��� ���� ��� ���� ��
�
wcc ��
 ��
 ���� ��� ���� ����
wcn ���	 ���	 ���� ���� ���� ����

�



Table �� Number of disk movements used by the traditional parallel �le system under all access patterns�

with both �� and �	
��byte records� and with both the FCFS and the Cyclic Scan �CS� disk�scheduling

algorithm� on the contiguous �le layout� The ratio of the number of disk movements of CS to that of FCFS

is less than 	�� if CS was better than FCFS�

Number of disk movements
��byte records �����byte records

Pattern FCFS CS CS�FCFS FCFS CS CS�FCFS

ra � � � �	� �		 ����

rn � � � �		 �		 ����
rb ���� �		 ���� ���� �		 ����
rc ��
	 ��
	 ���� �		 �		 ����
rnb �� �� ���� ��
 ��
 ����
rbb ���� ���� ���� ��� ��� ��
�
rcb �� �� ���� �		 �		 ����
rbc ���	 ��	� ���� ���� ���� ����
rcc ��
� ��
� ���� 
�� �	� ����
rcn �		 �		 ���� �
� �		 ���


wn � � � �
 �
 ����
wb ���
 	
 ���	 ���
 	
 ���	
wc ���� ���
 ���� �
 �
 ����
wnb �
 �
 ���� ��� �� ����
wbb ���� �	 ���
 ���� �� ����
wcb �
 �
 ���� ��
� �� ����
wbc ���� ���� ���� ���� 	� ����
wcc ���� ���� ���� ���� 	� ����
wcn �
 �
 ���� ��� �� ���	

��



Table �� Throughput of the traditional parallel �le system under all access patterns� with both �� and

�	
��byte records� and with both the FCFS and the Cyclic Scan �CS� disk�scheduling algorithm� on the

random �le layout� The throughput of ra seems high because it broadcasts the same data to all CPs� The

ratio of the throughput of CS to that of FCFS is greater than 	�� if CS was faster than FCFS�

Throughput in MB�s
��byte records �����byte records

Pattern FCFS CS CS�FCFS FCFS CS CS�FCFS

ra � � � ���� ���� ����

rn � � � 	�� 	�� ����
rb 	�� 	�� ���	 	�� 	�� ���	
rc ��� ��� ���� 	�� 	�� ����
rnb ��� ��� ���� 	�� 	�� ����
rbb ��� ��� ���� 	�� 	�	 ����
rcb 	�� 	�� ���� 	�� 	�� ����
rbc ��� ��� ���� 	�� 	�	 ����
rcc ��� ��	 ���� 	�� 	�� ����
rcn 	�� 	�� ���� 	�	 	�� ����

wn � � � 	�� 	�� ����
wb 	�� 	�� ���� 	�� 	�� ����
wc ��� ��� ���	 	�� 	�� ����
wnb 	�� 	�� ���� 	�� 	�� ����
wbb ��� 	�� ���� ��� 	�� ����
wcb 	�� 	�� ���� ��� 	�� ����
wbc ��� ��� ���
 	�� 	�� ����
wcc ��
 ��
 ���� 	�� 	�� ����
wcn 	�� 	�� ���� ��� 	�� ����

��



Table �� Number of disk movements used by the traditional parallel �le system under all access patterns�

with both �� and �	
��byte records� and with both the FCFS and the Cyclic Scan �CS� disk�scheduling

algorithm� on the random �le layout� The ratio of the number of disk movements of CS to that of FCFS is

less than 	�� if CS was better than FCFS�

Number of disk movements
��byte records �����byte records

Pattern FCFS CS CS�FCFS FCFS CS CS�FCFS

ra � � � ���� ���� ����

rn � � � ���� ���� ����
rb ���� ���� ���� ���� ���� ����
rc ���� ���� ���� ���� ���� ����
rnb ���� ���� ���� ���� ���� ����
rbb ���� ���� ���� ���� ���� ����
rcb ���� ���� ���� ���� ���� ����
rbc ���� ���� ���� ���� ���� ����
rcc ���� ���� ���� ���� ���� ����
rcn ���� ���� ���� ���� ���� ����

wn � � � ���� ���� ����
wb ���� ���� ���� ���� ���� ����
wc ���� ���� ���� ���� ���� ����
wnb ���� ���� ���� ���� ���� ����
wbb ���� ���� ���� ���� ���� ����
wcb ���� ���� ���� ���� ���� ����
wbc ���� ���� ���� ���� ���� ����
wcc ���� ���� ���� ���� ���� ����
wcn ���� ���� ���� ���� ���� ����

��



��� Increased number of outstanding requests

This section a�ects only the traditional parallel �le system�

In the original STARFISH� we only allowed one outstanding request from each CP to each

disk� In the new STARFISH� we can allow a larger number of requests� In this section we compare

various values for parameterK� the maximum number of outstanding requests� Note that the cache

size increased as this parameter increased� although the e�ect of this larger cache is minimal� in

these patterns the main bene�t comes from a better disk schedule� As mentioned above� we used

the new disk�scheduling algorithm in these experiments� We only used access patterns whose chunk

size was larger than one block� because other patterns would be limited to one outstanding request

per CP� regardless of the new policy�

Figures � and � show the results for the contiguous disk layout� on two separate graphs for

clarity� The larger number of outstanding requests was primarily useful for patterns that had the

CPs working in separate regions of the disk� such as rb� Each CP could send several requests to

each disk� which then better �lled the disk queue� and gave the disk scheduler an opportunity to

serve more than one or two requests for a given CP before seeking to another region for another

CP� The rbb pattern never improved because its chunk size was �� that is� each �le�system request

was for eight blocks� so there was no room in the request for more than one outstanding request

per disk� The rbb throughput does improve �not shown� on larger �les� where it has larger chunks�

Four outstanding requests� or fewer� was su�cient for all patterns to achieve their best performance�

Figures 	 and � show the results for the random disk layout� on two separate graphs for clarity�

The read access patterns in Figure 	 were helped by allowing more outstanding requests� although

in this case rbb needed a larger value to obtain its best performance� Figure 	 seems dramatic� but

the y�axis scale shows that the variations here are largely in the noise�

Overall� four outstanding requests seemed to be a reasonable compromise� We used four out�

standing requests in all of other experiments in this paper� and in our revised disk�directed I�O

experiments �Kot�
��

��



�



	�

	

��

�

��

�

��

� � � � � 	� 	� 	� 	�

MB�s

Maximum number of outstanding IOP requests

Contiguous disk layout� read patterns

Max bandwidth

ra ��
� � � � �

rn �

� � � � � �

rb �

�

� � � � �

rnb �

� � � � � �

rbb �

� � � � � �

rcn �

�

� � � � �

rcb

Figure �� Throughput of the traditional parallel �le system under most read access patterns�
with �����byte records� with a varying maximum number of outstanding requests� on the con�
tiguous �le layout� The throughput of ra has been normalized by the number of CPs�

�



	�

	

��

�

��

�

��

� � � � � 	� 	� 	� 	�

MB�s

Maximum number of outstanding IOP requests

Contiguous disk layout� write patterns

Max bandwidth

wn �
� � � � � �

wb �

�
�

�

� � �

wnb �

� � � � � �

wbb �
�

�
�

� � �

wcn �

� �
�

� � �

wcb

Figure �� Throughput of the traditional parallel �le system under most write access patterns�
with �����byte records� with a varying maximum number of outstanding requests� on the con�
tiguous �le layout� The throughput of ra has been normalized by the number of CPs�

�	



���

���

���

���

���

���

���

���

���

���

��

� � � � � 	� 	� 	� 	�

MB�s

Maximum number of outstanding IOP requests

Random disk layout� read patterns

ra �

�

� � � � �

rn �
� � � � � �

rb �

�

� � � � �

rnb �

� � � � � �

rbb �

� � �

�
�

�

rcn �

� � � � � �

rcb

Figure 	� Throughput of the traditional parallel �le system under all read access patterns� with
�����byte records� with varying maximum numbers of outstanding requests� on the random �le
layout� The throughput of ra has been normalized by the number of CPs� Note that the y�axis
is not based at zero�

����

����

����

����

��
�

��
�

��
�

��
�

��
�

���

���

� � � � � 	� 	� 	� 	�

MB�s

Maximum number of outstanding IOP requests

Random disk layout� write patterns

wn �

� � � �

�
�

wb �

�

�

�

�

�

�

wnb �

� � � �

�

� wbb �

�

�

�

�
�

�

wcn �
�

� � �

�

�
wcb

Figure �� Throughput of the traditional parallel �le system under all write access patterns�
with �����byte records� with varying maximum numbers of outstanding requests� on the random
�le layout� The throughput of ra has been normalized by the number of CPs� Note that the
y�axis is not based at zero� and that its scale is di�erent from Figure 	�

��



��� Queued Memput and Memget

Memput and Memget are only used in disk�directed I�O and in two�phase I�O �we used Memgets

and Memputs to implement the permutation phase�� So we compare the performance of each� with

and without Queued Memputs�Memgets�

Table 
 presents the results for disk�directed I�O and the contiguous disk layout� The through�

put was mostly una�ected� the throughput of ra was ��� slower� and the throughputs of some

patterns with ��byte chunks were ����	� faster�

Tables � and � present the results for the random disk layout� with and without the pre�sorting

option of disk�directed I�O� Queued Memputs and Memgets made no di�erence here� because the

data�distribution overhead was completely hidden by the slow disk performance�

Table � presents the results for two�phase I�O and the contiguous disk layout� Some �����byte

patterns were slower� but most ��byte patterns were faster� by as much as �	��� Three ��byte

patterns were ���� slower�

Table �� presents the results for two�phase I�O and the random disk layout� The �����byte

patterns were largely una�ected� except for ra� but many ��byte patterns were faster� by as much

as 	���

Clearly� queued Memput and Memget were often� but not always� a good idea� So we chose

to use queued Memput and Memget in all ��byte patterns� but not in any �����byte patterns�

in all of the other disk�directed I�O experiments in this paper� and in our revised disk�directed

I�O experiments �Kot�
�� Note that this choice only adversely a�ected three ��byte patterns in

two�phase I�O� which were slower by �����

�




Table �� Throughput of disk�directed I�O under all access patterns� with both �� and �	
��byte records�

with both the original �Or� and queued Memputs�Memgets �QM�� on the contiguous �le layout� The

throughput of ra seems high because it broadcasts the same data to all CPs� The ratio of the throughput

of QM to that of Or is greater than 	�� if Queued Memputs�Memgets were faster than the original Mem�

puts�Memgets� Ratios in italics do not represent a statistically signi�cant di�erence at the 
� con�dence

level� all others do�

Throughput in MB�s
��byte records �����byte records

Pattern Or QM QM�Or Or QM QM�Or

ra � � � ����� ����� ����

rn � � � ���� ���� ����
rb ���� ���� ���� ���� ���� ����
rc ���� ���	 ���� ���� ���� ����
rnb ���	 ���� ���� ���� ���� ����
rbb ���	 ���� ���� ���� ���� ����
rcb ���	 ���� ���� ���� ���� ����
rbc ���� ���� ���� ���� ���� ����
rcc ���� ���	 ���� ���� ���� ����
rcn ���� ���� ���� ���� ���� ����

wn � � � ���	 ���	 ����
wb ���	 ���	 ���� ���	 ���	 ����
wc �
�� ���� ���	 ���	 ���	 ����

wnb ���� ���	 ���� ���	 ���	 ����
wbb ���� ���	 ���� ���	 ���	 ����

wcb ���� ���	 ���� ���	 ���	 ����
wbc �	�� ���	 ���� ���	 ���	 ����

wcc ���� ���� ���� ���	 ���	 ����
wcn ���	 ���	 ���� ���	 ���	 ����

��



Table �� Throughput of disk�directed I�O� without sorting under all access patterns� with both ��

and �	
��byte records� with both the original �Or� and queued Memputs�Memgets �QM�� on the random

�le layout� The throughput of ra seems high because it broadcasts the same data to all CPs� The ratio

of the throughput of QM to that of Or is greater than 	�� if Queued Memputs�Memgets were faster than

the original Memputs�Memgets� Ratios in italics do not represent a statistically signi�cant di�erence at the


� con�dence level� all others do�

Throughput in MB�s
��byte records �����byte records

Pattern Or QM QM�Or Or QM QM�Or

ra � � � ���� ���� ����

rn � � � 	�� 	�� ����
rb 	�� 	�� ���� 	�� 	�� ����
rc 	�� 	�� ���� 	�� 	�� ����
rnb 	�� 	�� ���� 	�� 	�� ����
rbb 	�� 	�� ���� 	�� 	�� ����
rcb 	�� 	�� ���� 	�� 	�� ����
rbc 	�� 	�� ���� 	�� 	�� ����
rcc 	�� 	�� ���� 	�� 	�� ����
rcn 	�� 	�� ���� 	�� 	�� ����

wn � � � 	�� 	�� ����
wb 	�� 	�� ���� 	�� 	�� ����
wc 	�� 	�� ���� 	�� 	�� ����

wnb 	�� 	�� ���� 	�� 	�� ����
wbb 	�� 	�� ���� 	�� 	�� ����
wcb 	�� 	�� ���� 	�� 	�� ����
wbc 	�� 	�� ���� 	�� 	�� ����
wcc 	�� 	�� ���� 	�� 	�� ����
wcn 	�� 	�� ���� 	�� 	�� ����

��



Table 	� Throughput of disk�directed I�O� with sorting under all access patterns� with both �� and

�	
��byte records� with both the original �Or� and queued Memputs�Memgets �QM�� on the random �le

layout� The throughput of ra seems high because it broadcasts the same data to all CPs� The ratio of

the throughput of QM to that of Or is greater than 	�� if Queued Memputs�Memgets were faster than the

original Memputs�Memgets� Ratios in italics do not represent a statistically signi�cant di�erence at the


� con�dence level� all others do�

Throughput in MB�s
��byte records �����byte records

Pattern Or QM QM�Or Or QM QM�Or

ra � � � ����� ����
 ����

rn � � � 
�� 
�� ����
rb 
�� 
�� ���� 
�� 
�� ����
rc 
�� 
�� ���� 
�� 
�� ����
rnb 
�� 
�� ���� 
�� 
�� ����
rbb 
�� 
�� ���� 
�� 
�� ����
rcb 
�� 
�� ���� 
�� 
�� ����
rbc 
�� 
�� ���� 
�� 
�� ����
rcc 
�� 
�� ���� 
�� 
�� ����
rcn 
�� 
�� ���� 
�� 
�� ����

wn � � � ��� ��� ����
wb ��� ��� ���� ��� ��� ����
wc ��� ��� ���� ��� ��� ����

wnb ��� ��� ���� ��� ��� ����
wbb ��� ��� ���� ��� ��� ����

wcb ��� ��� ���� ��� ��� ����
wbc ��� ��� ���� ��� ��� ����
wcc ��� ��� ���� ��� ��� ����
wcn ��� ��� ���� ��� ��� ����

��



Table 
� Throughput of two�phase I�O under all access patterns� with both �� and �	
��byte records� with

both the original �Or� and queued Memputs�Memgets �QM�� on the contiguous �le layout� The throughput

of ra seems high because it broadcasts the same data to all CPs� The ratio of the throughput of QM to that

of Or is greater than 	�� if Queued Memputs�Memgets were faster than the original Memputs�Memgets�

Ratios in italics do not represent a statistically signi�cant di�erence at the 
� con�dence level� all others

do�

Throughput in MB�s
��byte records �����byte records

Pattern Or QM QM�Or Or QM QM�Or

ra � � � ����� �
��� ����

rn � � � �
�	 ���� ���

rb ���� ���� ���� ���� ���� ����

rc ��
 ���� ���� ���� ���� ����
rnb ���� ���� ���� �
�� �
�� ����
rbb ���
 ���� ���� ���� �
�� ����
rcb ���� ���� ���
 �
�� ���� ����
rbc 
�� �
�� ��	� ���� �
�� ����
rcc ��
 ���� ���� �
�� ���� ����
rcn ���� ���� ���� �
�� ���
 ���


wn � � � �	�� ���� ��
�
wb ���� ���� ���� ���� ���� ����
wc ��� ���� ���� ���� ���
 ����
wnb ���� ���	 ���� �
�	 �
�� ����
wbb ���� ���� ���� �
�� �
�� ����

wcb ���� ���
 ���� �
�� �
�� ����
wbc 
�� ���� ���	 �
�� �
�� ����

wcc ��� ���� ���� �
�� �
�� ����
wcn ���� ���� ���� ���� ���� ����

��



Table ��� Throughput of two�phase I�O under all access patterns� with both �� and �	
��byte records�

with both the original �Or� and queued Memputs�Memgets �QM�� on the random �le layout� The through�

put of ra seems high because it broadcasts the same data to all CPs� The ratio of the throughput of QM to

that of Or is greater than 	�� if Queued Memputs�Memgets were faster than the original Memputs�Memgets�

Ratios in italics do not represent a statistically signi�cant di�erence at the 
� con�dence level� all others

do�

Throughput in MB�s
��byte records �����byte records

Pattern Or QM QM�Or Or QM QM�Or

ra � � � 
��� �
�� ����

rn � � � 	�	 	�� ����
rb 	�� 	�� ���� 	�� 	�� ����

rc ��� ��� ���� 	�	 	�	 ����
rnb 	�	 	�	 ���� 	�	 	�	 ����
rbb 	�	 	�	 ���� 	�	 	�	 ����
rcb 	�	 	�	 ���� 	�	 	�	 ����
rbc ��� 	�� ���� 	�	 	�	 ����
rcc ��� ��� ���� 	�	 	�	 ����
rcn 	�	 	�	 ���� 	�	 	�	 ����

wn � � � 	�� 	�� ����
wb 	�� 	�� ���� 	�� 	�� ����
wc ��� 	�� ���� 	�� 	�� ����

wnb 	�� 	�� ���� 	�� 	�� ����
wbb 	�� 	�� ���� 	�� 	�� ����

wcb 	�� 	�� ���� 	�� 	�� ����
wbc ��� 	�� ���� 	�� 	�� ����

wcc ��� 	�� ��	� 	�� 	�� ����
wcn 	�� 	�� ���� 	�� 	�� ����

��



��� Memget writes

We compared our original scheme� in which CPs wanting to write data sent the data as part of the

IOP requests� to the Memget writes� scheme� in which CPs sent only the request� and waited for

the IOP to use Memget to fetch the data�

Table �� presents the results on the contiguous disk layout� Although Memget writes were

slightly ������ faster in a few cases� they were often slower than the current plan� especially for

patterns with ��byte chunks�

Table �� presents the results on the random disk layout� and is no more optimistic�

As a result� we chose to retain the original scheme� rather than using Memget writes� in the

other experiments in this paper and in our revised disk�directed I�O experiments �Kot�
��

��



Table ��� Throughput of the traditional parallel �le system under all access patterns� with both �� and

�	
��byte records� and with both the original �Or� and the �Memget writes� �MW�� on the contiguous �le

layout� The throughput of ra seems high because it broadcasts the same data to all CPs� The ratio of the

throughput of MW to that of Or is greater than 	�� if Memget writes were faster than the original scheme�

Ratios in italics do not represent a statistically signi�cant di�erence at the 
� con�dence level� all others

do�

Throughput in MB�s
��byte records �����byte records

Pattern Or MW MW�Or Or MW MW�Or

ra � � � 	���� 	���� ����

rn � � � ���	 ���	 ����
rb ���� ���� ���� ���� ���� ����

rc ��� ��� ���� ���	 ���� ����
rnb �
�� �
�	 ���� ���	 ���� ����
rbb 
�	 
�	 ���� �	�� �	�� ����

rcb �
�
 �
�
 ���� ���	 ���	 ����
rbc ��� ��� ���� ��	 ��	 ����

rcc ��� ��� ���� �	�� �	�� ����
rcn ���	 ���� ���� ���� ���� ����

wn � � � ���� ���� ����

wb ���� ���
 ���� ���� ���
 ����
wc ��� ��� ���� ���	 ���	 ����

wnb ���� ���� ���
 ���	 ���� ����
wbb ���� ���� ���� ���� ���� ����
wcb ���	 ���	 ���� ���	 ���
 ����
wbc ��� ��� ���� ���
 ���
 ����

wcc ��
 ��� ���� ���� ���� ����
wcn ���	 ���	 ���� ���� ���� ����

��



Table ��� Throughput of the traditional parallel �le system under all access patterns� with both �� and

�	
��byte records� and with both the original �Or� and the �Memget writes� �MW�� on the random �le

layout� The throughput of ra seems high because it broadcasts the same data to all CPs� The ratio of the

throughput of MW to that of Or is greater than 	�� if Memget writes were faster than the original scheme�

Ratios in italics do not represent a statistically signi�cant di�erence at the 
� con�dence level� all others

do�

Throughput in MB�s
��byte records �����byte records

Pattern Or MW MW�Or Or MW MW�Or

ra � � � ���
 ���
 ����

rn � � � 	�� 	�� ����
rb 	�� 	�� ���� 	�� 	�� ����
rc ��� ��� ���� 	�� 	�� ����
rnb ��� ��� ���� 	�� 	�� ����
rbb ��� ��� ���� 	�� 	�� ����
rcb 	�� 	�� ���� 	�� 	�� ����
rbc ��� ��� ���� 	�� 	�� ����
rcc ��� ��� ���� 	�� 	�� ����
rcn 	�� 	�� ���� 	�� 	�� ����

wn � � � 	�� 	�� ����

wb 	�� 	�� ���� 	�� 	�� ����
wc ��
 ��� ���� 	�� 	�� ����
wnb 	�� 	�� ���� 	�� 	�� ����
wbb 	�� 	�� ���� 	�� 	�� ����

wcb 	�� 	�� ���� 	�� 	�� ����
wbc ��� ��� ���� 	�� 	�� ����

wcc ��
 ��� ���� ��� 	�� ����
wcn 	�� 	�� ���� 	�� 	�� ����

�	



��� Queued requests vs� thread requests

We compared the original thread requests�� in which each incoming IOP request was allocated a

new thread� with queued requests�� in which each each incoming IOP request was matched with

an existing thread from a pool of pre�allocated� reusable threads�

Table �� shows the results for the contiguous disk layout� As expected� this change only a�ects

��byte access patterns� indeed� only the patterns with ��byte chunks �rc� rbc� rcc� wc� wbc� wcc��

because only they have a tremendous number of tiny requests� The cost of thread creation is

dominant in those patterns� and the queued�request system works better there� with no adverse

a�ects in the other cases�

Table �� shows the results for the random disk layout� There are some larger improvements

��
��� but one case �wc with ��byte records� is �� slower�

As a result we chose to use queued requests in all of the other experiments in this paper� and

for our revised disk�directed I�O experiments �Kot�
��

��



Table ��� Throughput of the traditional parallel �le system under all access patterns� with both �� and

�	
��byte records� and with both Thread Requests �TR� and Queued Requests �QR� on the contiguous

�le layout� The throughput of ra seems high because it broadcasts the same data to all CPs� The ratio of

the throughput of QR to that of TR is greater than 	�� if Queued Requests were faster than the Thread

Requests�

Throughput in MB�s
��byte records �����byte records

Pattern TR QR QR�TR TR QR QR�TR

ra � � � 	���� ����� ����

rn � � � ���	 ���	 ����
rb ���� ���� ���� ���� ���� ����
rc ��� ��� ���	 ���	 ���	 ����
rnb �
�� �
�� ���� ���� ���	 ����
rbb 
�	 
�	 ���� �	�� �	�� ����
rcb �
�� �
�� ���� ���	 ���	 ����
rbc ��� ��� ���	 ��	 ��	 ����
rcc ��� ��� ���� �	�� �	�
 ����
rcn ���	 ���	 ���� ���� ���	 ����

wn � � � ���� ���� ����
wb ���� ���� ���� ���� ���� ����
wc ��� ��
 ���� ���	 ���	 ����
wnb ���� ���� ���� ���� ���� ����
wbb ���
 ���� ���� ���� ���� ����
wcb ���� ���	 ���� ���� ���
 ����
wbc ��
 ��� ��	� ���� ���� ����
wcc ��� ��
 ���
 ���� ���� ����
wcn ���	 ���	 ���� ���� ���� ����

�




Table ��� Throughput of the traditional parallel �le system under all access patterns� with both �� and

�	
��byte records� and with both Thread Requests �TR� and Queued Requests �QR� on the random �le

layout� The throughput of ra seems high because it broadcasts the same data to all CPs� The ratio of

the throughput of QR to that of TR is greater than 	�� if Queued Requests were faster than the Thread

Requests�

Throughput in MB�s
��byte records �����byte records

Pattern TR QR QR�TR TR QR QR�TR

ra � � � ���� ���� ����

rn � � � 	�� 	�� ����
rb 	�� 	�� ���� 	�� 	�� ����
rc ��� ��� ���	 	�� 	�� ����
rnb ��� ��� ���� 	�� 	�� ����
rbb ��� ��� ���� 	�	 	�	 ����
rcb 	�� 	�� ���� 	�� 	�� ����
rbc ��� ��� ���� 	�	 	�	 ����
rcc ��� ��	 ���� 	�� 	�� ����
rcn 	�� 	�� ���� 	�� 	�� ����

wn � � � 	�� 	�� ����
wb 	�� 	�� ���� 	�� 	�� ����
wc ��	 ��� ���� 	�� 	�� ����
wnb 	�� 	�� ���� 	�� 	�� ����
wbb 	�� 	�� ���� 	�� 	�� ����
wcb 	�� 	�� ���� 	�� 	�� ����
wbc ��
 ��� ���
 	�� 	�� ����
wcc ��� ��
 ���
 	�� 	�� ����
wcn 	�� 	�� ���� 	�� 	�� ����

��



� Conclusions

We experimentally examined �ve major features in the STARFISH ��� parallel �le�system simulator�

Disk scheduling� It was clear that the new Cyclic Scan disk�scheduling algorithm was much

better than our old FCFS algorithm� We used that algorithm for all other experiments in

this paper and in our revised disk�directed I�O experiments �Kot�
��

Increased number of outstanding requests� Allowing more outstanding requests increased

the throughput of the traditional parallel �le system on many access patterns with large

chunks� because the resulting deep disk queues permitted better disk scheduling� Since two�

phase I�O uses rb� and rb bene�ted a lot from this change� two�phase I�O would also bene�t

greatly from this change� Four outstanding requests appeared to be a good maximum� few pat�

terns improved beyond this point� We used four outstanding requests for other disk�directed

I�O experiments in this paper and in our revised disk�directed I�O experiments �Kot�
��

Queued Memput and Memget� The queued Memput and Memget functions were helpful in

both two�phase I�O and disk�directed I�O� but only for ��byte� not �����byte� access pat�

terns� Thus� we chose to use queued Memput and Memget for ��byte access patterns only�

and we did so in all other experiments in this paper and in our revised disk�directed I�O

experiments �Kot�
��

Memget writes� Memget writes rarely increased throughput� the increases were small� and the

decreases were often dramatic� We chose not to use them in any other experiments�

Queued requests vs� thread requests� The overhead of thread creation was clearly a drag on

performance for those patterns that made a lot of IOP requests� i�e�� those with ��byte chunks�

The alternate implementation� queued requests� which kept a pool of ready and reusable

threads� was much faster for those patterns� and no slower for the other patterns� We chose

to use queued requests in all other experiments in this paper and in our revised disk�directed

I�O experiments �Kot�
��

��



��� Comparing 	le systems

Based on the above conclusions� we revised our earlier experiments� in which we compare the

traditional parallel �le system� two�phase I�O� and disk�directed I�O� All of these experiments use

the parameters from Table �� and the features described in the conclusions above� The results are

graphed and examined in detail in the full paper �Kot�
�� but the raw data is presented below in

Tables ������

��



Table ��� A comparison of the throughput of disk�directed I�O �DDIO� and the traditional parallel �le

system �TPFS�� on a contiguous disk layout� ra throughput has been normalized by the number of CPs�

Each point represents the average of �ve trials of an access pattern on both methods �maximum cv is �����

though most are less than ���
��� A ratio greater than 	��� means that disk�directed I�O was faster than

the traditional parallel �le system in that case� Ratios in italics do not represent a statistically signi�cant

di�erence at the 
� con�dence level� all others do� Note that the peak disk throughput was ���� MB�s�

Throughput in MB�s
��byte records �����byte records

Pattern TPFS DDIO DDIO�TPFS TPFS DDIO DDIO�TPFS

ra � � � 	���� ����� ����

rn � � � ���	 ���� ����
rb ���� ���� ���� ���� ���� ����

rc ��� ���	 ���� ���	 ���� ����
rnb �
�� ���� ���� ���	 ���� ����

rbb 
�	 ���� 	��� �	�� ���� ���	
rcb �
�
 ���� ���� ���	 ���� ����

rbc ��� ���� ���� ��	 ���� 	���
rcc ��� ���	 ���	 �	�� ���� ����
rcn ���	 ���� ���� ���� ���� ����

wn � � � ���� ���	 ����
wb ���� ���	 ���� ���� ���	 ����
wc ��� ���� ����� ���	 ���	 ����
wnb ���� ���	 ���� ���	 ���	 ����
wbb ���� ���	 ���� ���� ���	 ����
wcb ���	 ���	 ���� ���	 ���	 ����
wbc ��� ���	 ����� ���
 ���	 ���

wcc ��
 ���� ���
 ���� ���	 ����
wcn ���	 ���	 ���� ���� ���	 ����

��



Table ��� A comparison of the throughput of disk�directed I�O �DDIO� to that of the traditional parallel

�le system �TPFS�� on a random�blocks disk layout� DDIOs represents disk�directed I�O with the block�

list presort� ra throughput has been normalized by the number of CPs� Each point represents the average

of �ve trials of an access pattern on both methods �maximum coe�cient of variation �cv� is ���� although

most were less than ������� The column r is the ratio of DDIO �or DDIOs� to TPFS� If r � 	� disk�directed

I�O was faster than the traditional parallel �le system in that case� Ratios in italics do not represent a

statistically signi�cant di�erence at the 
� con�dence level� all others do�

Throughput in MB�s
��byte records �����byte records

Pattern TPFS DDIO r DDIOs r TPFS DDIO r DDIOs r

ra � � � � � ���
 ���� ���� ����� ��	�

rn � � � � � 	�� 	�� ���� 
�� ��	�
rb 	�� 	�� ���� 
�� ��	� 	�� 	�� ���� 
�� ��	�
rc ��� 	�� ���� 
�� ���� 	�� 	�� ���� 
�� ��	�
rnb ��� 	�� ���� 
�� ���� 	�� 	�� ���� 
�� ��	�
rbb ��� 	�� ���� 
�� ��

 	�� 	�� ���� 
�� ��	�
rcb 	�� 	�� ���� 
�� ���� 	�� 	�� ���� 
�� ��	�
rbc ��� 	�� ���� 
�� ���	 	�� 	�� ���	 
�� ��	

rcc ��� 	�� ���� 
�� ���� 	�� 	�� ���
 
�� ��	�
rcn 	�� 	�� ���� 
�� ��	� 	�� 	�� ���� 
�� ��	�

wn � � � � � 	�� 	�� ���� ��� ��	�
wb 	�� 	�� ���� ��� ��	� 	�� 	�� ���� ��� ��	�
wc ��
 	�� ���� ��� 	��� 	�� 	�� ���� ��� ��	�
wnb 	�� 	�� ���� ��� ��	� 	�� 	�� ���� ��� ��	�
wbb 	�� 	�� ���� ��� ��	� 	�� 	�� ���� ��� ��	�
wcb 	�� 	�� ���� ��� ��	� 	�� 	�� ���� ��� ��	�
wbc ��� 	�� ���� ��� ���� 	�� 	�� ���� ��� ��	�
wcc ��
 	�� ���� ��� 	�
� ��� 	�� ���� ��� ��	�
wcn 	�� 	�� ���� ��� ��	� 	�� 	�� ���� ��� ��	�

��



Table ��� A comparison of the throughput of two�phase I�O ��PIO� and disk�directed I�O �DDIO�� on a

contiguous disk layout� ra throughput has been normalized by the number of CPs� Each point represents

the average of �ve trials of an access pattern on both methods �maximum cv is ���	��� A ratio greater

than 	��� means that disk�directed I�O was faster than two�phase I�O in that case� Ratios in italics do not

represent a statistically signi�cant di�erence at the 
� con�dence level� all others do� Note that the peak

disk throughput was ���� MB�s�

Throughput in MB�s
��byte records �����byte records

Pattern �PIO DDIO DDIO��PIO �PIO DDIO DDIO��PIO

ra � � � ����� ����� ����

rn � � � �
�	 ���� ����
rb ���� ���� ���� ���� ���� ����

rc ���� ���	 ���� ���� ���� ����
rnb ���� ���� ���� �
�� ���� ���

rbb ���� ���� ���� ���� ���� ���

rcb ���� ���� ���� �
�� ���� ����
rbc �
�� ���� ���� ���� ���� ���

rcc ���� ���	 ���� �
�� ���� ����
rcn ���� ���� ���� �
�� ���� ����

wn � � � �	�� ���	 ����
wb ���� ���	 ���� ���� ���	 ����
wc ���� ���� ���� ���� ���	 ����
wnb ���	 ���	 ���	 �
�	 ���	 ����
wbb ���� ���	 ���� �
�� ���	 ����
wcb ���
 ���	 ���� �
�� ���	 ����
wbc ���� ���	 ���� �
�� ���	 ����
wcc ���� ���� ���� �
�� ���	 ����
wcn ���� ���	 ���� ���� ���	 ����

��



Table �	� A comparison of the throughput of two�phase I�O ��PIO� and disk�directed I�O without the

block�list presort �DDIO�� on a random disk layout� ra throughput has been normalized by the number of

CPs� Each point represents the average of �ve trials of an access pattern on both methods �maximum cv is

���	��� A ratio greater than 	��� means that disk�directed I�O was faster than two�phase I�O in that case�

Ratios in italics do not represent a statistically signi�cant di�erence at the 
� con�dence level� all others

do�

Throughput in MB�s
��byte records �����byte records

Pattern �PIO DDIO DDIO��PIO �PIO DDIO DDIO��PIO

ra � � � 
��� ���� ����

rn � � � 	�	 	�� ����
rb 	�� 	�� ���� 	�� 	�� ����

rc ��� 	�� ���� 	�	 	�� ����
rnb 	�	 	�� ���� 	�	 	�� ����
rbb 	�	 	�� ���� 	�	 	�� ����
rcb 	�	 	�� ���� 	�	 	�� ����
rbc 	�� 	�� ���� 	�	 	�� ����
rcc ��� 	�� ���� 	�	 	�� ����
rcn 	�	 	�� ���� 	�	 	�� ����

wn � � � 	�� 	�� ���	
wb 	�� 	�� ���� 	�� 	�� ����
wc 	�� 	�� ���� 	�� 	�� ����
wnb 	�� 	�� ���� 	�� 	�� ����
wbb 	�� 	�� ���� 	�� 	�� ����
wcb 	�� 	�� ���� 	�� 	�� ����
wbc 	�� 	�� ���� 	�� 	�� ����
wcc 	�� 	�� ���� 	�� 	�� ����
wcn 	�� 	�� ���� 	�� 	�� ����

��



Table �
� A comparison of the throughput of two�phase I�O ��PIO� and disk�directed I�O with the

block�list presort �DDIOs�� on a random disk layout� ra throughput has been normalized by the number

of CPs� Each point represents the average of �ve trials of an access pattern on both methods �maximum

cv is ����	�� A ratio greater than 	��� means that disk�directed I�O was faster than two�phase I�O in that

case� Ratios in italics do not represent a statistically signi�cant di�erence at the 
� con�dence level� all

others do�

Throughput in MB�s
��byte records �����byte records

Pattern �PIO DDIOs DDIOs��PIO �PIO DDIOs DDIOs��PIO

ra � � � 
��� ����� ��
�

rn � � � 	�	 
�� ��	�
rb 	�� 
�� ��	� 	�� 
�� ��	�
rc ��� 
�� ��
� 	�	 
�� ��	�
rnb 	�	 
�� ��		 	�	 
�� ��	�
rbb 	�	 
�� ��	� 	�	 
�� ��	�
rcb 	�	 
�� ��	� 	�	 
�� ��	�
rbc 	�� 
�� ���� 	�	 
�� ��	�
rcc ��� 
�� ��
� 	�	 
�� ��	�
rcn 	�	 
�� ��	� 	�	 
�� ��	�

wn � � � 	�� ��� ����
wb 	�� ��� ��	� 	�� ��� ��	�
wc 	�� ��� ���� 	�� ��� ����
wnb 	�� ��� ���� 	�� ��� ����
wbb 	�� ��� ���� 	�� ��� ����
wcb 	�� ��� ���� 	�� ��� ����
wbc 	�� ��� ���� 	�� ��� ����
wcc 	�� ��� ���� 	�� ��� ����
wcn 	�� ��� ���� 	�� ��� ����

�	



Table ��� A comparison of the throughput of the traditional parallel �le system �TPFS� and two�phase

I�O ��PIO�� on a contiguous disk layout� ra throughput has been normalized by the number of CPs�

Each point represents the average of �ve trials of an access pattern on both methods �maximum cv is �����

although most are less than ���
��� A ratio greater than 	��� means that two�phase I�O was faster than

the traditional parallel �le system in that case� Ratios in italics do not represent a statistically signi�cant

di�erence at the 
� con�dence level� all others do�

Throughput in MB�s
��byte records �����byte records

Pattern TPFS �PIO �PIO�TPFS TPFS �PIO �PIO�TPFS

ra � � � 	���� ����� ��		

rn � � � ���	 �
�	 ���	
rb ���� ���� ���� ���� ���� ����

rc ��� ���� 	�
� ���	 ���� ����
rnb �
�� ���� ��
� ���	 �
�� ���

rbb 
�	 ���� 	��� �	�� ���� ����
rcb �
�
 ���� ���� ���	 �
�� ���

rbc ��� �
�� ���� ��	 ���� ��


rcc ��� ���� 	��� �	�� �
�� ���

rcn ���	 ���� ���� ���� �
�� ����

wn � � � ���� �	�� ����
wb ���� ���� ���� ���� ���� ����
wc ��� ���� ���� ���	 ���� ����
wnb ���� ���	 ���� ���	 �
�	 ����
wbb ���� ���� ���� ���� �
�� ����
wcb ���	 ���
 ���� ���	 �
�� ����
wbc ��� ���� ����	 ���
 �
�� ����
wcc ��
 ���� ���	 ���� �
�� ����
wcn ���	 ���� ���� ���� ���� ����

��



Table ��� A comparison of the throughput of the traditional parallel �le system �TPFS� and two�phase

I�O ��PIO�� on a random disk layout� ra throughput has been normalized by the number of CPs� Each

point represents the average of �ve trials of an access pattern on both methods �maximum cv is ����

although most were less than ������� A ratio greater than 	��� means that two�phase I�O was faster than

the traditional parallel �le system in that case� Ratios in italics do not represent a statistically signi�cant

di�erence at the 
� con�dence level� all others do�

Throughput in MB�s
��byte records �����byte records

Pattern TPFS �PIO �PIO�TPFS TPFS �PIO �PIO�TPFS

ra � � � ���
 
��� ���	

rn � � � 	�� 	�	 ����
rb 	�� 	�� ���� 	�� 	�� ����

rc ��� ��� ��
� 	�� 	�	 ����
rnb ��� 	�	 ���	 	�� 	�	 ����

rbb ��� 	�	 ���
 	�� 	�	 ����
rcb 	�� 	�	 ���� 	�� 	�	 ����
rbc ��� 	�� ���� 	�� 	�	 ����
rcc ��� ��� ��	� 	�� 	�	 ���	
rcn 	�� 	�	 ���� 	�� 	�	 ����

wn � � � 	�� 	�� ���

wb 	�� 	�� ���� 	�� 	�� ����
wc ��
 	�� ���� 	�� 	�� ����
wnb 	�� 	�� ���� 	�� 	�� ����
wbb 	�� 	�� ���� 	�� 	�� ����
wcb 	�� 	�� ���� 	�� 	�� ����
wbc ��� 	�� ���� 	�� 	�� ����
wcc ��
 	�� ���� ��� 	�� ����
wcn 	�� 	�� ���� 	�� 	�� ����

�




References

�BDCW��� Eric A� Brewer� Chrysanthos N� Dellarocas� Adrian Colbrook� and William E�
Weihl� Proteus� A high�performance parallel�architecture simulator� Technical Re�
port MIT�LCS�TR���
� MIT� September �����

�KC��� David Kotz and Ting Cai� Exploring the use of I�O nodes for computation in a MIMD
multiprocessor� In IPPS ��� Workshop on Input�Output in Parallel and Distributed
Systems� pages ������ April �����

�Kot�	a� David Kotz� Disk�directed I�O for MIMD multiprocessors� In Proceedings of the ���	

Symposium on Operating Systems Design and Implementation� pages 
���	� November
���	� Updated as Dartmouth TR PCS�TR�	���
 on November �� ���	�

�Kot�	b� David Kotz� Disk�directed I�O for MIMD multiprocessors� Technical Report PCS�
TR�	���
� Dept� of Computer Science� Dartmouth College� July ���	� Revised Novem�
ber �� ���	�

�Kot��a� David Kotz� Disk�directed I�O for an out�of�core computation� In Proceedings of the
Fourth IEEE International Symposium on High Performance Distributed Computing�
pages �����

� August �����

�Kot��b� David Kotz� Expanding the potential for disk�directed I�O� In Proceedings of the ����

IEEE Symposium on Parallel and Distributed Processing� pages 	���	��� October �����

�Kot��c� David Kotz� Interfaces for disk�directed I�O� Technical Report PCS�TR������� Dept�
of Computer Science� Dartmouth College� September �����

�Kot�
� David Kotz� Disk�directed I�O for MIMD multiprocessors� Submitted to TOCS� Oc�
tober ���
�

�PEK�
� Apratim Purakayastha� Carla Schlatter Ellis� and David Kotz� ENWRICH� a compute�
processor write caching scheme for parallel �le systems� In Fourth Workshop on In

put�Output in Parallel and Distributed Systems� pages ���
�� May ���
�

�SCO��� Margo Seltzer� Peter Chen� and John Ousterhout� Disk scheduling revisited� In Pro

ceedings of the ���� Winter USENIX Conference� pages ������	� �����

��


