
Copyright 1994 by the authors

Dynamic File�Access Characteristics of a

Production Parallel Scienti�c Workload

David Kotz Nils Nieuwejaar

PCS�TR�������

Department of Computer Science

Dartmouth College� Hanover� NH ���		��	��

fdfk�nilsg�cs�dartmouth�edu

Revised
 August �� ����y

Abstract

Multiprocessors have permitted astounding increases in computational performance� but
many cannot meet the intense I�O requirements of some scienti�c applications� An important
component of any solution to this I�O bottleneck is a parallel �le system that can provide
high�bandwidth access to tremendous amounts of data in parallel to hundreds or thousands of
processors�

Most successful systems are based on a solid understanding of the expected workload� but
thus far there have been no comprehensive workload characterizations of multiprocessor �le
systems� This paper presents the results of a three week tracing study in which all �le�related
activity on a massively parallel computer was recorded� Our instrumentation di�ers from pre�
vious e�orts in that it collects information about every I�O request and about the mix of jobs
running in a production environment� We also present the results of a trace�driven caching
simulation and recommendations for designers of multiprocessor �le systems�

� Introduction

Many scienti�c applications have intense computational and I�O requirements� Although multi�
processors have permitted astounding increases in computational performance� the formidable I�O
needs of these applications cannot be met by current multiprocessors and their I�O subsystems�
To prevent I�O subsystems from forever bottlenecking multiprocessors and limiting the range of
feasible applications� new I�O subsystems must be designed�

The successful design of computer systems �both hardware and software� depends on a thorough
understanding of their intended usage� A system�s designer optimizes the policies and mechanisms
for the cases expected to be most common in the user�s workload� In the case of multiprocessor
�le systems� however� designers have been forced to build �le systems based only on speculation
about how they would be used� extrapolating from �le�system characterizations of general�purpose

�Abridged version to appear in Supercomputing ���
yThis revision di�ers from the original in the addition of data from one trace �le� better presentation of some

�gures� and improved wording�

This research was supported in part by the NASA Ames Research Center under Agreement Number NCC ��	���

�

workloads on uniprocessor and distributed systems or scienti�c workloads on vector supercomput�
ers� To �ll this gap� the CHARISMA project began in June �		
 to CHARacterize I�O in Scienti�c
Multiprocessor Applications from a variety of production parallel computing platforms and sites�
The CHARISMA project is unique in recording individual read and write requests in live� mul�
tiprogramming� parallel workloads �rather than from selected or non�parallel applications�� This
paper presents the �rst results from the project� a characterization of the �le�system workload on
an iPSC��� multiprocessor running production� parallel scienti�c applications at NASA�s Ames
Research Center� We use the resulting information to address the following questions�

� What does the job mix look like� how many jobs run concurrently� how many processors did
each use� how many �les did each use�

� How many �les were read and written� What were their sizes� Which were temporary �les�

� What were typical read� and write�request sizes� and how were they spaced in the �le� Were
the accesses sequential� and in what way�

� What forms of locality were there� How might caching be useful�

� What are the implications for �le�system design�

In the next section we describe previous studies of �le�system workload� multiprocessor �le
systems� and �le�system caching� In Section
 we outline our research methods� and in Section �
present our results� Section � draws the overall conclusions�

� Related work

As background� we describe many of the previous studies of �le�system workload as well as some
current multiprocessor �le systems and caching studies�

��� Workload

There has never been an extensive study of a production scienti�c workload on a multiprocessor
�le system� Related �le�system workload studies can be classi�ed as characterizing general�purpose
workstations �or workstation networks�� scienti�c vector applications� or scienti�c parallel applica�
tions�

General�purpose workstations� Uniprocessor �le access patterns have been measured many
times� Floyd and Ellis �Flo�� FE�	� and Ousterhout et al� �OCH���� measured isolated Unix
workstations� and Baker et al� measured a distributed Unix �Sprite� system �BHK�	��� All of these
studies cover general�purpose �engineering and o�ce� workloads with uniprocessor applications�

Scienti�c vector applications� Some studies speci�cally examined scienti�c workloads� Del
Rosario and Choudhary provide an informal characterization of grand�challenge applications �dC	���
Powell measured a set of static characteristics ��le sizes� of a Cray�� �le system �Pow���� Miller
and Katz traced speci�c I�O�intensive Cray applications to determine the per��le access pat�
terns �MK	��� focusing primarily on access rates� Miller and Katz also measured secondary�tertiary
�le migration patterns on a Cray �MK	
�� giving a good picture of long�term� whole��le access pat�
terns� Pasquale and Polyzos studied I�O�intensive Cray applications� focusing on patterns in the
I�O rate �PP	
� PP	��� All of these studies are limited to uniprocess applications on vector super�
computers�

�

Scienti�c parallel applications� Crockett �Cro�	� and Kotz �KE	
b� hypothesize about the
character of a parallel scienti�c �le�system workload� Cormen and Kotz �CK	
� discuss the needs
of parallel�I�O algorithms� Reddy et al� chose �ve sequential scienti�c applications from the
PERFECT benchmarks and parallelized them for an eight�processor Alliant� �nding only sequential
�le�access patterns �RB	��� This study is interesting� but far from what we need� the sample size
is small� the programs are parallelized sequential programs� not parallel programs per se� and
the I�O itself was not parallelized� Cypher et al� �CHKM	
� studied individual parallel scienti�c
applications� measuring temporal patterns in I�O rates� Galbreath et al� �GGL	
� present a useful
high�level characterization based on anecdotal evidence�

��� Existing �le systems

To increase parallelism� all large multiprocessor �le systems decluster blocks of a �le across many
disks� which are accessed in parallel� Most extend a traditional �le abstraction �a growable� ad�
dressable sequence of bytes� with some parallel �le�access methods� The most common provide I�O
�modes� that specify whether and how parallel processes share a �le pointer �Cro�	� Pie�	� Roy	
�
BGST	
� Kot	
�� Some are based on a memory�mapped interface �KSR	�� KS	
�� Some provide
a way for the user to specify per�process logical views of the �le �CFPB	
� DdR	��� Some provide
SIMD�style transfers �TMC��� Mas	�� GGL	
�� PIFS �Bridge� �Dib	�� allows the �le system to
control which processor handles which parts of the �le� to encourage memory locality� Clearly� the
industrial and research communities have not yet settled on a single new model for �le access� Some
aspects of the workload� therefore� are dependent on the particular �le�access model provided to
the user� The implications of this fact for our study are discussed in Section ��

��� Caching in multiprocessor �le systems

In our previous work� we found that caching and prefetching are successful in multiprocessor �le
systems �KE	
a� KE	
b�� Pratt and French found that the caching and prefetching supplied with
Intel�s Concurrent File System �CFS� does improve performance �FPD	
�� Recent studies have
found that CFS caching and prefetching work well in limited situations� but that the throughput
of CFS can be disappointing relative to the capabilities of the hardware �Nit	�� BCR	
�� Miller
and Katz drove a cache simulation using traces from a Cray supercomputer and found that access
locality was not high enough for signi�cant bene�ts to be realized from a �le system cache �MK	���

��� Intel iPSC���	 and CFS

The iPSC��� is a distributed�memory� message�passing� MIMD machine� The compute nodes are
based on the Intel i�� processor and are connected by a hypercube network� I�O is handled by
dedicated I�O nodes� which are each connected to a single compute node rather than directly to
the hypercube interconnect� The I�O nodes are based on the Intel i
� processor and each has
a port for SCSI disk drives� There may also be one or more service nodes that handle Ethernet
connections or interactive shells �NAS	
��

Intel�s Concurrent File System �CFS� �Pie�	� FPD	
� Nit	�� provides a Unix�like interface to
the user with the addition of four I�O modes to help the programmer coordinate parallel access to
�les� Mode � gives each process its own �le pointer� mode � shares a single �le pointer among all
processes� mode � is like mode �� but enforces a round�robin ordering of accesses across all nodes�
and mode
 is like mode � but restricts the access sizes to be identical� CFS stripes each �le across
all disks in � KB blocks� Compute nodes send requests directly to the appropriate I�O node� Only
the I�O nodes have a bu�er cache�

� Methods

To be useful to a system designer� a workload characterization must be based on a realistic workload
similar to that which is expected to be used in the future� For our purposes� this meant that we had
to trace a multiprocessor �le system that was in use for production scienti�c computing� The Intel
iPSC��� at NASA Ames�s Numerical Aerodynamics Simulation �NAS� facility met this criterion
�their three newer multiprocessors� an Intel Paragon� a Thinking Machines CM��� and an IBM
SP��� do not yet have a mature production workload�� Their iPSC has ��� compute nodes� each
with � MB of memory� and �� I�O nodes� each with � MB of memory and a single �� MB disk
drive �NAS	
�� There is also a single service node that handles a ���Mbit Ethernet connection to
the host computer� The total I�O capacity is �� GB and the total bandwidth is less than �� MB�s�

Ideally� a workload characterization is an architecture�independent representation of the work
generated by a group of users in a particular type of computing environment� However� since the
architectures of di�erent parallel I�O subsystems are so diverse� any observed workload will be tied
to a particular machine� While we try to factor out these e�ects as much as possible� we must note
that some care should be taken in generalizing the results�

��� Data collection

For our study� one trace �le was collected for the entire �le system� We traced only the I�O that
involved the Concurrent File System� This means that any I�O which was done through standard
input and output or to the host �le system �all limited to sequential� Ethernet speeds� was not
recorded� We collected data for about �� hours over a period of
 weeks� While we did not trace
continuously for the whole
 weeks� we tried to get a realistic picture of the whole workload by
tracing at all di�erent times of the day and of the week� including nights and weekends� The period
covered by a single trace �le ranges from
� minutes to �� hours� The longest continuously traced
period was about ��� hours� Tracing was usually initiated when the machine was idle� For those
few cases in which a job was running when we began tracing� the job was not traced� Tracing was
stopped in one of two ways� manually or by a system crash� The machine was usually idle when a
trace was manually stopped�

The trace �les begin with a header record containing enough information to make the �le self�
descriptive� and continue with a series of event records� one per event� Figure � shows a high�level
view of the event record formats� We use the term client to refer to the compute node that generated
the event� A job is a set of clients cooperating in one run of an application� Since one of the goals
of the CHARISMA project is to organize and facilitate a multi�platform �le system tracing e�ort�
we have de�ned a large set of event records suitable for both SIMD and MIMD systems� We have
included here only those records that were actually used on the iPSC����

On the iPSC���� high�level CFS calls are implemented in a library that is linked with the
user�s program� We instrumented the library calls to generate an event record each time they were
called� The event records were bu�ered at each compute node and periodically sent to a data
collector running on the service node� The collector then wrote the data to the central trace �le
�itself on CFS�� The collector�s use of CFS was not recorded in the trace�

Since our instrumentation was almost entirely within a user�level library� there were some jobs
whose �le accesses were not traced� These included most system programs �e�g�� ls� cp� and ftp�
as well as user programs that were not relinked during the period we were tracing� We did� however�
record all job starts and ends through a separate mechanism� While we were tracing�
�� jobs were
run on the compute nodes� of which ��
� were only run on a single node� We actually traced at least
��	 of the ��	 multi�node jobs and at least �� of the single�node jobs� As a tremendous number of

�

Notes�
UserID � Unix UID
SystemID � Internet IP address
FileID � �disk� block number� of File Header Block
ClientID � number of node requesting I�O

Header�
Magic number
Format version number
Start date �standard Unix date format�
System type �iPSC�
SystemID
System Con�guration �procs� disks� memory�
Timestamp unit �in seconds� 	
�bit �oat�

Job load�
record type code
timestamp
program name
path to executable
UserID
list of ClientIDs �nodes running the job�

Client completion�
record type code
timestamp
ClientID

Client Open �le�
record type code
timestamp
ClientID
FileID
�le descriptor
�le name
�le size
�le creation time
open mode �r� w� rw� create� etc��

Client Close �le�
record type code
timestamp
ClientID
�le descriptor
�le size

Read�Write request�
record type code
operation type
�r�w� sync�async� etc��
timestamp
ClientID
�le descriptor
�le o�set
size of I�O

Truncate�Extend�
�explicit operations only�
record type code
timestamp
ClientID
�le descriptor
original �le size
new �le size

Link�Unlink�
record type code
timestamp
ClientID
FileID
new number of links to �le

Set I�O mode�
record type code
timestamp
ClientID
�le descriptor
new access mode

Figure �� Event record formats�

�

the single�node jobs were system programs it is not surprising nor necessarily undesirable that so
many were untraced� In particular� there was one single�node job which was run periodically� and
which accounted for over ��� of the single�node jobs� simply to check the status of the machine�
There was no way to distinguish between a job which was untraced from a job which simply did
no CFS I�O� so the numbers of traced jobs are a lower bound�

One of our primary concerns was to minimize the degree that our measurement perturbed the
workload� We identi�ed three ways that our instrumentation might a�ect the workload�

Our �rst concern was network contention� We expected users� jobs to generate a great many
event records� Had we chosen to send a message to the data collector for each event record� we
would certainly have created unreasonable congestion near the collector or perhaps in the overall
machine� Since large messages on the iPSC are broken into � KB blocks� we chose to create a bu�er
of that size on each node to hold local event records� This bu�er allowed us to reduce the number
of messages sent by over 	�� without stealing much memory from user jobs�

The second concern was local CFS overhead� Since we were tracing every I�O operation in a
production environment� it was imperative that the per�call overhead be kept to a minimum to
avoid inconveniencing the users� By bu�ering records on the compute nodes we were able to avoid
the cost of message passing on every call to CFS�

Our �nal concern was that we might increase contention for the I�O subsystem� We tried to
minimize this by creating a large bu�er for the data collector and writing the data to CFS in large
sequential blocks� Although we collected about ��� MB of data� our trace �les accounted for less
than �� of the total tra�c�

Simple benchmarking of the instrumented library revealed that the overhead added by our
instrumentation was virtually undetectable in many cases� The worst case we found was a ��
increase in execution time on one run of the NAS NHT�� Application�I�O Benchmark �CCFN	���
After the instrumented library was put into production use� anecdotal evidence suggests that there
was no noticeable performance loss�

��� Analysis

The raw trace �les required some simple postprocessing before they could be easily analyzed� This
postprocessing included data realignment� clock synchronization� and chronological sorting�

Since each node bu�ered � KB of data before sending it to the central data collector� the
raw trace �le contained only a partially ordered list of event records� Ordering the records was
complicated by the lack of synchronized clocks on the iPSC���� Each node maintains its own
clock� the clocks are synchronized at system startup but each drifts signi�cantly and di�erently after
that �Fre�	�� We partially compensated for the asynchrony by timestamping each block of records
when it left the node and again when it was received at the data collector� From the di�erence
between the two we could approximately adjust the event order to compensate for each node�s clock
drift relative to the collector�s clock� This technique allowed us to get a closer approximation of the
event order� Nonetheless� it is still an approximation� so much of our analysis is based on spatial�
rather than temporal� information�

� Results

We characterize the workload from the top down� beginning with the number of jobs in the machine
and the number and use of �les by all jobs� We then examine individual I�O requests by looking
for sequentiality� regularity� and sharing in the access pattern� Finally� we evaluate the e�ect on
caching through trace�driven simulation�

Table �� Overview of the traces we collected� and of �les opened� Only those jobs whose �le
accesses were caught by our library are included here� We classify �les by whether they were
actually read� written� or read and written within a single open period� rather than by the mode
used to open the �le� Some �les were opened but neither read nor written before being closed�

Trace Traced Megabytes Number of �les
name Jobs Read Written Opened Read Written Both Neither

feb�� �
 �	���
 �
���
�
�	 ��	 ��
 ��� 	�
feb�� � ��	��	 ������ ���� �� ���� ��
 ���
feb��p� 	

����
	���� ��� �	� ��	 � �
feb��p� �� ������� �	���� ��

�

�	 ��� ��
feb��p
 � ����� ���	� �
� 	�

 � �
feb��p� �� 	���� ����	� �
	� �� 	�	 �	� �
feb��
� ���
��	� �	���� �	� 	�
�� ��� ��
feb�p�
� ������� ���	
��� ��	
 ��� �� � ��
feb�p�
�
�� �����	 ���	 �� ���	 � ���
feb�� �� ������
	����
�� ���� ���� �	� ��
feb��p�
 ����� ������ �
� �� ��� �
�
feb��p� 	 �	�

 ����
� ���� ��� �� � ��
feb��p
 �� ���
�
����	 �
� ��� � �
�
feb�� �����
 ������ �� �	� �	� � �	�
feb��p� ��
�����
��

�	 �
�
��� � ��	
feb��p� �� ���� �����	
��� ���
�	 � �

feb��p
 � ����� �	��� ���
 ��� ���� � ��	
feb�
p� �� 	��
	��
� ��� �� ���� � ��
feb�
p�
 �����
���	� 	��� �� ��� �
feb�� � ����	 ������ ���� ��� 	�� � �
mar�
� 	��� ���	 ��	� ����
		
 � ��

Totals ���
������� �������	
��	 ����� ����� ���	 ����
������ ����� 	���
���
�	�

�

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

Number of jobs

Figure �� Amount of time the machine spent with the given number of jobs

running� This data includes all jobs� even if their �le access could not be traced�

0

20

40

60

80

100

1 2 4 8 16 32 64 128

P
er

ce
nt

 o
f j

ob
s

Number of compute nodes

Figure �� Distribution of the number of compute nodes used by jobs in our

workload �even those whose �le access could not be traced�� The iPSC limits the

choice to powers of ��

��� Jobs

As a �rst look into the details behind Table �� Figure � shows the amount of time the machine
spent running a given number of jobs� For more than a quarter of the traced period� the machine
was idle �i�e�� zero jobs�� For about
�� of the time it was running more than one job� sometimes
as many as eight� Although not all jobs use the �le system� a �le system clearly must provide
high�performance access by many concurrent� presumably unrelated� jobs� While uniprocessor �le
systems are tuned for this situation� most multiprocessor �le�systems research has ignored this
issue� focusing on optimizing single�job performance�

Of course� some of the jobs in Figure � were small� single�node jobs� and some were large
parallel jobs� Figure
 shows the distribution of the number of compute nodes used by each job�
One�node jobs dominated the job population� although large parallel jobs dominated node usage�
This dichotomy would be larger in new �self�hosting� parallel systems� A successful �le system
must allow both small� sequential jobs and large� highly parallel jobs access to the same �les under
a variety of conditions and system loads�

�

��� Files

In Table � above� note that many more �les were written than were read �indeed� more than three
times as many�� It appears that the programmers of traced applications often found it easier to open
a separate output �le for each compute node� rather than coordinating writes to a common output
�le� as evidenced by the substantially smaller average number of bytes written per �le ���� MB�
than average bytes read per �le �
�
 MB�� Note also that there were extremely few �les that were
read and written in the same open� This latter behavior is common in Unix �le systems �Flo��
and may be accentuated here by the di�culty in coordinating concurrent reads and writes to the
same �le �note the CFS �le�access modes are of little help for read�write access��

Table �� Among traced jobs� the number of �les opened by jobs was often small ������

Number of Number
Files of Jobs

� ��
� ��

 ��
� ���
�� ���

Table � shows that most jobs opened only a few �les over the course of their execution� although
a few opened many �les �the maximum was one job that opened ���� �les�� Some of the jobs which
opened a large number of �les were opening one �le per node� Although not all �les were open
concurrently� �le�system designers must optimize access to several �les within the same job�

We found that only ���� of all opens were to �temporary� �les �de�ned as a �le deleted by the
same job that created it�� and nearly all of those may have been from one application� The rarity
of temporary �les and of �les that were both read and written indicates that few applications chose
to use �les as an extension of memory for an �out of core� solution� Many of the Ames applications
are computational �uid dynamics �CFD� codes� for which they have found that out�of�core methods
are in general too slow�

Figure � shows that most of the �les accessed were large ��� KB to � MB��� It is important to
note that each of the largest jumps is primarily due to one or two applications� so undue emphasis
should not be placed on the speci�c numbers as opposed to the general tendency towards larger
�les� Although these �les were larger than those in a general�purpose �le system �BHK�	��� they
were smaller than we would expect to see in a scienti�c supercomputing environment �MK	��� We
suspect that users limited their �le sizes due to the small disk capacity ���� GB� and limited disk
bandwidth ��� MB�s peak��

�As there was a large number of small �les as well as a number of distinct peaks across the whole range of sizes�

there was no constant granularity that captured the detail we felt was important in a histogram� We chose to plot

the �le sizes on a logarithmic scale with pseudo�logarithmic bucket sizes
 the buckest size between �� and ��� bytes

is �� bytes� the buckets between ��� and ���� are each ��� bytes� and so on�

	

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 1e+06 1e+07

F
ra

ct
io

n
of

 fi
le

s

File size (bytes)

Figure �� Cumulative distribution function �CDF� of the number of �les of

each size at close� For a �le size x� CDF�x� represents the fraction of all �les that

had x or fewer bytes�

0

0.2

0.4

0.6

0.8

1

100 1000 10000 100000 1e+06

Read size (bytes)

Fraction of reads

Fraction of data

Figure �� CDF of the number of reads by request size and of the amount of

data transferred by request size�

��� I�O request sizes

Figures � and show that the vast majority of reads are small� but that most bytes are transferred
through large reads�

Indeed� 	��� of all reads were for fewer than ���� bytes� but those reads transferred only ����
of all data read� Similarly� �	��� of all writes were for fewer than ���� bytes� but those writes
transferred only
� of all data written� The number of small requests is surprising due to their poor
performance in CFS �Nit	��� The jump at � KB indicates that some users have optimized for the
�le�system block size� but it appears that most users prefer ease of programming over performance�

Figures � and show spikes in the number of small requests as well as in the data transferred
by � MB requests� While the spikes of small requests occurred throughout the tracing period� one
trace alone �probably one job alone� contributed the spike at � MB� Although the speci�c position
of the spikes is likely due to the e�ect of individual applications� we believe that the preponderance
of small request sizes is the natural result of parallelization by distributing �le data across many
processors� and would be found in other workloads using a similar �le�system interface�

��

0

0.2

0.4

0.6

0.8

1

100 1000 10000 100000 1e+06

Write size (bytes)

Fraction of writes

Fraction of data

Figure 	� CDF of the number of writes by request size and of the amount of

data transferred by request size�

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

F
ra

ct
io

n
of

 fi
le

s

% Accesses Sequential

Read-Write

Read-Only
Write-Only

Figure
� CDF of sequential access to �les on a per�node basis�

��� Sequentiality

A common characteristic of �le workloads� particularly scienti�c workloads� is that �les are accessed
sequentially �OCH���� BHK�	�� MK	��� To grasp the notion of �sequential� access in a parallel
application� we de�ne a sequential request to be one that is at a higher �le o�set than the previous
request from the same compute node� and a consecutive request to be a sequential request that
begins where the previous request ended� Figures � and � and Table
 show the amount of sequential
and consecutive access �on a per�node basis� to �les with more than one request in our workload�

The most notable features of these graphs are the spikes at �� and ����� most �les were
either entirely sequential �or consecutive� or not at all� Not surprisingly� access to read�write �les
was primarily non�sequential� By far� most read�only and write�only �les were ���� sequential�
Most ���� write�only �les were ���� consecutive� but that was largely due to the fact that most
write�only �les were written only by one processor� Only �	� of read�only �les� however� were
���� consecutive� The remainder �non�consecutive� sequential read�only �les� were the result of
interleaved access� where successive records of the �le are accessed by di�erent nodes� from the
perspective of an individual node� some bytes must be skipped between one request and the next�

��

Table �� Sequential and consecutive access in the traced �les� Here we look at each �le on each
node� and record the fraction of all accesses that were sequential �seq� or consecutive �cons�� Each
row is mutually exclusive� that is� �� 	�� does not include ������

Percent of Read Written Both All
node��les Seq Cons Seq Cons Seq Cons Seq Cons

� ��	 ��� ��� ���� ��� ��� ��	 ����
� � ��� ���� ��� ��� ��� ��� ��� �
��
� �� ��� ��� ��� ��� ��� ��� ��� ���

��� �� ��� ��� ���
�� ��� ��� ��� ��
��� 	� ��� ��� ��
 ��
 ���� ���� ��� ��

� 	� �� ��� ��� ��� ��
 ��� ��� ���
��� 	�� �	�� 		�� ��
 ���
�
 	��� ��

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

F
ra

ct
io

n
of

 fi
le

s

% Accesses Consecutive

Read-Write

Read-Only

Write-Only

Figure �� CDF of consecutive access to �les on a per�node basis�

��
 I�O�request intervals

We de�ne the number of bytes skipped to be the interval size� Consecutive accesses have interval
size �� The number of di�erent interval sizes used in each �le� across all nodes that access that �le�
is shown in Table �� A surprising number of �les were read or written in one request per node �i�e��
there were no intervals�� Over 		� of the ��interval�size �les were consecutive accesses �i�e�� the
one interval size was ��� The remainder of ��interval�size �les� along with the ��interval�size �les�
represent �� of all �les� and indicate another form of highly regular access pattern� Only ���� of
all �les had
 or more di�erent interval sizes� and their regularity �if any� was more complex�

To get a better feel for this regularity� we also counted the number of di�erent request sizes
used in each �le� as shown in Table �� Over 	�� of the �les were accessed with only one or two
request sizes� Combining the regularity of request sizes with the regularity of interval sizes� many
applications clearly used regular� structured access patterns� presumably because much of the data
was in matrix form�

��

Table �� The number of di�erent interval sizes used in each �le across all participating nodes�
Zero represents those cases where only one access was made to a �le� per node�

Number of Number Percent of
di�erent intervals of �les total �les

� �
�	�
��
�
���� ����
� ��� ���

 ��� ���
�� �� ���

Table �� The number of di�erent request sizes used in each �le across all compute nodes� Files
with zero di�erent sizes were opened and closed without being accessed�

Number of Number Percent of
di�erent sizes of �les total �les

� ����
�	
� ����
 ����
�
���	 ����

 ����
�	
�� ��� ���

��� Synchronization

Given the regular request sizes and interval sizes shown in Tables � and �� Intel�s �I�O modes�
�see Section ���� would seem to be helpful� Our traces show� however� that over 		� of the �les
used mode �� that is� less than �� used modes �� �� or
� Tables � and � give one hint as to why�
although there were few di�erent request sizes and interval sizes� there were often more than one�
something not easily supported by the automatic �le modes� It may also be that these modes were
slower than mode �� so that programmers chose not to use them�

��� Sharing

A �le is shared if more than one job or process opens it� It is concurrently shared if the opens
overlap in time� It is write�shared if one of the opens involves writing the �le� In uniprocessor and
distributed�system workloads� concurrent sharing is known to be uncommon� and concurrent write
sharing rare �BHK�	��� In a parallel �le system� of course� concurrent �le sharing among processes
within a job is presumably the norm� while concurrent �le sharing between jobs is likely to be
rare� Indeed� in our traces we saw a great deal of �le sharing within jobs� and no concurrent �le
sharing between jobs� The interesting question is how the individual bytes and blocks of the �les
were shared� Figure 	 and Table show the percentage of �les �which were concurrently opened
by multiple nodes� with varying amounts of byte� and block�sharing� There was more sharing for
read�only �les than for write�only or read�write �les� which is not surprising given the complexity
of coordinating write sharing� Indeed� ��� of read�only �les had ���� of their bytes shared� while
	�� of write�only �les had no bytes shared at all� While a half of all read�write �les �not shown in

�

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

F
ra

ct
io

n
of

 fi
le

s

Percent shared

Read/Blocks

Read/Bytes

Write/Blocks

Write/Bytes

Figure �� CDF of �le sharing between nodes in Read�Only and Write�Only

�les at byte and block granularity�

Figure 	� were ���� byte�shared� 	
� of them were ���� block�shared� which would stress a cache
consistency protocol� if present� Overall� the amount of block sharing implies strong interprocess
spatial locality� and suggests that caching may be successful�

Table 	� Byte and block sharing in the traced �les� Non�shared and completely shared �les were
most common� Note that false sharing occurred �where no bytes were shared but some blocks were
shared�� Each row is mutually exclusive� that is� �� 		� does not include ������

Percent of �les
Percent Read Written Both All
Shared byte block byte block byte block byte block

� ��	 ��� ���� ��� �	�� ��� �	�� ���
� � ���� ��� ��	 �
�� ��� ��� ��
 ��	
� �� ��� ��� ��	 ���� ��� ��� ���
��

��� �� ���� ��� �� �
�� ��� ��� ��	
�	
��� 	� ��
 ��� ��� ���
�� ��� �� ���
� 	� ���
�� ��� ��� �	�� ��� ��

�	
��� ���
 	�� ���
��� ���� 	
�� ���� �	��

��� Caching

Bu�ering and caching are common in traditional �le systems� and with the right policies can
be successful in multiprocessor �le systems� One advantage of bu�ers is to combine several small
requests �which were common in this workload� into a few larger requests that can be more e�ciently
served by disk hardware� Indeed� with RAID disk arrays commonly seen on today�s multiprocessors
�such as the Intel Paragon and the KSR��� it is even more important to avoid small requests at the
disk level� Fortunately� the small requests seen in Figures � and � when coupled with small interval
size� lead to spatial locality� Other potential bene�ts may come from temporal or interprocess
locality in the access pattern�

��

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 jo
bs

Percent of requests fully satisfied from buffer (hit rate)

50 buffers
10 buffers

1 buffer

Figure �� Results of compute�node caching simulation� Hit rates di�ered

from job to job� with three distinct clumps� indicating that the cache either helped

or did not� One bu�er was as good as many bu�ers�

In a distributed�memory machine� it is possible to place a bu�er cache at the compute nodes�
at the I�O nodes� or both� We evaluated all three with trace�driven simulation�

����� Compute�node caching

The amount of block sharing in write�only and read�write �les show that any attempt to maintain
write�bu�ers at the compute nodes would necessitate a cache consistency protocol� so we restricted
our e�ort to read�only �les� The results of a simple trace�driven simulation of a compute�node
cache of � KB �one block�� read�only bu�ers with LRU replacement are shown in Figure ��� We
consider a hit to be any request that was fully satis�ed from the local bu�er �i�e�� with no request
sent to an I�O node��

Caching success� as indicated by a high hit rate� was limited to a subset of the jobs� ��� of the
jobs had a greater than ��� hit rate� but
�� of the jobs had a �� hit rate� Further� for those jobs
where a cache was bene�cial� a single one�block bu�er per compute node was usually su�cient�
A single bu�er could maintain a high hit rate in patterns with a small request size �which was
common� see Figures � and � and a short �perhaps zero� interval size� Clearly there was spatial
locality in our workload� and not much temporal locality� or multiple bu�ers would have helped
more �� In short� it appears that a one�block bu�er per compute node� per �le� may be useful for
read�only �les� but a careful performance analysis is still necessary�

����� I�O�node caching

Given the apparent interprocess locality� I�O�node caching should be successful� To �nd out� we
ran a trace�driven simulation of I�O�node caches� with ��KB bu�ers managed by either a LRU or
FIFO replacement policy� These I�O�node caches served all compute nodes� all �les� and all jobs�
according to our best guess of the event ordering within our traces as described in Section
� We
assumed the �le was striped in a round�robin fashion at a one�block granularity� No compute�node
cache was used� Figure �� shows the results of the simulation� With LRU replacement� a small

�multiple bu�ers were useful in a very few jobs� apparently those which were interspersing reads from more than

one �le� In those cases a single bu�er per �le would have been appropriate�

��

0

20

40

60

80

100

0 5000 10000 15000 20000 25000

H
it

ra
te

Number of 4K buffers in system

LRU

FIFO

Figure ��� Results of I�O�node caching simulation� Each line represents a

complete run of the simulation with a �xed number of I�O nodes ranging from

to ���

cache ����� ��KB bu�ers over all I�O nodes� was su�cient to reach a 	�� hit rate� With FIFO
replacement� nearly ����� bu�ers were needed to obtain a 	�� hit rate� because FIFO does not give
preference to blocks with high locality� It made little di�erence whether the bu�ers were focused
on a few I�O nodes or spread over many I�O nodes �that is� the hit rates were similar� performance
is another issue�� The success of such a small cache� coupled with the apparent lack of intraprocess
locality in many jobs �Figure ���� recon�rms the presence of interprocess spatial locality�

As a �nal test� we simulated the combination of a single bu�er per compute node and a cache
at each of �� I�O nodes� The result was a only a
� reduction in the I�O node hit rate when
each I�O node had a small cache of �� bu�ers� This further suggests that most of the hits in the
I�O node cache were indeed a result of interprocess locality because� as Figure �� shows� the limited
intraprocess locality was �ltered out by the compute�node cache�

Note the contrast with Miller and Katz�s tracing study �MK	��� which found little bene�t from
caching� �They did notice a bene�t from prefetching and write�behind�� Both their workload
and ours involve sequential access patterns� the di�erence is that the small requests in our access
pattern lead to intraprocess spatial locality� and the distribution of a sequential pattern across
parallel compute nodes leads to interprocess spatial locality� both of which could be successfully
captured by caching�

� Conclusions and recommendations

Although this workload had many characteristics in common with those in previous studies of
scienti�c applications and �le systems �large �le sizes� sequential access� little inter�job concurrent
sharing�� parallelism had a signi�cant e�ect on some workload characteristics �smaller request sizes�
and lots of intra�job concurrent �le sharing� and added some new characteristics �non�consecutive
sequential access and interprocess spatial locality�� A multiprocessor used for scienti�c applications
will not be well served by a �le system ported from a distributed system� which was tuned for a
di�erent set of workload characteristics� In particular� parallelism leads to new� interleaved access
patterns with no temporal locality� and high interprocess spatial locality at the I�O node�

Compute�node caches are probably best implemented as a single bu�er per �le �but only if
carefully managed for consistency�� I�O�node caches can e�ectively combine small requests from

�

many compute nodes� avoiding extraneous disk I�O and raising the potential for large disk I�Os� a
signi�cant bene�t when the I�O nodes serve RAIDs �which favor large transfers� rather than indi�
vidual disks� Replacement policies other than LRU or FIFO should be developed �e�g�� �KE	
a��� to
optimize for sequential access and interprocess locality rather than traditional spatial and temporal
locality�

Ultimately� we believe that the �le�system interface must change� The current interface forces
the programmer to break down large parallel I�O activities into small� non�contiguous requests�
While compute�node and I�O�node caching can help� it would be better to support strided I�O
requests from the programmer�s interface to the compute node� and from the compute node to
the I�O node� A strided request can express a regular request and interval size �which were
common in our workload�� e�ectively increasing the request size� lowering overhead� and perhaps
eliminating the need for compute�node bu�ers� Strided requests are available in some �le�system
interfaces �CFPB	
� DdR	�� Kot	
�� For some applications� collective I�O requests can lead to even
better performance �Kot	���

Dependence on Intel CFS� We caution that some of our results may be speci�c to workloads
on Intel CFS �le systems� or to NASA Ames�s workload �computational �uid dynamics�� Although
the exact numbers are workload�speci�c� we believe that the conclusions above are applicable to
scienti�c workloads running on loosely�coupled MIMD multiprocessors with a CFS�like interface�
that is� an interface which encourages interleaved access and an independent �le pointer for each
node� This category includes many current multiprocessors�

� Future Work

There are many avenues for future work� some of which we are exploring�

� Gain a deeper understanding of the �le access patterns �perhaps using temporal information��

� Collect traces from other machines and environments� to broaden and deepen the experimental
data� and strengthen the generality of our conclusions�

� Convert these results into a meaningful� synthetic benchmark of parallel I�O�

Acknowledgements

Many thanks to the NAS division at NASA Ames� to the individuals there who helped us with the
iPSC��� tracing e�ort �Je� Becker� Russell Carter� Chris Kuszmaul� Art Lazano�� Bill Nitzberg�
and Leigh Ann Tanner�� and to the many users who agreed to be traced� Many thanks also to
Mike Best� Carla Ellis� Sam Fineberg� Orran Krieger� Apratim Purakayastha� Bernard Traversat�
and the rest of the CHARISMA group for their helpful discussions�

References

�BCR	
� Rajesh Bordawekar� Alok Choudhary� and Juan Miguel Del Rosario� An experimental
performance evaluation of Touchstone Delta Concurrent File System� In International
Conference on Supercomputing� pages
��
�� �		
�

��

�BGST	
� Michael L� Best� Adam Greenberg� Craig Stan�ll� and Lewis W� Tucker� CMMD I�O�
A parallel Unix I�O� In Proceedings of the Seventh International Parallel Processing
Symposium� pages ��	��	�� �		
�

�BHK�	�� Mary G� Baker� John H� Hartman� Michael D� Kupfer� Ken W� Shirri�� and John K�
Ousterhout� Measurements of a distributed �le system� In Proceedings of the Thirteenth
ACM Symposium on Operating Systems Principles� pages �	������ �		��

�CCFN	�� Russell Carter� Bob Ciotti� Sam Fineberg� and Bill Nitzberg� NHT�� I�O benchmarks�
Technical Report RND�	����� NAS Systems Division� NASA Ames� November �		��

�CFPB	
� Peter F� Corbett� Dror G� Feitelson� Jean�Pierre Prost� and Sandra Johnson Baylor�
Parallel access to �les in the Vesta �le system� In Proceedings of Supercomputing ����
pages �������� �		
�

�CHKM	
� R� Cypher� A� Ho� S� Konstantinidou� and P� Messina� Architectural requirements of
parallel scienti�c applications with explicit communication� In Proceedings of the ��th
Annual International Symposium on Computer Architecture� pages ���
� �		
�

�CK	
� Thomas H� Cormen and David Kotz� Integrating theory and practice in parallel �le
systems� In Proceedings of the 	��� DAGS�PC Symposium� pages ����� Hanover�
NH� June �		
� Dartmouth Institute for Advanced Graduate Studies� Revised from
Dartmouth PCS�TR	
�����

�Cro�	� Thomas W� Crockett� File concepts for parallel I�O� In Proceedings of Supercomputing
�
�� pages ������	� �	�	�

�dC	�� Juan Miguel del Rosario and Alok Choudhary� High performance I�O for parallel
computers� Problems and prospects� IEEE Computer� ���
���	��� March �		��

�DdR	�� Erik DeBenedictis and Juan Miguel del Rosario� nCUBE parallel I�O software� In
Eleventh Annual IEEE International Phoenix Conference on Computers and Commu�
nications �IPCCC�� pages ���������� April �		��

�Dib	�� Peter C� Dibble� A Parallel Interleaved File System� PhD thesis� University of
Rochester� March �		��

�FE�	� Richard Allen Floyd and Carla Schlatter Ellis� Directory reference patterns in hierarchi�
cal �le systems� IEEE Transactions on Knowledge and Data Engineering� ������
������
June �	�	�

�Flo�� Rick Floyd� Short�term �le reference patterns in a UNIX environment� Technical
Report ���� Dept� of Computer Science� Univ� of Rochester� March �	��

�FPD	
� James C� French� Terrence W� Pratt� and Mriganka Das� Performance measurement
of the Concurrent File System of the Intel iPSC�� hypercube� Journal of Parallel and
Distributed Computing� ���������������� January and February �		
�

�Fre�	� James C� French� A global time reference for hypercube multiprocessors� In Fourth Con�
ference on Hypercube Concurrent Computers and Applications� pages �������� �	�	�

�GGL	
� N� Galbreath� W� Gropp� and D� Levine� Applications�driven parallel I�O� In Proceed�
ings of Supercomputing ���� pages ������� �		
�

��

�KE	
a� David Kotz and Carla Schlatter Ellis� Caching and writeback policies in parallel �le
systems� Journal of Parallel and Distributed Computing� ���������������� January and
February �		
�

�KE	
b� David Kotz and Carla Schlatter Ellis� Practical prefetching techniques for multipro�
cessor �le systems� Journal of Distributed and Parallel Databases� �����

���� January
�		
�

�Kot	
� David Kotz� Multiprocessor �le system interfaces� In Proceedings of the Second Inter�
national Conference on Parallel and Distributed Information Systems� pages �	������
�		
�

�Kot	�� David Kotz� Disk�directed I�O for MIMD multiprocessors� Technical Report PCS�
TR	����� Dept� of Computer Science� Dartmouth College� July �		��

�KS	
� Orran Krieger and Michael Stumm� HFS� a �exible �le system for large�scale multipro�
cessors� In Proceedings of the 	��� DAGS�PC Symposium� pages ���� Hanover� NH�
June �		
� Dartmouth Institute for Advanced Graduate Studies�

�KSR	�� KSR� technology background� Kendall Square Research� January �		��

�Mas	�� Parallel �le I�O routines� MasPar Computer Corporation� �		��

�MK	�� Ethan L� Miller and Randy H� Katz� Input�output behavior of supercomputer appli�
cations� In Proceedings of Supercomputing ��	� pages ������ November �		��

�MK	
� Ethan L� Miller and Randy H� Katz� An analysis of �le migration in a UNIX super�
computing environment� In Proceedings of the 	��� Winter USENIX Conference� pages
�����
�� January �		
�

�NAS	
� NASA Ames Research Center� Mo�et Field� CA� NAS User Guide� �� edition� March
�		
�

�Nit	�� Bill Nitzberg� Performance of the iPSC��� Concurrent File System� Technical Report
RND�	������ NAS Systems Division� NASA Ames� December �		��

�OCH���� John Ousterhout� Herv�e Da Costa� David Harrison� John Kunze� Mike Kupfer� and
James Thompson� A trace driven analysis of the UNIX ��� BSD �le system� In Pro�
ceedings of the Tenth ACM Symposium on Operating Systems Principles� pages ������
December �	���

�Pie�	� Paul Pierce� A concurrent �le system for a highly parallel mass storage system� In
Fourth Conference on Hypercube Concurrent Computers and Applications� pages ����
��� �	�	�

�Pow��� Michael L� Powell� The DEMOS File System� In Proceedings of the Sixth ACM Sym�
posium on Operating Systems Principles� pages

���� November �	���

�PP	
� Barbara K� Pasquale and George C� Polyzos� A static analysis of I�O characteristics
of scienti�c applications in a production workload� In Proceedings of Supercomputing
���� pages
���
	�� �		
�

�	

�PP	�� Barbara K� Pasquale and George C� Polyzos� A case study of a scienti�c application
I�O behavior� In Proceedings of the International Workshop on Modeling Analysis
and Simulation of Computer and Telecommunication Systems� pages ������� �		��

�RB	�� A� L� Narasimha Reddy and Prithviraj Banerjee� A study of I�O behavior of Per�
fect benchmarks on a multiprocessor� In Proceedings of the 	�th Annual International
Symposium on Computer Architecture� pages
���
��� �		��

�Roy	
� Paul J� Roy� Unix �le access and caching in a multicomputer environment� In Proceed�
ings of the Usenix Mach III Symposium� pages ���
�� �		
�

�TMC��� Connection Machine model CM�� technical summary� Technical Report HA����� Think�
ing Machines� April �	���

��

