
AuthoRing: Wearable User-presence Authentication

Xiaohui Liang
University of Massachusetts Boston

Boston, Massachusetts, 02125

David Kotz
Dartmouth College

Hanover, New Hampshire, 03755

ABSTRACT
A common log-in process at computers involves the entry
of username and password; log out depends on the user
to remember to log out, or a timeout to expire the user
session. Once logged in, user sessions may be vulnerable
to imposter attacks in which an impostor steps up to the
user’s unattended computer and inherits the user’s access
privilege. We propose a ring-based authentication system
called “AuthoRing”, which restricts the imposter attackers
from generating new inputs at the computer’s mouse and
keyboard. During the log-in process, an eligible AuthoRing
user wears a digital ring with accelerometers and wireless
communication capability. When input is detected at the
mouse or keyboard, the computer’s AuthoRing system corre-
lates hand-motion data received from the ring with the input
data from the computer’s window manager, and detects im-
poster attacks when these data are insufficiently correlated.
We implemented the AuthoRing system and evaluated its
security, efficiency, and usability; we found that imposter
attacks can be effectively detected and the required opera-
tions happen quickly with negligible delays experienced by
the user.

1. INTRODUCTION
Computers, mobile devices, and applications need to ver-

ify that their user is who she says she is before taking any
actions that expose sensitive data or trigger sensitive trans-
actions. For example, electronic health record apps present
a patient’s health information to authorized doctors and
nurses and banking apps reveal credit-card transactions to
credit-card owners. After a user is authenticated – typically
with a password or PIN code – the device tracks the user’s
activity; if an inactivity period exceeds a timeout threshold,
the user is automatically logged out (de-authenticated).

Although common, this type of authentication (and de-
authentication) has several security and usability problems.
Consider a user visits a public computer in a library to write
files under her account at the computer. While the computer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WearSys ’17, June 19, 2017, Niagara Falls, NY, USA.
c© 2017 ACM. ISBN 978-1-4503-4959-8/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3089351.3089357

is a shared device, if the user forgets to logout, someone
could later try to access the files created by the previous
user. Another case is a personal computer left unattended
in a public space; an impostor (perhaps a fellow employee,
or a visitor with no authority to use the system) may physi-
cally gain access to the unattended user session, with access
to a victim’s account. The impostor attacks are particularly
difficult to detect and trace because all actions were appar-
ently taken by the authorized user, and the victim account
was not associated with suspicious activity before [8, 12].

One way to limit the imposter attacks is to set a small
timeout, and require the user to input her password to re-
authenticate whenever she has been inactive. On the other
hand, users find it inconvenient to enter their password so
frequently. Moreover, recent research has demonstrated that
entering passwords in a public place may not be secure;
wireless signals and cameras may be used to eavesdrop on
keystrokes [4, 16]. How can a user remain authenticated
with minimum effort and without re-entering her password –
and yet prevent access by imposters that step in to use her
unattended computer? We aim to achieve this goal.

We propose a continuous user-presence authentication
system, called AuthoRing, in the form of a ring that as-
sists a user in continuously confirming her presence through
computer mouse motion. AuthoRing aims to authenticate
the user who is actually using the computer, while existing
proximity-based schemes [10, 7, 11] authenticate the user
who is physically close to the computer. AuthoRing requires
no changes to the computer hardware and operating sys-
tem. The user wears a digital ring on her finger; this ring is
equipped with an accelerometer and Bluetooth Low Energy
(BLE), technology already demonstrated for use in gesture
recognition [14, 9]. AuthoRing makes three contributions:
• Addressing an important security risk by verifying user

presence and preventing impostors from hijacking unat-
tended user sessions. AuthoRing verifies user presence by
correlating mouse motion with hand-motion data. The ver-
ification can be accomplished by a user either passively or
actively, while achieving high accuracy as shown in our ex-
periments.
• Improving usability (and reducing vulnerability) by

avoiding repeated instances of password entry. AuthoRing
collects mouse-motion and hand-motion data passively and
largely reduces the need for active authentication. For an
active authentication, the user can simply wiggle the mouse
to verify her presence.
• Implementing and evaluating the AuthoRing system.

We implement the AuthoRing system as Python programs

5

and build a ring prototype with TinyDuino boards. We show
that with appropriate system parameters, passive authenti-
cation can be accomplished by a two-second mouse motion
while the false-reject ratio was close to 0 and the false-accept
ratio was below 10%. For a four-second mouse motion, the
false-accept ratio was reduced to 4%.

2. DESIGN GOALS
We consider a scenario that involves an AuthoRing-

enabled computer, and a user wearing a ring with embed-
ded accelerometer. The ring and the computer both have
Bluetooth Low Energy (BLE), and have successfully paired.
AuthoRing has two goals.

Resisting impostor attacks. An impostor attacker aims
to impersonate a victim user and gain an access to her ac-
count. (In the literature, such attacks are sometimes called
“lunchtime attacks,”in which an adversary temporarily gains
access to a co-worker’s workstation while the co-worker is
away.) The challenge here is to enable the computer to rec-
ognize the right user without imposing undue burden on the
user or adding any noticeable delay in computer interactions.
Note that, in some scenarios, the adversary may be an au-
thorized user of the computer – but is seeking unauthorized
access to another user’s unattended session. Furthermore,
we want to prevent impostor access even when the authentic
user is nearby (within BLE range, perhaps at a nearby lunch
table) but not actively using the computer.

Minimizing the use of password. Repeatedly entering
passwords might be annoying and recent research shows the
potential risk of leaking credentials to eavesdropping attack-
ers [4, 16]. When the authentic user wears an AuthoRing,
it can assist the user in re-authentication. She just needs to
prove to the wearable and the computer that she is present at
the moment. Means to develop an accurate and usable user-
presence authentication is the key to minimizing the use of
traditional password-based user authentication. AuthoRing
takes a key step in this direction.

3. THREAT MODEL
We assume the impostor attacker is aware of the Autho-

Ring system and aims to break the user-presence authentica-
tion. We consider two types of impostor attackers: (1) the
attacker randomly moves the mouse; and (2) the attacker
observes the user’s hand motion and moves the mouse to
mimic the user’s hand motion. We assume the attacker nei-
ther disrupts the AuthoRing system nor installs any mali-
cious software on the computer. Although savvy attackers
may use such tools, we are motivated by the opportunistic
“lunchtime” attacker. Any attacker involving such attack
tools requires a different range of solutions, including anti-
malware tools and stronger authentication when software
is installed, de-installed, or modified. Such tools should
certainly be used in addition to AuthoRing, and are well-
established products.

4. AUTHORING
The AuthoRing system includes the following compo-

nents.

4.1 Initialization
When a user first uses a computer, she connects her ring

to the computer via BLE. AuthoRing adopts a pairing

x
y z

x*

y*

Figure 1: Five axes

protocol for small embedded devices that have no display
but accelerometers; there are many approaches and specific
methods are beyond the scope of this paper. After being
connected, the computer and the ring communicate via a
secure channel as long as they are within BLE communica-
tion range.

4.2 User-presence authentication
Our user-presence authentication needs to collect two

kinds of motion information: the AuthoRing system on the
computer collects the mouse motion while the ring collects
the hand motion. When the AuthoRing system detects
mouse motion on the computer, it starts to save the mouse-
motion data and it notifies the ring so the ring begins to col-
lect acceleration data about the user’s hand motion. When
the mouse is stationary or the collected data is enough, the
computer notifies the ring, which stops the data collection
and forwards the data to the computer.

We envision a three-axis accelerometer, and the mouse
moves across a two-dimensional screen; thus, we work with
five axes as in Figure 1. Denote the mouse-motion data
M = {m1, · · · ,mk} at time points {tm,1, · · · , tm,k} and
the hand-motion data N = {n1, · · · , nh} at time points
{tn,1, · · · , tn,h}. Since the computer and the ring collect
the data almost from the same period, we have tm,k ≈ tn,h,
tm,1 ≈ tn,1. The more data they collect, the better accu-
racy the authentication should achieve. However, to accu-
mulate a longer period of data for authentication compro-
mises usability (forcing the user to engage more). Here, we
define a threshold T as a threshold to trigger the termi-
nation of data collection; if the data period is longer than
T , i.e., tm,k − tm,1(≈ tn,h − tn,1) ≥ T , the data collection
period ends and the authentication moves forward to the
correlation algorithm. Denote tmin = min{tm,1, tn,1} and
tmax = max{tm,k, tn,h}.

Correlating the mouse coordinates with the acceleration
data involves three challenges: i) the two sets of data are
in different units, and it is difficult to transform one unit
to the other; ii) the orientation of the accelerometer on the
ring is always changing because the hand and the mouse
are in motion; and iii) the changes of mouse coordinates are
difficult to compare to accelerations because of the different
sampling frequency. From our preliminary results, we found
axis alignment of the data using gravity was computation-
ally expensive and unreliable, so we do not align the axes
(x∗, y∗) with any of (x, y, z). We observed that a change of
coordinate in x∗ or y∗ could result in a change of acceler-
ation data in all three axes (x, y, z). Thus, we explore the
pairwise correlation of six pairs of data where (cx∗,i, cy∗,i)
are two screen coordinates and (ax,j , ay,j , az,j) are three ac-

6

celeration readings:

(cx∗,i, ax,j), (cy∗,i, ax,j), (cx∗,i, ay,j),

(cy∗,i, ay,j), (cx∗,i, az,j), (cy∗,i, az,j).

The correlation algorithm includes three steps: peak de-
tection, weight calculation, and distance calculation.

Peak detection. We find the peaks in the time series
for each of five axes (x∗, y∗, x, y, z). The idea here is that
changes of direction of mouse motion are where the peak
accelerations also occur, so finding peaks in mouse-motion
coordinates is essentially finding the places where the mouse
changed direction, and hence should occur at the same time
as peak accelerations. We used a low-pass filter to ignore
small peaks in the acceleration data.

Weight calculation. The time-series data may contain
noise due to small movements of the mouse and the hand.
As such, if a given time series contains distinctive features,
it should be given a larger weight in the correlation. Here,
the distinctive features are defined by the number of peaks
and the interval between these peaks. We assign a relatively
larger weight to the time series that has moderate peaks
with varying time intervals. On the other hand, if the peaks
are too many or too few, the weight is relatively low. We
specifically discuss the weight calculation in the evaluation
section. We denote five weights respectively for five axes
{wx∗ , wy∗ , wx, wy, wz}. We calculate normalized weights for
all six pairs:

wα,β =
wαwβ

(wx∗ + wy∗)(wx + wy + wz)

where α ∈ {x∗, y∗} and β ∈ {x, y, z}.
Distance calculation. To calculate the distance, we

use the number of peaks and the time interval between
these peaks. After extracting the peaks from the time-series
data, we use these peaks to generate a function F as fol-
lows. For α ∈ {x∗, y∗} and β ∈ {x, y, z}, we define, for
t = [tmin, tmax],

Fα(t) =

{
1 if a peak is in [t− ∆t, t+ ∆t] of axis α;

0 otherwise.

Fβ(t) =

{
1 if a peak is in [t− ∆t, t+ ∆t] of axis β;

0 otherwise.

where ∆t is a parameter set to tolerate the time de-
lay of peaks in two different time-series data caused by
computation, communication, and hardware sensing. De-
note Fα,β(t) = Fα(t)|Fβ(t) to merge the non-zero periods
(NZPs), i.e., if either Fα(t) or Fβ(t) equals 1, Fα,β(t) equals
1. A distance function for axes α and β is:

Dα,β = 2× the number of NZPs in Fα,β
the number of NZPs in Fα plus that in Fβ

− 1

If Fα and Fβ perfectly match, Dα,β should be the minimum
2× 1

2
− 1 = 0; otherwise, the number of NZPs in Fα,β(t) is

larger and the Dα,β is larger. Finally, we define the correla-
tion score ηM,N as follows.
• If there exists at least one pair of α ∈ {x∗, y∗} and

β ∈ {x, y, z} such that wα ≥ τ and wβ ≥ τ , where τ is an
adjustable threshold, the two time series represented by α
and β are considered to have comparable distinctive features.
The correlation score is defined as

ηM,N = min{Dα,β | wα ≥ τ and wβ ≥ τ for α, β}.

• If there exists no such pair, we calculate the weighted
average distance of all six pairs as the correlation score.

ηM,N =
∑

α=(x∗,y∗),β=(x,y,z)

wα,β ×Dα,β

The minimum score of ηM,N is 0. The authentication
succeeds if ηM,N is below a pre-defined threshold; fails oth-
erwise. Details are shown in the evaluation section.

4.3 Optimized authentication
Our user-presence authentication can be unobtrusive and

efficient if the computer mouse is moved by the user fre-
quently because there is plentiful data to be used by the
correlation algorithm. In case the user does not frequently
move the mouse, AuthoRing takes the following approaches.

Mouse wiggling when needed. The AuthoRing sys-
tem accumulates the mouse and hand-motion data in a pas-
sive manner and can thus verify user presence immediately
when it is really needed. Our correlation algorithm could be
run over the passively accumulated mouse motion. When a
mouse click and a keyboard input is detected, user presence
is immediately verified. In this case, the user does not need
to actively wiggle the mouse. However, if a mouse click or
a keyboard input is detected and there is insufficient recent
data collected passively, the user needs to actively wiggle the
mouse to generate more data for authentication. Wiggling
the mouse is an intuitive and convenient approach, as users
are accustomed to wiggling a mouse to wake the computer,
and this action is easier than re-entering a password.

Individual interaction period. We assume that the
impostor attacker is unable to successfully step into a user
session within a short time after the previous user departs,
without being detected. We define a term Individual Inter-
action Period (IIP) as a time period during which a com-
puter receives a sequence of user inputs, such as keystrokes,
mouse motion, mouse clicks, and mouse scrolling, and the
inactive gap between any two consecutive inputs is ≤ TIIP .
TIIP is an adjustable parameter depending on the security
requirement and the physical environment. In other words,
the AuthoRing system considers two user inputs with an in-
active gap ≤ TIIP to be from the same user. The AuthoRing
system maintains one IIP at a time. A new IIP is created
when a user input is received and the inactive gap between
this input and the last input is > TIIP . For a given IIP,
only one authentication (either passive or active) is needed.
This strategy largely reduces the need for the user-presence
authentication when the mouse clicks and keyboard inputs
are frequent.

5. EVALUATION
In our evaluation, we used a desktop computer that is

equipped with a mouse and an IOGEAR Bluetooth 4.0 USB
Micro Adapter. We implemented a ring prototype with
TinyDuino, an open-source platform that features the full
capabilities of the popular Arduino platform but miniatur-
izes the board [2]. We did not record the content of their
activity, just the time and type of interactions. All human-
subject experiments in this paper were approved by our In-
stitutional Review Board (IRB).

5.1 Evaluation of Correlation
We asked five users to wear our ring prototype and use

our desktop computers. These users reported that their in-

7

teraction behavior changed at first, but after they found
a comfortable way to use the mouse and keyboards, wear-
ing our prototype had negligible impacts on their interac-
tion behavior. During the data collection process, we set
the mouse tracking sensitivity at moderate and fixed level.
For each user, AuthoRing collected both mouse-motion data
and hand-motion data simultaneously for about 10-15 min-
utes. The sampling frequencies of mouse/hand motion data
both were set to 50 Hz, so for each user we obtained around
30,000 – 45,000 data points of mouse motion and hand mo-
tion. If their mouse usage filled about 30 – 50% of the total
time, we obtained about 9,000 – 22,500 effective data points.
From the effective data points we examined small windows
of T -length by shifting a sliding window one data point
at a time to evaluate the correlation over the entire data
range where T is the minimum time period of accumulative
mouse-motion data to trigger the user-presence authentica-
tion. Here we have two options: one is to randomly choose
one data window from the hand-motion data and correlate
it with all windows from the mouse-motion data; and the
other is to randomly choose one mouse-motion window and
correlate it with all windows from the hand-motion data.
Ideally, the correlation should succeed if and only if the two
windows correspond to the same time period.

After choosing two windows, we first used a peak-
detection algorithm to derive the peaks in each window, and
calculated a weight based on the number of peaks. We set
a small weight for a window if it had too many or too few
peaks, and a large weight for a window if it has a moderate
number of peaks. Specifically, we use a log-normal func-
tion w = lognpdf(num/40, µ, σ) to determine the relation
between the number of peaks num and the weights w. The
log-normal function aligns with our requirements on setting
the weights where a convex function has lognpdf(0) = 0 and
lognpdf(+∞) → 0. In the following, we describe experi-
ments for µ = 0 and σ = 0.4. Additionally, in our correla-
tion algorithm, we chose a tolerance range ∆t to handle the
time delay offset of peaks appearing in the mouse-motion
data and the hand-motion data; such delay was due to the
transmission time of the notifications from the computer to
the ring. We chose ∆t = 20, 30, 40 ms. Intuitively, the more
data the correlation algorithm used, the better accuracy it
could achieve. Here, we chose T = 2 s or 4 s to control the
size of the input data.

In Figures 2(a) and (b), we plot the cumulative distribu-
tion function (CDF) of correlation scores for T = 4 s. In
Figures 2(c) and (d), we plot the CDF for T = 2 s. In both
Figures 2(a) and (c), we report the result of a randomly-
selected window from the hand-motion data and all win-
dows from the mouse-motion data. In Figures 2(b) and (d),
we report the result of a randomly-selected window from
the mouse motion and all windows from the hand-motion
data. Note that the correlation results for other selections
are similar because we scan the all windows of the motion
data. In each of these figures, three CDF are generated for
∆t = 20, 30, 40 ms, respectively from right to left. We also
plot the correlation score, as a vertical line, of the two win-
dows that occurred at the same time (i.e., the two windows
that should correlate best). If we choose a threshold larger
than that score, we obtain a false-reject ratio close to 0 and
we obtain the corresponding false-accept ratio at the inter-
section of the CDF and the vertical line. In Figure 2(b),
comparing ∆t = 30 and 40 ms, we found the false-accept

Correlation Score
0.2 0.4 0.6 0.8 1

C
D

F

0

0.2

0.4

0.6

0.8

1

� t = 20
� t = 30
� t = 40

(a) Hand, T = 4

Correlation Score
0.2 0.4 0.6 0.8 1

C
D

F

0

0.2

0.4

0.6

0.8

1

� t = 20
� t = 30
� t = 40

(b) Mouse, T = 4

Correlation Score
0.2 0.4 0.6 0.8 1

C
D

F

0

0.2

0.4

0.6

0.8

1

� t = 20
� t = 30
� t = 40

(c) Hand, T = 2
Correlation Score

0.2 0.4 0.6 0.8 1

C
D

F

0

0.2

0.4

0.6

0.8

1

� t = 20
� t = 30
� t = 40

(d) Mouse, T = 2

Figure 2: CDF of correlation scores

ratio was not always smaller if we choose a larger ∆t. A
larger ∆t enables the correlation algorithm to tolerate more
delay caused by the communication, computation, and hard-
ware sensing, but it also allows the correlation algorithm to
falsely accept other windows (which did not occur in the cor-
rect time window). From Figure 2(a) and (b) where T = 4 s,
we found that when ∆t = 20 ms, the false-accept ratio was
about 4% while the false-reject ratio was close to 0; when
∆t = 30, 40 ms, the false-accept ratio was still below 10%.
From Figures 2(c) and (d) where T = 2 s, it can be seen
that when T decreased from 4 s to 2 s, the false-accept ratio
generally increased (while keeping the false-reject ratio close
to 0). The main reason is because the size of each window is
smaller, each window could more likely be falsely correlated
with others. Specifically, we had large false-accept ratios
40% and 25% when T = 2 s and ∆t = 40 ms. To reduce the
false-accept ratio, we choose ∆t = 20 ms instead of 40 ms,
for which the false-accept ratios then decreased to below
10%. In other words, we have less tolerance on the time de-
lay, and that in turn impose a more restricted requirement
on the sensing response and the transmission speed of the
sensor data. In sum, these findings suggest we either choose
T = 4 s, or T = 2 s with a small ∆t.

We then asked the users to actively wiggle the mouse af-
ter they saw a notification until the notification disappears.
The notification appeared for 10 seconds. We observed all
five users wiggle the mouse faster and stronger than they
normally move the mouse partly because they do not need
to purposely move the mouse to a specific location. In this
case, the corresponding mouse motion and hand motion data
contained more peaks with shorter time intervals. We ap-
plied a similar analysis method and found better correlation
results (false-reject ratio close to 0 and false-accept ratio
below 1% even for two-second motion) than those from the
passive experiment. Although the authentication accuracy
can achieve 1% for active authentication and 4% for passive
authentication, the data used for matching was drawn ran-
domly. In other words, if the impostor attacker randomly
generated either the mouse-motion data or the hand motion
data, it can be detected by the user-presence authentication
with a large probability. However, in practice, the impostor

8

Correlation Score of Attacker
0.2 0.4 0.6 0.8 1

C
D

F

0

0.2

0.4

0.6

0.8

1

� t = 20
� t = 30
� t = 40

(a) Hand motion, 2s

Correlation Score of Attacker
0.2 0.4 0.6 0.8 1

C
D

F

0

0.2

0.4

0.6

0.8

1

� t = 20
� t = 30
� t = 40

(b) Mouse motion, 2s

Figure 3: CDF of correlation score by attacker

attacker could generate better motion data by observing the
user’s behavior. In the following, we evaluate the capability
of such an intelligent attacker and analyze the security of
AuthoRing.

5.2 Evaluation of Security
We considered different ways to simulate an impostor at-

tacker. We decided to let users be their own attacker be-
cause we expect that they may mimic their own behavior
better than other people. Specifically, we videotape the
users’ mouse usage in previous experiments, and addition-
ally videotape the users’ hand motion when they are not
using the mouse. After two days we contact the user again
to continue our experiment. We delay two days because
we want the user to forget any particular gesture they used
in the first experiment (because the attacker will not know
these gestures in advance). This time, we show them a two-
second video segment of either mouse (cursor) motion or
hand motion of the videos. We want the user to repeat
the mouse motion by observing the hand motion, or vice
versa. We require the user to mimic the motion in the video
in real-time and the data collection starts and ends as the
video starts and ends (because the computer and the ring
start and end the data collection at the same time). We ran-
domly selected a two-second video segment, so the user (at-
tacker) does not have time to prepare her gesture, although
she may become more familiar with the gestures after mul-
tiple performances. We plot the CDF of correlation scores
in Figure 3(a) where the user watched a video segment of
hand motion, and Figure 3(b) where the user watched a
video segment of mouse motion. We found that such an
impostor attacker did not do better than the attacker who
guessed randomly. Indeed, our authentication had a lower
false-accept ratio for this mimicking attack. An examination
of the data found the main reason for this result is the nat-
ural delay in human response. As indicated by a study from
17,000,000 tests with live subjects [1], the most common hu-
man reaction time is around 265 ms, and the fastest is about
160 ms. The average delay shown from that data is about
200 ms. In our algorithm, we set ∆t = 20, 30, 40 ms, which
results in an allowable time range of 40, 60, or 80 ms around
an event, which is far less than the fastest human reaction
time. Therefore, the impostor’s malicious behavior unavoid-
ably incurs a delay due to the attacker’s limited reaction
time, while our correlation algorithm does not tolerate such
delay. As such, the impostor is unable to successfully at-
tack the AuthoRing system by mimicking the user when the
user is visible but away from her computer. We understand
that a more sophisticated attacker could use cameras and
robotics to mimic the victim’s behavior, but that approach
will certainly raise the bar of complexity for the attacker!

6. DISCUSSION
In this section, we discuss a few issues and alternatives

about security, scenarios, and techniques.
• Security: Ring loss or theft. A wearable ring may be

lost or stolen by an attacker. AuthoRing could integrate
some existing techniques to prevent the attacker from using
the ring to impersonate the user. For example, Apple Watch
automatically locks itself if it detects no skin contact, and
requires a user to enter a passcode code to unlock the watch.
Similarly in AuthoRing, the wearable ring should lock itself
if it detects no skin contact. To unlock the ring, a combina-
tion of 3D gestures could be preset by a user and later used
as a secret to verify the user [5]. Another interesting solu-
tion could be using bioimpedance measurement to develop
a biometric around a user’s ring finger [6].

Comparison with proximity-based solutions. Proximity-
based schemes [10, 7, 11] authenticate users if they are in
the proximity of the device as determined by the wireless ra-
dio signal strength from a token they carry. The Bluetooth
and NFC techniques can be used to implement proximity-
based solutions. These schemes are better than AuthoRing
because they work even for users who are not using the com-
puter mouse with the ring hand. Although these schemes
provide continuous authentication, they may not authenti-
cate the user who is actually using the device. AuthoRing
correlates the mouse motion and hand motion and is able to
continuously determine if it is the same user that uses the
computer.
• User scenarios: Multiple-user scenario. For a public

computer that could be shared by multiple users, if multiple
users are in the proximity of the computer and their rings
are all connected to the computer, the computer is unable
to know which user’s hand motion should be collected for
authentication. The rings cannot tell if the user is using
the computer or not. As such, AuthoRing needs the user
to select her ring (e.g., in a pop-up window) when the user
switches to a new computer.

Multiple-user ring. In AuthoRing, the ring need not be
a personal device. Consider a workplace at which the user
picks up a random ring at the entry desk, uses the ring for a
whole day, and returns the ring back to the service desk after
work. A user needs to know the ring name and select the
ring name as above, when beginning work on a computer.
As such, the ring can be used by different users in another
day, because it does not store any personal secret.
• Improved techniques: Extending AuthoRing to use

keyboard input and hand motion. AuthoRing could use the
keystrokes to further improve its confidence about user’s
presence. For example, if the detected keystrokes and the
hand motion are highly correlated while the mouse is sta-
tionary, the AuthoRing system knows the user is using
the keyboard. However, when they are not correlated, the
AuthoRing system has no idea about the current user, and
cannot reject a user based on the keystroke information.

Mobile devices. AuthoRing might be extended to smart-
phones and tablets, and to other input interfaces such as
touch screen and touch pad. For these interfaces, a user
typically uses one finger; for AuthoRing to work, the user
has to wear the ring on the primary finger. However, such
motion may be very slight, and the corresponding correla-
tion algorithm has to be improved to accurately match the
two kinds of motion information. More study is needed to
extend AuthoRing in this way.

9

Implement AuthoRing in a smartwatch. The idea behind
AuthoRing could perhaps be similarly implemented in a
smartwatch. However, we found when users interact with
the mouse and keyboards, the wrist motion was much less
intensive than the hand motion. As such, the correlation al-
gorithm needs a much longer period of sensor data to verify
the user’s presence and guarantee the desired security prop-
erties. In this case, an active user-presence authentication
requiring 10 s active effort is even worse than a password
entry in terms of usability.

7. RELATED WORK
Continuous authentication aims to resist impostor attacks

by implicitly and continuously performing user authentica-
tion without disrupting the normal user-device interaction.
Pico [10] detects whether the user and the Pico token are
in the communication range of the computer, but fails when
the user is present but not the current user of the computer.
Continuous authentication could also be implemented with
a behavioral biometric, such as eye movement [8], keystroke
patterns [3], mouse dynamics [13], or via correlation with
wrist motion as in ZEBRA [12]. These other solutions intro-
duce errors and delays. For example, in ZEBRA [12], even
after the attacker takes control of the computer for more
than 5 seconds, the attack detection probability is less than
80%. In the eye-movement detection system [8], to achieve
a false-reject ratio of 0, the system has a false-accept ra-
tio of 19.2%. The mouse-dynamic system [15] achieves a
false-accept ratio of 8.74% and a false-reject ratio of 7.69%
with a corresponding authentication time of 11.8 seconds.
As such, they all are ineffective to resist quick impostor at-
tacks as they need a relatively long time to receive enough
behavioral information for attack detection. In comparison,
AuthoRing is more efficient and accurate than previous so-
lutions, and it further balances the usability and the security
with a passive and an active user-presence authentication.

8. CONCLUSIONS
In this paper, we introduce AuthoRing, a continuous user-

presence authentication system that assists users in securely
and efficiently confirming their presence through mouse mo-
tion. AuthoRing software detects when the computer is used
by an imposter (anyone other than the ring wearer) and
blocks access to the logged-in user sessions. We implemented
the AuthoRing system in the computer using Python and
built a ring prototype using TinyDuino. Through our ex-
periments conducted in a lab setting, we show that if the
motion data was collected passively, the false-reject ratio
was close to 0 while the false-accept ratios were 10% and 4%
respectively for two-second and four-second motion samples.
If the user actively wiggles the mouse to generate the motion
data, the false-accept ratios were further reduced to 1% for
two-second motion samples. We found that a sophisticated
impostor, who mimics mouse (or hand) motion by obser-
vation, failed due to the inherent limitations of the human
reaction delay. Given this proof of concept, our next step is
to deploy a pilot study and conduct more comprehensive ex-
periments to evaluate AuthoRing in realistic environments.

9. ACKNOWLEDGEMENTS
This research results from a research program at the In-

stitute for Security, Technology, and Society at Dartmouth

College, supported by the National Science Foundation un-
der award number CNS-1329686. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies, either expressed or implied, of the sponsors.

10. REFERENCES
[1] Human Bench Mark. http:

//www.humanbenchmark.com/tests/reactiontime.

[2] Tinyduino. https://tiny-circuits.com/.

[3] Banerjee, S. P., and Woodard, D. L. Biometric
authentication and identification using keystroke
dynamics: A survey. Journal of Pattern Recognition
Research 7, 1 (2012), 116–139.

[4] Chen, B., Yenamandra, V., and Srinivasan, K.
Tracking keystrokes using wireless signals. In MobiSys
(2015), pp. 31–44.

[5] Chong, M. K., Marsden, G., and Gellersen, H.
GesturePIN: using discrete gestures for associating
mobile devices. In Proceedings of the International
Conference on Human Computer Interaction with
Mobile Devices and Services (Mobile HCI) (2010),
pp. 261–264.

[6] Cornelius, C., Peterson, R., Skinner, J.,
Halter, R., and Kotz, D. A wearable system that
knows who wears it. In MobiSys (2014), pp. 55–67.

[7] Corner, M. D., and Noble, B. D. Protecting
applications with transient authentication. In MobiSys
(2003), pp. 57–70.

[8] Eberz, S., Rasmussen, K. B., Lenders, V., and
Martinovic, I. Preventing lunchtime attacks:
Fighting insider threats with eye movement
biometrics. In NDSS (2015).

[9] Gummeson, J., Priyantha, B., and Liu, J. An
energy harvesting wearable ring platform for gesture
input on surfaces. In MobiSys (2014), pp. 162–175.

[10] Hermans, J., and Peeters, R. Realizing Pico:
Finally no more passwords! IACR Cryptology ePrint
Archive (2014), 519.

[11] Landwehr, C. E. Protecting unattended computers
without software. In ACSAC (1997), pp. 274–283.

[12] Mare, S., Molina-Markham, A., Cornelius, C.,
Peterson, R., and Kotz, D. ZEBRA: Zero-effort
bilateral recurring authentication. In IEEE S&P
(2014), pp. 705–720.

[13] Nakkabi, Y., Traoré, I., and Ahmed, A. A. E.
Improving mouse dynamics biometric performance
using variance reduction via extractors with separate
features. IEEE Transactions on Systems, Man, and
Cybernetics, Part A 40, 6 (2010), 1345–1353.

[14] Nirjon, S., Gummeson, J., Gelb, D., and Kim,
K.-H. TypingRing: A wearable ring platform for text
input. In MobiSys (2015), pp. 227–239.

[15] Shen, C., Cai, Z., Guan, X., Du, Y., and Maxion,
R. User authentication through mouse dynamics.
IEEE Transactions on Information Forensics and
Security 8, 1 (Jan 2013), 16–30.

[16] Shukla, D., Kumar, R., Serwadda, A., and
Phoha, V. V. Beware, your hands reveal your secrets!
In ACM CCS (2014), pp. 904–917.

10

