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ABSTRACT
Due to the user-interface limitations of wearable devices,
voice-based interfaces are becoming more common; speaker
recognition may then address the authentication require-
ments of wearable applications. Wearable devices have small
form factor, limited energy budget and limited computa-
tional capacity. In this paper, we examine the challenge
of computing speaker recognition on small wearable plat-
forms, and specifically, reducing resource use (energy use,
response time) by trimming the input through careful feature
selections. For our experiments, we analyze four different
feature-selection algorithms and three different feature sets
for speaker identification and speaker verification. Our re-
sults show that Principal Component Analysis (PCA) with
frequency-domain features had the highest accuracy, Pearson
Correlation (PC) with time-domain features had the lowest
energy use, and recursive feature elimination (RFE) with
frequency-domain features had the least latency. Our results
can guide developers to choose feature sets and configurations
for speaker-authentication algorithms on wearable platforms.

1. INTRODUCTION
Wearable devices (a.k.a. wearables) have become common,

including smartwatches, virtual-reality headsets, body cam-
eras, and smart clothing. Wearables are usually associated
with a limited graphical user interface (GUI), or no GUI
at all. Therefore, manufacturers and developers are seeking
viable options to enable users’ interaction with their devices.
One of the emerging alternatives is a voice user interface
(VUI) [5], because it is feasible to embed a small microphone
in many wearables.

In many applications, wearables provide sensitive services,
such as monitoring the user’s health information, managing
the user’s calendar, collecting a life-log of photographs, or
paying for purchases. Thus, authentication is necessary on
wearable devices. Systems that support a keypad, keyboard
or GUI often use a password or pincode to authenticate users.
Due to the lack of such interfaces in many wearable devices,
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the authentication process could be performed through a
VUI. Some wearables devices are personal, and the device
should verify that the wearer is indeed the device owner.
Other wearable devices are shared, such as a VR headset
used by a household, and the device may need to identify
its current user to personalize the experience. Verification
confirms whether the wearer of a personal device is the
expected user: a binary classification problem. On the other
hand, identification strives to identify the wearer from a
group of known users: a multi-class classification problem.
In this paper, speaker authentication refers to either speaker
verification or speaker identification.

Speaker authentication is available on capable computing
devices but there are challenges to enabling these voice-
based authentication methods on wearable devices. Speaker
authentication algorithms are resource intensive [19, 9], but
wearables have relatively limited energy and computational
capacity [15].

Due to their limited capacity, many wearables off-load
computation to a smartphone or to a cloud [8]. This approach
may increase response time (latency) and battery utilization,
and reduces availability when the smartphone or network is
unavailable [16]. Therefore, recent research aims to develop
lightweight algorithms that perform machine learning on the
device itself [1, 11, 12, 14, 16].

Although these are promising efforts in the design and
optimization of wearable machine-learning algorithms, one of
the most effective ways to reduce resource usage while retain-
ing accuracy, for any algorithm, is to reduce the size of the
input. In this paper, we refine input features of the speaker-
authentication algorithm toward optimizing the resource
efficiency of the algorithm, while maintaining its accuracy.
We analyze different feature sets and report their impact
on accuracy and resource efficiency, including response time
and energy use, for a speaker-authentication algorithm [5].
There are two broad categories of feature sets relevant for
speaker-authentication algorithms: time-domain features and
frequency-domain features. We analyze both categories to-
gether and separately, for both speaker identification and
speaker verification.

With our results, developers could choose feature sets and
feature-selection algorithms based on their needs for accuracy,
energy use, or latency.

2. METHOD
In this section, we describe the process of extracting fea-

tures from our datasets. Then, we briefly describe the al-
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Figure 1: Time-domain and frequency-domain features.

gorithms for speaker authentication on a wearable device.
Afterward, we describe our feature-selection methods.

2.1 Feature extraction
Audio signal-analysis methods typically focus on two cat-

egories of features: time-domain features and frequency-
domain features.

Time-domain features are extracted directly from the input
signal, typically computed for each window of time within
the relevant period. Figure 1(a) shows four common features:
amplitude, average, maximum, minimum. We use 12 time-
domain features, including the average, min, max, absolute
max, zero-cross rate (ZCR), mean-cross rate (MCR), root-
mean-square (RMS) energy, logarithm energy, along with
the derivatives and second derivatives of the energy values.

Frequency-domain features are extracted by applying a
Fourier transform on the input signal to convert the time do-
main into a frequency domain. From the Fourier coefficients,
frequency-domain features can be computed. Mel-Frequency
Cepstral Coefficients (MFCCs) are common features for pro-
cessing voice data [5, 17]. We use 13 MFCCs and their 13
derivatives as frequency-domain features. Figure 1(b) de-
picts the process of extracting MFCCs and derivatives of the
MFCCs.

In this paper, we evaluate feature-selection methods using
feature vectors of time-domain features (TD), frequency-
domain features (FD), and both (TFD).

2.2 Gaussian Mixture Model algorithm
We use a Gaussian Mixture Model (GMM), which is known

to be one of the most effective models for speaker identifica-
tion and verification [17]. This approach models the distri-
bution of observations using a weighted linear combination
of Gaussian densities, where each Gaussian density is param-
eterized by a mean vector and covariance matrix. Therefore,
in this paper, we use GMMs to model the distribution of fea-
ture vectors, including time-domain and frequency-domain
features, for a given speaker.

To learn the underlying distribution of feature vectors, we
use the Expectation-Maximization (EM) algorithm [7] to
iteratively refine the mixture of Gaussian densities until the
maximum likelihood remains stable. Modeling the covariance
matrix in full is computationally expensive; to be able to
compute it on a wearable device, we use diagonal covariance
matrices because it has been shown that using a larger-
dimensional diagonal covariance matrix performs better than
a smaller-dimensional full covariance matrix [2]. In this
paper, we use 32 Gaussian components for each mixture and
all the EM processes terminate within 100 iterations.

Speaker identification: In the training phase, we train
a GMM for each subject (i.e., user of the wearable device).
In the identification process, feature vectors are extracted
for each segment of audio data and given to all the GMMs.
Each GMM provides an average log-likelihood of each feature
vector belonging to the mixture as output. The identification
algorithm then outputs the identity of the subject whose
GMM outputs the maximum of average log-likelihoods.

Speaker verification: As above, we train a GMM for
each subject; we also learn a threshold for each subject using
a 3-fold cross validation on training data. For each fold and
subject, we learn a GMM and use the other folds of this
subject to learn an average probability (p1) of correct cases.
To learn a threshold for the subject, we use the other subjects’
audio data as a training set to learn an average probability
(p2) of incorrect cases. We use the mean 1

2
(p1 + p2) as the

threshold for each subject. For verification, the feature vector
extracted from a wearer’s input audio segment is given to
the GMM of the target subject. The GMM outputs a log-
likelihood; if this log-likelihood is greater than the threshold,
the wearer is accepted. Otherwise, if the log-likelihood is
lower than threshold, the wearer is rejected.

2.3 Feature-selection methods
Feature selection is the process of selecting a subset of

input variables (features) that are most useful to construct
a machine-learning model. The purpose is to simplify the
models, reduce input dimensionality, reduce computation,
and avoid overfitting. For wearables, a smaller feature vector
takes less time to extract, less space to store, and less time
to process through a less-complex model. There are three
categories of feature-selection methods: filter methods, wrap-
per methods, and embedded methods [4, 10]. We selected
one algorithm in each category: Pearson correlation, Sequen-
tial Forward Selection, and Recursive Feature Elimination,
respectively [4]. Moreover, Principal Component Analysis
(PCA) is a common method to reduce the dimensionality
of data and it is common to use it for feature selection [4].
Therefore, we also use the PCA algorithm.

Filter methods: A filter method first ranks the features
by some metric, such as the Pearson correlation or Mutual
Information. This measure is chosen to capture the usefulness
of the feature in describing characteristics of the target.
Second, the filter method selects the highest-ranked features
as a subset. We use the Pearson correlation, which describes
the linear association between two given variables.

Wrapper methods: A wrapper method uses a predictive
model to score the feature subsets. It trains a predictive
model on each feature subset and tests the model on the
dataset. An accuracy metric is used to score each feature
subset. We use Sequential Forward Selection (SFS), which
starts with an empty feature set and iteratively tests each
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possible feature and adds the feature that improves the
accuracy of the model best. This process continues until no
features can improve the model. We used the Lasso Regressor
as a predictor.

Embedded methods: An embedded method incorpo-
rates the feature selection as a part of the training process of a
supervised estimator. The process discards less-contributing
features, such as less-important features in a tree-based esti-
mator, lower-weighted features in a SVM model, or features
with smaller coefficients in a linear model. We use Recursive
Feature Elimination (RFE) with the Lasso Regressor. We
recursively remove the feature that has smallest absolute
coefficient.

Principal Component Analysis: PCA is a statistical
method used to reduce the dimensionality of data. It converts
a set of inputs of possibly correlated variables into a set
of values of linearly uncorrelated variables called principal
components. The number of principal components is less
than or equal to the number of original variables. We learn a
PCA model from the feature vectors in a training set and use
the model to transform the feature vectors from the testing
set.

3. EVALUATION
In this section we introduce the two datasets that we used

for our experiments. Then, we evaluate the accuracy of
speaker identification/verification based on different com-
binations of features. Next, we report the (i) energy use
and (ii) latency for speaker authentication based on differ-
ent combinations of feature selections. We conducted our
experiments on a Raspberry Pi 3 model B, which has a 1.2
GHz quad-core CPU and 1 GB RAM.1 Existing wearable
devices, such as Huawei Watch, have a similar hardware
configuration.2 To implement the GMM algorithm, we used
Python version 3.5.2 with numpy (1.12.1), scipy (0.19) and
scikit-learn (0.18.1).

3.1 Datasets
We used two datasets: CHAINS and Vocal Resonance. The

CHAINS dataset [6] includes audio from subjects reading
aloud the first paragraph of four long passages, including
The Rainbow Text, The Cinderella Story, The North Wind,
and The Members of the Body. This dataset also includes
33 short sentences. Each short sentence includes about 3
seconds of audio. The Vocal Resonance dataset [5] includes
audio from subjects reading the entire The Rainbow Text
and a few paragraphs from The Wind in the Willows. In
the CHAINS dataset, we used the long passages as training
data and short sentences as testing data. In Vocal Resonance
dataset, we used The Rainbow Text as training data and
divided the paragraphs from The Wind in the Willows into 3-
second segments as testing data. Table 1 lists the number of
subjects and the duration of training/testing data partition
for each subject.

3.2 Accuracy
Identification algorithms output the identity of a subject.

If the output is correct, we say it is a True Positive (TP);
otherwise, we have a False Positive (FP). Because identifica-

1https://www.raspberrypi.org/products/
raspberry-pi-3-model-b
2https://en.wikipedia.org/wiki/Huawei Watch

Table 1: Training and testing data in each dataset

Dataset
Num. of
Subjects

Duration of
Train Dataset

Duration of
Test Dataset

CHAINS 36 ∼170 sec 33 × ∼3 sec
Vocal Resonance 12 ∼107 sec 15 × 3 sec

tion algorithms do not have negative outputs, there are no
True Negative (TN) or False Negative (FN) cases. We use
Precision ( TP

TP+FP
) to evaluate the accuracy of identification.

Verification algorithms output positive (the speaker is the
expected subject) or negative (otherwise); we thus have four
cases: TP (the algorithm outputs positive and is correct),
TN (the algorithm outputs negative and is correct), FN
(the algorithm outputs negative and is incorrect), and FP
(the algorithm outputs positive and is incorrect). We use
Balanced Accuracy ( 1

2
( TP
TP+FP

+ TN
TN+FN

)) to report the
accuracy of verification.

As noted, we used time-domain features (TD), frequency-
domain features (FD), and the combination of TD and FD
(TFD) as feature sets. In addition, we used four feature-
selection methods: PC, SFS, RFE, and PCA.

Figure 2 shows that frequency-domain features outperform
time-domain features in accuracy metrics if used separately.
In the CHAINS dataset, the highest accuracy metrics using
frequency-domain features were 0.997 for identification and
0.998 for verification while the metrics were 0.564 and 0.775
respectively using time-domain features. In the Vocal Reso-
nance dataset, the highest accuracy metrics were 0.952 and
0.963 for identification and 0.784 and 0.886 for verification.
All the highest accuracy metrics are achieved with PCA-
selected features. However, the speaker-authentication algo-
rithms using the combination of time-domain and frequency-
domain features (TFD) overfit when using many features:
the accuracy declined as more features were included, given
a sequence of TFD features in both datasets and both iden-
tification/verification algorithms.

3.3 Efficiency
On wearable devices, efficiency (in energy and time) is

critical. To report the efficiency, we chose the feature subsets
with the highest accuracy metrics on the preceding experi-
ments. In particular, we used the feature selections marked
with vertical dashed lines from Figure 2. We measured en-
ergy use and response time by averaging 100 runs for feature
extraction and speaker-authentication algorithms.

We measured the energy used for feature extraction and
speaker-authentication algorithms over 100 runs with a Mon-
soon Power Monitor.3 Likewise, we measured average latency
incurred for feature extraction and speaker-authentication
algorithms. Table 2 aggregates results of accuracy, energy
use, latency, feature-selection algorithm and feature set by
highest accuracy, lowest energy use or least latency. Al-
though there was no consistent winner, the table shows that
frequency-domain feature subsets with PCA tended to have
higher accuracy metrics. In terms of energy, time-domain
feature subsets with PC had lower power drain. Feature
subsets from frequency-domain features with RFE had less
latency.

Figure 3 plots accuracy metrics, energy use, and response
time for each feature set selected by feature-selection algo-

3https://www.msoon.com/LabEquipment/PowerMonitor/
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Table 2: Aggregated results by highest accuracy, lowest
energy (mW) and least latency (second).

CHAINS Vocal Resonance
Identification Verification Identification Verification

Highest
Accuracy

Accuracy 0.997 0.999 0.963 0.963
Energy 266.59 317.03 281.21 305.03
Latency 1.897 1.138 1.657 1.138

Algorithm PCA PCA PCA PCA
Featureset FD FD TFD FD

Lowest
Energy

Accuracy 0.995 0.743 0.771 0.871
Energy 263.05 263.58 274.7 293.68
Latency 1.945 1.547 1.386 0.974

Algorithm RFE PC PC PC
Featureset TFD TD TD TD

Least
Latency

Accuracy 0.987 0.997 0.947 0.939
Energy 265.79 300.98 275.38 300.03
Latency 1.473 0.970 1.334 0.972

Algorithm SFS RFE RFE RFE
Featureset TFD FD FD FD

rithms on both datasets. This figure shows that FD and
TFD were usually more accurate than TD with no significant
energy or latency differences.

3.4 Limitations
Although we analyzed different combinations of feature sets

and feature-selection algorithms, our approach has several
limitations.

First, we evaluated only one machine-learning algorithm
(GMM); although it is known to be used on wearable devices
for speaker identification/verification [5], we plan to further
explore other algorithms as well, such as the algorithm pro-
vided by Zhao et al [21].

Second, due to lack of space, for each feature-selection
category (i.e., filter method, wrapper method, and embedded
method), we chose to explore only one algorithm. There are
many other algorithms that could be used in each category.

Third, there are inherit limitations for each feature-selection
approach [4]. For instance, filter methods tend to select re-
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dundant features because they measure each feature indepen-
dently, and wrapper methods are computationally intensive
because they train a new predictive model for each feature
subset explored.

4. RELATED WORK
In this paper, we proposed speaker-authentication algo-

rithms for wearables that have limited hardware. There-
fore, we describe two categories of related work: speaker-
authentication algorithms, and resource efficient algorithms
for wearables.

Speaker-authentication algorithms: Reynolds et al.
extracted MFCCs from FD and used a GMM to train user-
specific models for speaker authentication [18]. They derived
a Universal Background Model (UBM) to model general,
person-independent feature characteristics. By computing
and comparing the probabilities of incoming voices to each
user-specific model, the system identifies the user or verifies
the user. There are promising efforts using deep learning for
speaker authentication, which provides high accuracy [20].
Nevertheless, deep-learning algorithms are computationally
complex and it is non-trivial to port them into wearables [1].

Resource-efficient algorithms: Rawassizadeh et al. cre-
ated an energy-efficient frequent itemset mining algorithm [14]
that can run on a smartwatch [16]. A recent work proposed to
use a resource-efficient natural-language processing algorithm
on a smartwatch [13]. Ravi et al. proposed a deep-learning
approach on low-power wearable devices for human activ-
ity recognition [12]. This system used both time-domain
and frequency-domain features extracted from inertial sensor
data. Borazio et al. proposed a human-activity recognition
system using time-domain features on wearable devices along
with the user’s survey data [3]. It used a Support Vector Ma-
chine (SVM) to recognize the activity. These works improve

resource efficiency by optimizing algorithms; in this paper,
however, we focus on trimming the input.

5. CONCLUSION
In this paper, we examine the challenge of computing

speaker recognition on wearable platforms. Specifically, we
discussed reducing resource use (energy use, response time)
by trimming the input through careful feature selections,
while maintaining accuracy. For our experiments, we ana-
lyzed four different feature-selection algorithms, including
PC, SFS, RFE and PCA on two datasets, i.e., CHAINS
and Vocal Resonance. We used three different feature sets,
including time-domain features, frequency-domain features,
and the combination of both, for speaker identification and
verification. We evaluated accuracy metrics, energy use and
latency on different datasets and features selected by differ-
ent algorithms. Our results show that Principal Component
Analysis (PCA) with frequency-domain features had the high-
est accuracy, Pearson Correlation (PC) with time-domain
features had the lowest energy use, and recursive feature
elimination (RFE) with frequency-domain features had the
least latency. Speaker-authentication algorithms for wear-
able devices could choose feature sets and feature-selection
algorithm based on their needs for accuracy, energy use, or
latency.
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