
(Authors’ pre-print of DOI 10.1007/s11036-013-0447-x)

Hide-n-Sense: preserving privacy efficiently in wireless mHealth

Shrirang Mare · Jacob Sorber · Minho Shin · Cory Cornelius · David Kotz

Received: Sep. 15, 2012 / Accepted: May 15, 2013

Abstract As healthcare in many countries faces an aging
population and rising costs, mobile sensing technologies
promise a new opportunity. Using mobile health (mHealth)
sensing, which uses medical sensors to collect data about
the patients, and mobile phones to act as a gateway between
sensors and electronic health record systems, caregivers can
continuously monitor the patients and deliver better care.
Furthermore, individuals can become better engaged in mon-
itoring and managing their own health. Although some work
on mHealth sensing has addressed security, achieving strong
privacy for low-power sensors remains a challenge.

We make three contributions. First, we propose an mHealth
sensing protocol that provides strong security and privacy
properties at the link layer, with low energy overhead, suit-
able for low-power sensors. The protocol uses three novel
techniques: adaptive security, to dynamically modify trans-
mission overhead; MAC striping, to make forgery difficult
even for small-sized Message Authentication Codes; and
asymmetric resource requirements, in recognition of the lim-
ited resources in tiny mHealth sensors. Second, we demon-
strate its feasibility by implementing a prototype on a Chronos
wrist device, and evaluating it experimentally. Third, we pro-
vide a security, privacy, and energy analysis of our system.

Shrirang Mare · Cory Cornelius · David Kotz
Computer Science Department, Dartmouth College, Hanover, USA.

Jacob Sorber
School of Computing, Clemson University, Clemson, SC, USA.

Minho Shin (B)
Department of Computer Engineering, Myongji University,
Yongin, Gyonggido, South Korea.
E-mail: mhshin@cs.dartmouth.edu

* This article has been published in Mobile Networks and Applications,
Special Issue on Advances on Pervasive Networks and Healthcare. The
final publication is available at link.springer.com

Keywords Network protocols · Energy efficient protocols ·
Privacy · mHealth

1 Introduction

As healthcare systems struggle worldwide to cope with in-
creasing demand (due to an aging population) and economic
pressures (due to rising costs), many countries are seek-
ing new models of healthcare. Recent improvements in mo-
bile computing and developments in miniature medical sen-
sors have enabled mobile health (mHealth) sensing, which
promises to simultaneously reduce cost and improve the qual-
ity of healthcare [19]. In an mHealth sensing system, patients
wear or carry one or more sensing devices, and their mobile
phone acts as a gateway between the sensors and a repository
that makes the data accessible to patients or their caregivers.

An mHealth sensing system can monitor a patient’s health
continually and unobtrusively without interfering with daily
activities, providing timely reports about medical conditions,
in situ monitoring by healthcare providers, and fewer re-
hospitalizations [7]. These systems promise to improve long-
term care for the chronically ill [1] and senior citizens [2],
to change unhealthy behaviors [5], and even to improve
athletic performance [9]. (Although the monitored individual
in these applications may be a resident of an assisted-living
facility, a family member, an athlete, or simply yourself, for
simplicity in this paper we always refer to the subject of
sensing as the “patient.”) The security and privacy challenges
are largely the same, at the point of sensing; in this paper we
focus on the mobile edge of the mHealth ecosystem and thus
the solutions proposed in this paper apply equally well to all
above settings. Given the inherent sensitivity of health-related
data, an mHealth sensing system should have mechanisms to
preserve patient privacy and maintain data integrity.

David Kotz
THIS COPY IS THE AUTHORS' PRE-PUBLICATION VERSION; it may differ slightly from the official published version.

2

To achieve the necessary security and privacy for mHealth
requires one to solve four problems: securing the data in the
sensor nodes, securing the data during communication be-
tween the sensors and the mobile phone, securing the data
(and processing) inside the mobile phone, and securing the
data inside the back-end servers. We address the third prob-
lem in another paper [22], we assume tamper-resistant sensor
nodes, and expect the servers to be secured by other conven-
tional solutions.

In this paper we address the second problem at the link
layer, and seek a body-area mHealth network (BAHN) proto-
col that provides privacy and security efficiently. To provide
privacy we mask node identifiers and encrypt all headers.
To improve efficiency we reduce packet overhead, which
introduces integrity risks; our paper shows how to do so with
reasonable integrity guarantees so that ultimately we get an
efficient secure and privacy-preserving protocol. Others have
proposed protocols for Wi-Fi networks that provide secure
and private communication [3, 10, and their references], and
we take inspiration from some of the earlier work, using
some of their techniques. Among these, SlyFi [10] is the
state-of-the-art privacy preserving protocol for Wi-Fi, but
it is poorly suited to the needs of low-power mHealth net-
works because of its large packet transmission overhead. In
Wi-Fi networks with large packet sizes, these packet trans-
mission overheads are insignificant; however, when applied
to mHealth networks with much smaller packets, we show
that the extra transmissions can consume enough energy to
reduce a sensor’s battery life by more than 50%, even at
low data rates. SlyFi also requires all nodes to have real-
time clocks and to stay reasonably synchronized, but not all
sensors have real-time clocks, and participating in a time-
synchronization protocol requires spending energy on extra
wireless transmissions.

In this paper we make three contributions. First, we
propose Hide-n-Sense (HnS), a wireless protocol that pro-
vides strong security and privacy properties at link layer for
mHealth sensing with low energy overhead for the sensors.
We use three novel techniques to improve energy efficiency:
(1) adaptive protocol overhead to balance security and ef-
ficiency, (2) MAC striping to make the protocol strongly
resistant against selective forgery for small-sized message
authentication codes (MACs), and (3) asymmetric energy
requirements among the communicating devices. We demon-
strate these techniques using an adaptation of SlyFi; however,
these techniques can be applied to other protocols to make
them energy-efficient while maintaining their security and
privacy properties. Second, we implemented a prototype of
the HnS protocol on TI’s eZ430 Chronos wireless device,
and we demonstrate experimentally that the protocol is fea-
sible on low-powered devices. Third, we provide a security,
privacy, and energy analysis of our protocol.

2 Security model

In this section we give an overview of the system architecture,
define our threat model and adversary model, identify our
security goals, and list trust assumptions.

2.1 System model

Whether for remote-patient monitoring or for personal health
management, in a typical mHealth-sensing system the patient
carries some sort of mobile node (MN), most likely a mobile
phone, that acts as a gateway between a body-area network
of sensor nodes (SN) and the Internet. Although an MN may
include embedded sensors, in the context of this paper we
are concerned with external sensors used/worn by the patient.
The SNs collect data at the instruction of the MN, and send
the data to the MN, which may process or aggregate the
information before presenting it to the patient (locally) or
forwarding it via the Internet to a remote back-end server
for use by a remote consumer (health provider, caregiver,
researcher) or for their own later use.

As context for our design, and the basis of our security
analysis in Section 4, we first detail our underlying assump-
tions.

System assumptions. We make the following assumptions
about hardware and software capabilities of the MN and SN.

S1. Crypto. Each SN has the cryptographic capabilities needed
for message confidentiality and authenticity; that is, each
SN has enough resources to support cryptographic primi-
tives (e.g., AES, SHA-1) either in software or hardware.

S2. Platform. The MN is a general-purpose mobile platform,
such as a smart phone, with a short-range wireless in-
terface for body-area communication with the SNs (e.g.,
Bluetooth or Zigbee) and an optional long-range wireless
interface for Internet communication (e.g., Wi-Fi or 3G).

S3. Out-of-band (OOB) channel. There exists a secure chan-
nel between the MN and each SN, which can be used
for exchanging secret keys during the pairing process.
The OOB channel can leverage one of many different
available pairing methods [12].

2.2 Adversary and threat model

We assume a powerful adversary that has the following capa-
bilities:

A1. Full access to the wireless channel. The adversary can ob-
serve, inject, modify or disrupt any message transmitted
over the wireless channel between MN and SN.

A2. No access to out-of-band channel. The adversary has no
access to the out-of-band channel (S3) used by the MN
and the SN for the pairing operations.

Hide-n-Sense 3

A3. Computationally bounded. The adversary is not able to
break cryptographic primitives, like AES and SHA-1.

A4. No compromise of MN or SN. The adversary does not
have the ability to compromise either the software or
hardware of the MN or the SN (at least, without it being
immediately evident to the patient). We realize that this
assumption may be difficult to achieve. We address MN
security in another work [22]; in this paper, we assume
the SN packaging is sealed or otherwise tamper-resistant.
Thus, for the purpose of this paper the adversary cannot
discover the secret keys by compromising the MN or SN.

A5. Local adversary. The adversary does not compromise any
of the back-end services. If the adversary has access to
the back-end services, he can get access to the patient’s
sensitive data, defeating the purpose of a secure wireless
body-area mHealth network (BAHN) protocol.

These assumptions begin to define the scope of our solu-
tion: we propose an energy-efficient protocol that provides
security and privacy at the link layer; we leave physical-layer
attacks to other physical-layer solutions.

Given the capabilities of the adversary, we focus on the
following threats. For a more thorough treatment of privacy-
related threats to mHealth, see our survey [4] and paper [11].

T1. Threat to privacy: The adversary wants to learn sensitive
information about the patient, such as medical conditions
(e.g., disease or treatment type), sensing situation (e.g.,
types or number of sensors), or other personal informa-
tion deemed private (e.g., location or activity). For this
threat, the adversary tries to eavesdrop on the SN-MN
communication in order to discover sensitive information
from the messages (if available in cleartext), or by link-
ing communication to/from a node and applying traffic-
analysis techniques [23]. To address this threat a protocol
should provide unlinkability and anonymity, which is one
of our security and privacy goals (SP1).

T2. Threat to data integrity and authenticity: The adversary
wants to cause the MN to accept incorrect, invalid, or
duplicate data, by either forging a message that looks le-
gitimate to the MN, tampering with a legitimate message
from the SN, or replaying a previously sent message.

T3. Threat of resource exhaustion attack: The adversary wants
to exhaust the MN’s or the SN’s battery to prevent them
from collecting the victim’s medical data. For this threat,
the adversary may send the MN or the SN invalid mes-
sages, forcing them to consume power to receive, process,
and discard the messages.

2.3 Security and privacy goals

We must be precise in defining the set of properties that an
mHealth-sensing system should achieve; the following set of
goals directly address the set of threats defined above. We first

list the security properties that are essential to protect security
and privacy in MN-SN communications; these properties
define our design goals. Unless otherwise specified, the term
‘node’ refers to both the MN and the SN.

SP1. Node anonymity. The protocol should not reveal informa-
tion about the nodes to an (active or passive) observer
(addressing T1). To preserve node anonymity, transmis-
sions to/from a node must be unlinkable; that is, given
two transmissions, the adversary should not be able to
tell whether they are to/from the same node.
The HnS protocol provides weak unlinkability; that is,
given two messages the adversary cannot tell whether
they are from/to the same node using only the content of
the messages. To achieve strong unlinkability, a protocol
must also prevent an adversary from linking messages to
nodes via traffic analysis. HnS does not provide strong
unlinkability; in Section 6 we discuss this further.

SP2. Data confidentiality. The protocol should not reveal any
information about the message content to an observer –
active or passive (addressing T1).

SP3. Data integrity and authenticity. A node should be able to
verify that a received message was generated by the node
that claims to have generated it, and that the message was
not modified in transit (addressing T2).

SP4. Data freshness. A node should be able to ignore any
duplicate or out-of-order messages. If a node receives
such a message, it should discard it (addressing T2).

SP5. Efficient message filtering. The MN and the SN should
be able to ignore messages that are not for them, quickly
and with minimum energy expenditure (addressing T3).

2.4 Trust model

Any trustworthy system is built on certain assumptions about
who trusts whom to do what. We outline our assumptions
about the three types of principals – manufacturer, health
provider, and patient – in our system. A manufacturer is an
entity that produces the sensors or mobile nodes, and dis-
tributes them to the health provider and the patient. A patient
is a person that uses sensors (obtained either directly from
a manufacturer or from a health provider) to get informa-
tion about his or her own health. The patient can choose to
forward this information to a healthcare provider for consulta-
tion or use it for self-monitoring. A healthcare provider is an
entity that provides health services to the patient, including
providing and configuring sensors, monitoring the resulting
data, and providing health advice or treatment.

TR1. The patient and the healthcare provider trust the SN man-
ufacturer to produce calibrated sensors that operate cor-
rectly, so that the patient and the health provider can trust
the sensor to provide the right reading.

4

TR2. The patient and the healthcare provider trust the MN
and HnS manufacturers to write correct software; thus,
they protect confidentiality and integrity according to the
above goals.

TR3. The patient trusts the healthcare provider not to disclose
the sensor data to unauthorized parties.

The manufacturer has no stake in the system, so the man-
ufacturer assumes nothing about other principals.

3 Hide-n-Sense

We begin with a brief use case of a patient using the Hide-n-
Sense (HnS) protocol to secure communication of her BASN.
The patient obtains a new SN and wishes to use it with
her MN. She pairs the SN and the MN, using one of the
many available secure pairing methods [12], allowing them
to authenticate each other and share three secret keys used
for discovery (khd , kpd , kmd), a threshold for consecutive failed
discovery attempts (wd), and a nonce (N). Later, when she
wears the SN, the SN automatically discovers the MN (which
she routinely carries) using the HnS discovery protocol, and
the two nodes establish a secure session by sharing three
more secret keys. Then the SN securely uploads the sensed
data to the MN, using the HnS session protocol, until the
patient removes her SN.

3.1 HnS discovery

Once two nodes are paired, they do not necessarily remain
in radio contact. To communicate, the nodes must first use
a discovery protocol to detect that they are in radio range.
Most discovery protocols, however, reveal the identity of the
seeker (or the nodes being sought), violating SP1.

The HnS discovery protocol is an adaptation of Tryst from
the SlyFi protocol, with two important differences: (1) the
SN does not have to update its address table (see discussion
below), and (2) the SN and MN do not need to maintain
synchronized clocks for discovery. These changes shift com-
putational burden from the resource-constrained SN to the
more powerful MN, and remove an unnecessary constraint
(time synchronization), which increases the variety of SNs
that can be used and makes HnS more robust.

By design, we allow only the SN to initiate discovery.
There are two reasons for this choice. First, it can turn off
its radio when not in use, and save energy. Second, to filter
incoming messages, we show below that a node must main-
tain a hash table of expected headers; if the SN does not
anticipate receiving a message (without it having initiated
the communication), the SN does not have to maintain any
hash table, and thus, it can save memory and computation.

Hd(id) Md(id)Payload

Header MAC

128 bits 128 bitsVariable

Fig. 1 Format of the ithd discovery message

Figure 1 shows the discovery format of a discovery mes-
sage. The header, payload, and message authentication code
(MAC) for a discovery message are generated using

Hd(id) = AESkh
d
(N + id)

Payload = AES-CTRid,k
p
d
(data)

Md(id) = AES-CMACkm
d
(Hd(id)||Payload)

(1)

whereHd andMd represent the header and MAC of a discov-
ery message (the subscript d, denotes a discovery variable);
id is the discovery message number; khd , kpd , kmd are the keys
shared during pairing (note the superscripts h, p,m; khd is
used to encrypt the header, kpd is used to encrypt the pay-
load, and kmd to generate the MAC); and N is the nonce,
also shared during pairing. (Table 1 shows a list of important
notations used in the paper.) The discovery message num-
ber id is used as a nonce in the CTR mode to generate the
key stream that is used to encrypt the payload; that is, the
first payload block is encrypted with the key generated using
AESkp

d
(id||1), the second block is encrypted with the key

generated using AESkp
d
(id||2), and so on. We chose CTR

mode because it produces cipher text of same size as the
plaintext, a desired property in low-power mHealth networks,
since transmission consumes a lot of energy.

The MN maintains a hash table with wd future discovery
headers; that is, it maintains headers from Hd(id + 1) to
Hd(id + wd). The MN filters incoming messages (i.e., de-
termines whether the received message was sent by the SN)
by doing a hash-table lookup on the header of the received
message.

The HnS discovery protocol works as follows:

1. When the SN needs to discover the MN, it generates
(using Equation 1) and sends a discovery message, say
the ithd discovery message. The data in the payload does
not matter here; it can be application-related data (e.g.,
sensor status) or it may be empty.

2. MN replies with the (id + 1)th discovery message. The
payload contains session keys (khs , kps , kms , kxs), session
message-loss threshold (ws), and the length of header
and MAC (h0,m0) for session messages. The MN uses a
different session key for each SN; ws and (h0,m0) are
same for all SNs in a BASN, and are set by the MN.
The MN updates its hash table: it removes old headers
(i.e., headers up through id + 1) from the hash table,
and adds future discovery message headers, such that the
number of headers in the address table remains wd; the
MN also adds ws future session headers and removes all

Hide-n-Sense 5

Table 1 Important notations used in the paper

Notation Description
kh, kp keys to encrypt header and payload, respectively
km key used to generate MAC
kmd , kms km for discovery and session packets, respectively
khs , kps keys to encrypt session packet header and payload
khd , kpd keys to encrypt discovery packet header and payload
kxs key to generate random sequence (in MAC striping)
wd max. number of allowed failed discovery attempts
ws max. number of allowed session packet loss
id, is discovery and session message numbers, respectively
Hd,Md discovery packet header and MAC
Hs,Ms session packet header and MAC
h,m length of header and MAC in a packet
T duration of a time period in SN’s lifespan
ρ max. allowed successful forgery probability during T
β successful forgery prob. threshold during SN’s lifespan

session headers from an old session, if any. At this point,
a secure session is established from the MN’s perspective.

3. After sending a discovery message, the SN waits for in-
coming messages. If the received message is from the MN
(i.e., the message header matchesHd(id + 1)) and if the
message is authentic (i.e., MAC verification is success-
ful), the SN decrypts the payload, and saves the data (i.e.,
keys and other parameters). At this point, a secure ses-
sion is established from the SN’s perspective. It records
internally the number id + 2 for use in a future discovery
message. If the SN does not receive a reply from the MN,
for a pre-determined period, it gives up and turns off its
radio. In our implementation, the SN will retry twice
before giving up.

3.2 HnS session protocol

The HnS session protocol is used to secure the sensor data
that the SN sends to the MN. A session begins after a suc-
cessful conclusion of the discovery protocol, and it ends if
the SN loses ws consecutive session messages (a message is
considered lost if the SN does not receive an ACK for it from
the MN, within the ACK timeout period, as defined by the
underlying medium-access control protocol).

In the session protocol (as in the discovery protocol) we
allow only the SN to initiate the communication (again, to
save energy and memory at the SN). This design works well
for a BAHN, where most of the communication is from the
SN to the MN (i.e., sensor data), with the MN occasionally
sending control commands to the SN. The message filtering
mechanism at the MN is similar to the discovery protocol.

n bits m = 8 bits

h bits

a)

b)

h bits

MAC

(n+ 8) bits

Payload

Header

Header Payload-MAC Mix

Fig. 2 Session message format (for illustration we show 8-bit MAC):
a) Before MAC striping, b) After MAC striping (one shaded rectangle
represents one MAC bit)

Figure 2 shows the session message format. The header,
payload, and MAC for the iths message are generated by

H(is) = AESkh
s
(is)

Payload = AES-CTRis,k
p
s
(data)

M(is) = AES-CMACkm
s
(H(is)||Payload)

Hs(is) = MSBh(H(is)) ; Ms(is) = MSBm(M(is))

where Hs andMs represent the header and MAC of a ses-
sion message; khs , kps , kms are the session keys shared dur-
ing discovery (the subscript s denotes a session variable);
is is the session message number, and (h,m) represent the
length of header and MAC (at the beginning of a session,
h = h0,m = m0, where (h0,m0) were shared during dis-
covery). Again, similar to discovery protocol, HnS uses is as
a nonce for generating the key stream in the CTR mode to
encrypt the payload. Note that the actual bits sent as header
and MAC are the h and m most significant bits (MSB) of
H andM, respectively (as shown in Figure 2a). The actual
session message that is transmitted is shown in Figure 2b,
which is generated after MAC striping the message shown
in Figure 2a; we describe the MAC striping technique next.

Unlike discovery messages, session messages are trans-
mitted frequently, so we wish to keep the session message
overhead (size of header and MAC) as small as possible.
However, reducing the size of header and MAC also de-
creases the protocol’s resistance to forgery. So, to reduce the
message overhead while maintaining reasonable security, we
propose two techniques: MAC striping (to make the session
protocol resistant against selective forgery, even for small
MAC sizes), and adaptive security (to dynamically change
message overhead to maintain security against existential
forgery).

3.2.1 MAC striping

MAC striping provides strong resistance against selective
forgery. In selective forgery the adversary tries to forge a
message with a chosen payload. For the adversary to forge
a message of format shown in Figure 2a, with a chosen ci-
phertext payload, requires work proportional to 2h+m (he
needs to guess the correct h-bit header and m-bit MAC).

6

However, an adversary may intercept1 a message (A1) to
discover a valid header, and thereby reduce the work to 2m.
MAC striping changes the message format slightly (as shown
in Figure 2b), which makes the protocol strongly resistant
against selective forgery, even with a small MAC. The MAC
bits are interspersed in the payload at different offsets, repre-
sented by shaded rectangles in Figure 2b. These bit locations
are different for each message, based on a pseudorandom
sequence generator function f :

〈x0, x1, ..., xm〉 = f(kxs , is, n,m), (2)

where xi (< n) is the randomly-chosen offset for the ith

most significant bit ofMs(is), kxs is the key that was shared
during discovery, is is the session message number, n is
size of the payload, and m is size of the MAC. Note that
these offsets are chosen at random by the MN and the SN
independently. We used the AES encryption algorithm as a
secure pseudorandom number generator; thus, the adversary
cannot guess the offsets of MAC bits better than random
guess.

When a node (SN or MN) receives a session message (it
will be of format Figure 2b) with a valid header, the node
computes the pseudorandom sequence 〈x0, x1, . . . , xm〉, and
separates the MAC bits from the payload (to recover a mes-
sage of the format in Figure 2a).

3.2.2 Adaptive security

In wireless protocols the receiver node uses the header to
filter incoming messages (that is, to determine whether the
incoming message is addressed to this node), and it uses the
MACM to verify whether the received message is authen-
tic. The overhead (header and MAC) in these protocols is
usually fixed, and for strong security, the protocols choose
long header and long MAC. However, a node is not always
in a hostile environment, so using large overhead all the time
is unnecessary. In many mobile devices, the transmission
is expensive (energy-wise), so a low-power sensor should
minimize transmission overhead.

Adaptive security provides strong security when it is
required (e.g., when a network is under attack), but saves
energy, at both the sender and receiver, when it is not. In
HnS, the nodes dynamically increase the size of the header
and/or MAC sent in the message if MN detects the presence
of an adversary who is trying to forge a message; otherwise,
the nodes use a short header and MAC. In our illustration,
the nodes dynamically change the MAC size, keeping header
size constant; in Section 6, we discuss when it would be
beneficial to change header size too.

1 To intercept a message, the adversary captures the message header
when it is being transmitted, and then disrupts some bits in the payload
or the MAC so that the receiver discards the message because it will
fail the MAC verification process.

σ = {m0}

MN SN

σ = {m1,m0}

m = m1

σ = {m1}

m = m0

t0

t1

t2

t3

D

A

D

R

D

A

m = m0

D

R

Fig. 3 Adaptive security at work (D = data, A = ack, R = reissue)

Adaptive security: How to adapt. Consider a simple BAHN
with a set of sensor nodes (SNs), and a mobile node (MN,
e.g., a smartphone). The MN chooses the header and MAC
sizes to be used by all the SNs in the BAHN, and shares
them with each SN during the discovery process. When the
MN decides that it needs to change the MAC size, it notifies
the SNs by sending a reissue message. During this adaptive
process, the MN ensures that communication is not disrupted
due to inconsistency in message overhead sizes.

The MN maintains a set σ of MAC sizes: the current
MAC size (which the SN should use), and the old MAC size
(which the SN might be using). When the MN receives a
message, it parses the message to get the header, and verifies
the MAC using the current MAC size from σ. If the message
header is valid, but the message MAC is wrong, the MN will
verify the MAC using the old MAC size from σ. This ensures
that the MN can receive messages sent by the SN, in case
the SN is using old MAC size. If the SN is using the old
MAC size, the MN will send a reissue message with the new
MAC size. Once the MN knows that the SN has successfully
adapted to the current MAC size (i.e., when it receives a
message from SN with the current MAC size), it removes the
old MAC size from σ. Figure 3 shows how the MN and the
SN adapt the MAC size: initially they are using m0. At time
t1, MN decides to use m1, but SN is still using m0, and so
MN issues a reissue command message telling SN to use m1,
and when MN receives a message from SN with m1 MAC
size, it removes m0 from σ. This approach generalizes to
multiple SNs (σ may contain an old m for each SN) and to
header-size reductions (σ contains (h,m) pairs).

Adaptive security: When to adapt. The MN decides when
the BAHN must adapt to new header and MAC sizes; the
decision on when to adapt can be based on many factors, such
as application requirements, upper bound on security against
forgery, and network bandwidth optimization. Below we
give an example of how the MN adapts based on a success
probability threshold, an upper bound on security against
forgery. We discuss the parameters involved in this adaptation
in Section 6.

The MN uses the header to filter incoming messages.
When the header of the incoming message is valid (i.e., the

Hide-n-Sense 7

header matches with one of the headers in the MN’s address
table), the MN does MAC verification to determine whether
the message is authentic. If the MAC verification fails, it
implies that either the incoming message was from the SN
but got corrupted in transit, or that the message is of a neigh-
boring BAHN that happened to use a header considered valid
by the MN, or that the message is a forgery attempt. It is hard
for the MN to distinguish between these three cases. We take
a cautious approach, and consider a failed MAC verification
to be a forgery attempt.

In adaptive security MN dynamically changes the header
and MAC sizes to save energy and to maintain a certain level
of security. We can define this certain level of security as:
the probability that an adversary will successfully forge a
message with any of those headers should always be below
β, where β is chosen by the application.

The SN’s lifespan (perhaps years) can be divided into n
time periods; thus, lifespan of the sensor =

∑n
i=1 Ti, where

Ti is the duration of period i in SN’s life span. Let ρ be our
chosen successful forgery probability threshold for each time
period. To maintain the security guarantee that an adversary’s
success probability is never greater than β, we choose ρ such
that:

β ≥ 1− (1− ρ)n (3)

Now, for a given ρ, the HnS adaptive security technique
should adapt such that the successful forgery probability for
every time period is less than ρ, regardless of the number of
forgery attempts by an adversary.

The MN tracks the number of failed MAC verifications.
The probability that one failed MAC verification would suc-
ceed (that is, probability of a successful forgery given that
the adversary guessed the header correctly) is 2−m, where m
is the MAC size. Thus, the probability of successful forgery
in x failed MAC verifications, P = 1 − (1− 2−m)

x. To
achieve P ≤ ρ, x should be

x ≤ log (1− ρ)
log (1− 2−m)

= α, the threshold (4)

Thus, if the number of failed MAC verifications exceeds the
threshold (α), the MN increases the MAC size. Although the
MN will not accept messages with the old MAC size during
the current time period, if the message is valid the MN sends
a reissue command to indicate a change in MAC size.

The MN falls back to a smaller MAC size after the time
period T expires. The MN can choose to keep T and ρ con-
stant, but it can improve performance by initially choosing
ρ close to β and then varying ρ and T for future time peri-
ods, to maintain the condition in Equation 3 throughout the
lifespan of the sensor.

4 Security and privacy analysis

In this section, we explain how HnS achieves the security
properties mentioned in Section 2.3.

4.1 Node anonymity (SP1) and Data Confidentiality (SP2)

If two messages to/from a node are indistinguishable from
random bits, then an adversary cannot link them, and hence
they provide SP1 and SP2. HnS uses the same cryptography
primitives as SlyFi for computing the header and MAC in
the messages. Pang provides a formal analysis for indistin-
guishability of headers and MACs in SlyFi [14], and we need
only show that our optimizations do not compromise that
indistinguishability.

HnS discovery messages improve on SlyFi in that HnS
discovery messages are generated using different nonce val-
ues, while SlyFi discovery messages use the same nonce for
certain period, making linking obvious during that period.
Therefore, it is easy to see that the discovery message of HnS
provides strictly better indistinguishability than SlyFi.

HnS session messages differ from SlyFi in two ways:
(1) the header and MAC are truncated, and (2) the MAC is
striped. We argue that these changes do not compromise the
indistinguishability of SlyFi.

Claim 1. A truncated h-bit header and m-bit MAC is
as indistinguishable from random bits as the original n-bit
header and n-bit MAC (h < n and m < n).2

Proof. Suppose not. Then, an adversary can distinguish
more easily the n-bit headers or MACs from random bits,
by just looking at the first h-bits (for header) or m-bits (for
MAC). Contradiction. ut

Claim 2. The plaintext+MAC of HnS is as indistinguish-
able from random bits as the original without MAC-striping.

Proof. The MAC scheme of SlyFi is a special case of
HnS; choose a pseudorandom sequence generator that does
not change the locations of the original MAC bits. Therefore,
an adversary who can break the indistinguishability of HnS
should be able to break that of SlyFi. ut

By Claim 1 and 2, the whole packet of HnS is as indis-
tinguishable from random bits. Therefore, HnS provides as
high confidentiality and unlinkability as SlyFi.

4.2 Data integrity and authenticity (SP3)

HnS prevents unauthorized changes to the header or payload
by use of a message authentication code (MAC). Nonetheless,

2 A string is said indistinguishable from random bits if any computa-
tionally bounded adversary cannot guess correctly whether the string is
truly random or not with a non-negligibly higher probability than the
probability that she guesses incorrectly. The formal treatment of this
security property can be found in [14].

8

the adversary may attempt to alter the message content or
construct a new message without being detected; such an
attack is called forgery attack. We consider two types of
forgery attacks: selective forgery (when the adversary tries
to get the receiver to accept a message with a payload of his
choice), and existential forgery (when the adversary tries to
get the receiver to accept a message with any payload).

Selective forgery: In selective forgery the adversary tries
to find the corresponding MAC for a chosen payload (i.e.,
ciphertext).3 Since the adversary does not know the MAC
key (shared at discovery), the adversary must pick a random
MAC out of {0, 1}m, where m is the length of the MAC.

It may be possible to do better than random to guess a
MAC, by exploiting a weakness in a crypto algorithm or
its implementation (i.e., using cryptanalysis), but we use a
standard algorithm (AES) and an existing hardware imple-
mentation, and assume the adversary cannot break them. If
these algorithms later are broken, any suitable crypto algo-
rithm may be substituted for AES. It is, however, important
to assess whether our techniques provide any additional in-
formation to an adversary that can help him do better than
random. In MAC striping, no additional bits are transmitted
in a packet; the MAC bits are intermixed in the payload based
on a pseudorandom sequence, which is computed indepen-
dently by the sender and receiver. In adaptive security an
adversary may attempt to learn the adaptation parameters,
but these parameters are independent of the crypto algorithm
or its encryption keys, so knowing these parameters does not
enable the adversary to improve its ability to guess a MAC.

The HnS discovery messages use a 128-bit MAC, so it
is secure against selective forgery. The HnS session proto-
col, however, uses a small-sized MAC. Without MAC strip-
ing (Figure 2a), the probability that the attacker succeeds
in selectively forging a session message with one random
guess is 2−m. With MAC striping (Figure 2b), the MAC
bits are interspersed with the payload bits at locations de-
termined by Equation 2. Without knowing the key ksx and
the message number j, it is computationally hard for the
adversary to know which bits among the (`+m) bits are the
MAC bits, where ` is the length of the payload. Therefore,
to forge a message of his choice, the adversary has to guess
the matching MAC bits out of 2m possibilities, and MAC-bit
locations out of

(
`+m
m

)
possible MAC-bit locations, making

the probability of success 1

2m(`+m
m)

. To illustrate: when the

payload is 10 bytes long and the MAC is 2 bytes long (i.e.,
` = 80,m = 16), the success probability of selective forgery
without MAC striping is 2−16, and with MAC striping it
becomes approximately 2−75 (since

(
96
16

)
≈ 259). Therefore,

3 For the adversary to inject sensor data chosen by itself, the adver-
sary needs to compute the corresponding ciphertext, which is difficult
because it requires knowledge of the encryption key and nonce. As a
forgery attack, however, it suffices to make the MN accept the ciphertext
chosen by the adversary, whatever the decrypted data might be.

the MAC striping technique drastically decreases the success
probability of selective forgery (from 2−16 to 2−75 in the
example) without increasing the MAC size.

Existential forgery: In existential forgery the adversary
tries to find any matching payload-MAC pair that the MN
would accept; the adversary has no control over the pay-
load content. Among the 2`+m possible payload-MAC pairs,
2` are matching payload-MAC pairs. Without knowing the
MAC key, the adversary can only guess, and the success
probability of such a random guess is 2−m.

The HnS discovery protocol uses a 128-bit MAC, so it
is secure against existential forgery. For the HnS session
protocol, the work required for existential forgery is the same
(i.e., 2m) with and without MAC striping if the guess is
made uniformly at random. The HnS session protocol uses
adaptive security to ensure that the probability of a successful
existential forgery is never greater than β (as described in
Section 3.2.2).

Remark about adversary and our analysis: In our anal-
ysis we assume a very powerful adversary who discovers
the header of messages by observing the message header
and at the same time corrupting the message. This attack re-
quires specialized hardware and skills, and even so, to target a
user, the adversary needs to know which message to observe,
which is hard since HnS messages are unlinkable. In prac-
tice, adversaries will not know the headers, and hence, the
work required to selectively or existentially forge a message
increases by a factor of 2h, where h is the header length.

4.3 Data freshness (SP4)

Each message in the HnS protocol has an encrypted header
that contains the message sequence number. Recall that the
MN maintains a hash table of headers of expected messages,
and when it receives a message from the SN it removes all
the headers with the sequence number less than the received
message from the hash table. Thus, the MN will only ac-
cept messages in increasing order of their sequence number,
achieving SP4.

4.4 Efficient message filtering (SP5)

If the MN requires lots of processing to discard invalid mes-
sages, an adversary can launch a resource-exhaustion attack,
where the adversary will try to drain the MN’s battery by
sending a stream of invalid messages. HnS uses the message
filtering method proposed in SlyFi. The MN uses hash-table
lookups to filter incoming messages, and it discards invalid
messages (i.e., message with headers that are not available in
the hash table). For any message that has a matching header
in the hash table, the MN does MAC verification, and dis-
cards the message if the MAC verification fails. Both the

Hide-n-Sense 9

operations (hash-table lookup and MAC verification) require
negligible energy and processing time on the MN; on TI’s
Chronos device, on average, AES encryption (or decryption)
and MAC verification on a 16 byte message takes 0.57 µJ
and 2.94 µJ, respectively. Even if the adversary sends 100
attempts per second (which saturates the network in our im-
plementation), it succeeds only in drawing 2.5% of the idle
power, and on a smartphone MN the percentage would be
far less. Thus, the message filtering mechanism is efficient
enough to thwart resource-exhaustion attacks.

In terms of resource-exhaustion attack, the adversary’s
knowledge of the threshold x in Equation 4 helps little. With
the knowledge of x, the adversary can keep the MAC size at
the maximum with the minimum cost; no message needs to
be sent until the MAC size drops below the maximum. How-
ever, at the same time, the HnS will also save its energy for
verifying the MAC field of attack messages. Therefore, for
the sake of resource-exhaustion attack, it is the best strategy
for the adversary to keep sending attack messages at the cost
of its own energy for the attack.

5 Evaluation

In this section, we describe our prototype implementation of
HnS, and its evaluation. Our experiments measure the energy
use and network performance of HnS as it adapts to forgery
attempts from a synthetic adversary. We also compare the
energy cost of HnS with SlyFi and SPINS [16] (a security
protocol for low-power wireless sensor networks).

To evaluate the efficacy of HnS, we implemented HnS
on the eZ430 Chronos wireless wrist device [8] from Texas
Instruments, which integrates a 16-bit ultra low-power MCU
(MSP430), a CC1101 wireless transceiver with hardware sup-
port for AES-128 encryption, 32KB flash, 4KB RAM, three
integrated sensors (3-axis accelerometer, pressure, and tem-
perature), and 255mAh battery, into a low-power wearable
platform. We use the watch’s sensors as a proxy for mHealth
sensors in our experiments.

Using this hardware setup, we measure 1) HnS’s ability to
respond to an attack, and 2) HnS’s impact on system energy
usage.

5.1 Adaptive security

Our first experiment uses three Chronos watches, acting as an
SN, an MN and an adversary. Using a watch as MN, instead
of a phone, allows us to implement HnS at the link layer. The
MN and SN use the HnS protocol, and the adversary tries to
forge a message. Throughout the experiment we observe how
the MN adapts to forgery attempts, and how the SN and MN
coordinate the change in the number of security bits used.

Fig. 4 HnS’s adaptive security in response to an attack; as the attack
begins, MN and SN increase their MAC size.

Experiment setup: The SN imitates a temperature sen-
sor that sends a reading every 15 seconds; the sensor payload
is 6 bytes. We assume an unusually strong attacker, who
knows the headers in MN’s table. (As mentioned earlier,
such an attack requires intercepting packet headers, which
is extremely difficult.) The adversary attempts to forge mes-
sages for 10 minutes at a rate of 100 forgery attempts per
second (this rate saturates the wireless channel), after which
communication returns to normal.

Figure 4 shows the result of this experiment. The num-
ber of security bits used is shown over time for the MN
and SN under HnS, and for SPINS [16]. SPINS is a secu-
rity protocol for wireless sensors, and we use SPINS as a
benchmark for comparison. SPINS uses a 64-bit MAC as
protection against message forgery. When not under attack,
HnS achieved much lower overhead than SPINS. During the
attack, HnS increased its overhead; however, the overhead
never needed to be raised to SPINS’s level. During the exper-
iment, both the MN and SN start using a 2-byte header and
3-byte MAC (total overhead = 40 bits). The MN chooses
β = 2−24, ρ = 2−16 and T = 30 min. At time t = 60 the at-
tacker begins sending messages with random payload-MAC
bits but using a header it knows is in the MN’s hash table.
Such a strong attacker only has to transmit 256 messages to
force the MN to increase its MAC size, m (see Equation 4).
After the MN increases m to 32 bits, the attacker must send
216 messages before m increases again, but the attack ends
before that. After the attack has ended, the MN and SN both
slowly return to their previous security level after time T .

In the experiment, the attack lasted 10 minutes. Figure 5
shows how HnS would adapt if a persistent attack were to
continue indefinitely. Over time, the MN will continue to
use more security bits in response to continued forgery at-
tempts (represented as a log-scale on x-axis; the x-axis also
represents the duration of attack, since attack rate is con-
stant). The y-axis represents the security bits used by the
protocol’s header and MAC (i.e., h + m). In the plot, the
initial overhead is set to 48 bits, and the probability that a
forgery succeeds is set to 2−16 (i.e., ρ = 2−16). The plot
also compares HnS’s overhead to that of the SlyFi (256-bit)
and SPINS (64-bit) protocols. In theory, HnS will eventually

10

0 50 100 150 200 250
0

50

100

150

200

250

300

Work done by an adversary (lg scale, number of attempts = 2
x
)

B
it
−

le
v
e
l
s
e
c
u
ri
ty

 o
f
p
ro

to
c
o
l

SlyFi (XLIMIT−bit)

SPINS (64−bit)

HnS

1 year
≈ 10 5 year s

Fig. 5 Projection of how HnS would adapt if a forgery attack continues
till infinity

Table 2 Comparing energy cost of three protocols

SlyFi SPINS HnS
Transmissions overhead 256-bit 64-bit 40-bit1

Security and Privacy2 Yes No Yes
Energy (J)3 0.78 (0.013) 0.39 (0.013) 0.38 (0.01)
Battery life 52.33 (1.27) 103.6 (3.74) 107 (2.75)

1HnS overhead can vary between 16 and 256 bits.
2Whether the protocol achieves the goals described in Section 2.3.
3Mean (and standard-deviation) of 10 trials.

incur the same overhead as SlyFi; however, we don’t expect
any attack, any device, or even the Earth, to last that long.

5.2 Energy analysis

Our second experiment measures the energy required to run a
SlyFi-like privacy-preserving wireless protocol, SPINS-like
protocol, and HnS. To measure energy for SPINS and SlyFi,
we implemented a simple protocol that uses the SPINS and
SlyFi message format, but involves no encryption or security
features. This gives us a slightly lower energy consumption
values for these protocols than they actually would consume.

We simulated the traffic produced by a six-electrode ECG
sensor, which sends 10-byte messages (a timestamp and 1
byte per electrode) at a rate of 10 Hz, for 60 seconds. We
measured the energy consumed by the SN using a Mon-
soon power monitor [13]. Table 2 shows the average energy
consumed by each protocol. Since communication cost domi-
nated the energy consumption, among the three protocols, the
HnS protocol had the least overhead and hence it consumed
less power and had greater battery life. Compared to SlyFi,
HnS provides similar security and privacy properties at about
half the energy cost, and compared to SPINS, HnS provides
more security and privacy properties with no compromise in
sensor life. Such substantial improvements are important in
the context of continuously-worn health sensors.

0 10 20 30 40 50
0

20

40

60

80

100

Adversary transmit rate (pkts/sec)

P
a

c
k
e

t
lo

s
s
 (

p
e

rc
e

n
ta

g
e

)

SlyFi

SPINS

HnS

Fig. 6 Packet loss for different protocols in presence of an adversary.
Each point is a mean of 5 trials, with error bars showing 1 standard
deviation.

5.3 Network performance

Our third experiment measures packet loss in the presence of
an adversary. The setup is similar to the second experiment,
except that we introduce an adversary who is trying to forge
messages by sending random messages, and we measure
packet loss rate instead of energy. The SN, the MN, and the
adversary were placed about 1.2 meters from each other. At
the start of the experiment, the adversary began transmitting
packets at a fixed rate. The SN then began sending Data
packets to MN for 1 minute, at the rate of 5 messages per
second, and expected an ACK from the MN for every Data
packet. The total number of transmitted packets is the sum
of the number of Data packets transmitted by the SN and the
number of ACKs sent by the MN. The total number of lost
packets is the sum of the number of lost Data packets (i.e.,
Data packets sent by the SN but not received by the MN) and
the number of lost ACKs. Thus, the packet-loss ratio is the
ratio of the total number of lost packets to the total number
of transmitted packets. We repeat this experiment 5 times for
each protocol (HnS, SPINS, and SlyFi) and transmit rate.

Figure 6 shows the average packet-loss percentage for
the three protocols for different adversary rates. The large
overhead of SlyFi explains its higher packet loss: larger pack-
ets are more susceptible to collisions with the adversary’s
packets. Thus, the large overhead not only consumes more
transmission energy, it also causes more retransmissions due
to packet losses in a congested network, causing sensors to
expend more energy. SPINS and HnS are designed for sensor
networks, have smaller overhead, and incur less packet loss.

5.4 Microbenchmarks

We measured the time and energy required for encrypting 16
bytes, computing a AES CMAC for 16 byte message, and
updating the hash table in HnS. We ran each of the above
operations 1000 times and measured the time and energy.
Table 3 shows the time and energy required for one operation
of each type. As shown in the table, these operations use
negligible energy, and have almost no impact on the sensors’

Hide-n-Sense 11

Time in msec Energy in µJ
mean (stdev) mean (stdev)

AES encryption 0.07 (0.0014) 0.57 (0.011)
AES CMAC 0.37 (0.0021) 2.94 (0.011)
Hash table update 0.32 (0.0041) 2.41 (0.030)

Table 3 Time and energy required for encrypting 16 bytes, computing
CMAC of a 16 byte long message, and updating the MN’s hash table in
HnS. Mean (and standard-deviation) of 10 trials.

battery life. For instance, encrypting and computing MAC
for each message in the experiment described in Section 5.2
would reduce the expected battery life of the sensor by less
than 1 minute.

6 Discussion

HnS for other domains Although we proposed HnS as a
privacy measure for mHealth systems, one may apply HnS
to other kinds of systems, even to non-sensing systems. For
example, without modification, HnS can provide its privacy-
preserving mechanism to any system where multiple nodes
report data to a paired sink node within one-hop distance.
Extending HnS to different topologies such as multi-hop
networks and its scalability in such settings, are beyond the
scope of this paper.

Forgery attacks on SN. In the sections above, we describe
forgery attacks only on the MN because there is only a very
small attack window for the SN; the MN never initiates com-
munication and thus the SN rarely listens for messages. The
SN’s radio is on only when it is waiting for an ACK, seek-
ing for only one particular header in the incoming message
(unlike the MN who has to match the header of incoming
message with all the headers from the hash table). Thus, an
adversary will have one chance to forge an ACK, and the
success probability for that is 2−(h+m). Moreover, since the
entire packet (including header) is encrypted it is hard for an
adversary to attack a particular SN using information at the
link layer. However, in a worst-case scenario, if the adversary
does succeed in forging an ACK, the SN will think that its
last message was successfully received by the MN, and it
will not send that sensor data to the MN, and the MN may
get one less data point. If an adversary wants to drain SN’s
battery he would have to have to corrupt all ACKs forcing
the SN to do multiple retries – a denial of service type attack,
which is out of scope of this paper.

Energy cost at MN. Although energy consumption by the
MN is a concern, in the preceding sections we focus on
energy consumption in the SNs because MN has a large
battery capacity and can be recharged daily. It is difficult to
recharge SNs daily; users expect SNs to last weeks, if not for
months.

Selective vs. existential forgery. In the context of mHealth
sensing it should be easy for the MN to detect existential
forgery attempts, because any message accepted and de-
crypted will produce arbitrary sensor data values, since the
adversary has no control over the ciphertext payload. These
values will likely be discarded due to semantic checks on
the format or reasonable value range for such data. In case
of selective forgery, the adversary can choose the ciphertext
payload. Although the adversary cannot choose the underly-
ing sensor data because he does not know the encryption key,
he can use the previously observed ciphertexts to generate
(or choose) a ciphertext that will give a valid sensor data
when the MN decrypts the ciphertext. Thus, it is important to
have strong resistance against selective forgery in mHealth
sensing, as provided by HnS.

Forgery probability and ρ, T . In Section 3.2.2, T refers to
the duration of time periods in a SN’s lifespan (recall that we
divide the SN’s life span into a series of time periods). For
simplicity (and without loss of generality), we assume that all
time periods have the same duration (i.e., T), but in practice
they can be different. A period is a duration in an SN’s life
in which HnS can guarantee that the success probability of
forgery will be less than ρ (for some chosen value of ρ for
that period). We introduce this concept of time period in SN’s
life span to make brute-force attacks on HnS for small-sized
MACs difficult.

In adaptive security, HnS increases the MAC size when
an adversary attempts a forgery, and eventually HnS reduces
the MAC size. An adversary can wait for the event when
HnS reduces its MAC size, thereby attacking only when HnS
is weakest. As a counter measure, once the MAC size is
increased in a time period, HnS never reduces MAC size in
that same time period. This delays the brute-force attack by
a factor of T , where T is the average duration of all time
periods. Thus, to delay such attacks, long time periods are
desirable. However, longer time periods also mean that once
MAC size is increased in a period, nodes have to use larger
overheads for a longer time, which costs more energy.

ρ is the success probability of forgery in a given time
period. Like T , ρ can be different for different time periods.
A small ρ implies that HnS has a small threshold (Equa-
tion 4) for failed MAC verifications; thus, MN will increase
its MAC size quickly in response to forgery attempts. Thus, it
is desirable to have a small ρ, however, ρ is roughly inversely
proportional to T , so, one needs to balance ρ and T . A careful
study of this tradeoff is left for future work.

Traffic-analysis. Traffic-analysis attacks rely on linking mes-
sages to a particular source, and then using various analysis
techniques to identify patterns in those messages that reveal
some information about the source; thus, a protocol that pro-
vides true unlinkability defeats traffic analysis.

12

In a BASN, there are two levels of linkability: node-level
linkability, linking messages to a particular node in a BASN,
and user-level linkability, linking the user’s BASN traffic to
the user, making users vulnerable to tracking. To provide
node anonymity (SP1) and prevent user tracking, a protocol
must provide both node-level and user-level unlinkability.

HnS does not provide user-level unlinkability, nor do
SPINS or SlyFi. HnS unlinkability is “weak”: although mes-
sages cannot be linked based on message content, an ad-
versary may be able to use message transmission timings
and message sizes to link messages. HnS can provide strong
node-level unlinkability by incorporating some countermea-
sures against traffic-analysis; for instance, Buttyan et al. [6]
propose one such countermeasure, traffic shaping, a tech-
nique that makes the message transmission pattern uniform
for all nodes. However, one has to be careful when applying
countermeasures that require message padding or dummy
messages, which can be costly (energy-wise) for SNs.

Limitations. HnS is a link-layer protocol. It does not provide
any defense at the PHY layer. An adversary may use PHY-
layer fingerprinting to link together a set of transmissions
from a node, breaking the unlinkability property. However,
such attacks require special hardware, raising the bar for the
adversary [15].

7 Related work

Several research projects have proposed, and even demon-
strated, prototypes for mobile healthcare sensing, but pro-
viding a comprehensive security and privacy solution that is
energy-efficient for low-power sensors is still an open ques-
tion. The HnS protocol that we present in this paper is part
of the HnS architecture, which is our effort towards building
such a complete solution.

Privacy-preserving wireless protocols. The class of privacy-
preserving wireless protocols (PPWP) represent all protocols
that try to provide user privacy in a wireless network, by
obfuscating any information in the transmission that an ad-
versary can use to get some information about the user (or
her device). There are several PPWP proposed in the liter-
ature [3, 10, 21, and their references]. We use techniques
from SlyFi [10] (a relatively strong PPWP), as a basis for
comparison while evaluating the HnS protocol. Unlike SlyFi,
our focus is to provide strong privacy and security with low
energy overhead suitable for low-power sensors in a BASN.
HnS differs in the following ways: 1) in HnS we made the
resource requirement asymmetric between the two nodes
involved in the protocol (that is, one node requires less re-
sources than the other), so that even a lower-capability SN
can participate without undue energy consumption; 2) HnS
uses smaller header and MAC sizes, which improves energy

efficiency and network bandwidth, but to maintain strong se-
curity we use an adaptive security model and MAC striping;
3) we provide an energy evaluation for the protocol; 4) in
HnS the nodes do not rely on synchronized clocks for dis-
covery, reducing complexity, and allowing SNs to participate
without a real-time clock.

Perrig et al. [16] proposed the SPINS security protocol
for low-power wireless sensors. They did not consider node
privacy, however. To achieve data integrity and authentication,
they propose using a constant-length 8-byte MAC. HnS uses
less overhead (as low as 4 bytes), and adapts to network
traffic changes to maintain a desired level of security.

Adaptive protocols. Prasad et al. [18] suggested using three
modes of security: low-level, medium-level, and high-level
security; the different levels of security use different cipher
algorithms. Depending on the user location (e.g., home vs.
public place) or which devices the user is contacting (e.g.,
trusted vs. untrusted), the model will choose an appropriate
security level. The different levels of security achieve differ-
ent sets of properties, and they use different cipher algorithms.
However, choosing the right level of security is not easy; for
example, a familiar location (e.g., home) does not necessarily
imply the absence of an adversary. Portilla et al. [17] pro-
pose changing ECC parameters to provide different levels
of security depending on the energy budget of the node. In
practical settings, the SSL cipher suite provides one form of
adaptive security; communicating parties negotiate the cryp-
tographic algorithms to be used at the start of a session. All
these three approaches described adapt cryptographic primi-
tives (encryption or MAC algorithms) rather than reducing
network overhead, which (as in HnS) would provide more
energy savings than the proposed computational adaptation.

The hybrid security model proposed by Shon et al. [20]
is the closest work to our adaptive security model. In their
adaptive scheme they propose using MAC of different sizes
to provide different levels of security, which they choose
according to the network characteristics (public, commercial,
or private) and the data characteristics (application data or
control data). Classifying data sensitivity and determining
which level of security would be reasonable for a given data
type, while reducing energy used, can be tricky. For mHealth
sensing, where the medical data is considered sensitive, their
approach would always choose the highest-level security,
which would be energy inefficient. Our adaptive model, how-
ever, adapts the security level dynamically in response to an
attack by an adversary; in the absence of an adversary HnS
adapts to reduce the overhead and thus would naturally have
lower overhead than Schon’s approach.

8 Conclusion

We describe a framework for our Hide-n-Sense (HnS) system,
which aims to provide a secure and private mHealth sens-

Hide-n-Sense 13

ing environment. We propose the HnS protocol to provide
a secure, private, and energy-efficient communication chan-
nel between devices in a body-area network. To achieve the
desired security and privacy goals and support low-energy
sensor devices, we use three techniques: MAC striping, adap-
tive security, and an asymmetric resource requirement. We
demonstrated these techniques using SlyFi, but these tech-
niques can also be applied to other protocols to make them
energy-efficient while maintaining their security and privacy
properties. Through experiments, we demonstrated that it
is feasible to implement and use HnS on low-power de-
vices. In fact, as shown in our experiments, HnS is more
energy-efficient than the existing security protocols for low-
power sensors, and much more energy-efficient than existing
privacy-preserving wireless protocols.

Acknowledgements This research results from a research program
at the Institute for Security, Technology, and Society at Dartmouth
College, supported by the National Science Foundation under award
number 0910842, and by the Department of Health and Human Services
(SHARP program) under award number 90TR0003-01. The views and
conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the sponsors.

References

1. S. Agarwal and C. T. Lau. Remote health monitoring using mobile
phones and web services. Telemedicine and e-Health, 16(5):603–
607, June 2010. DOI 10.1089/tmj.2009.0165.

2. A. Arcelus, R. Goubran, H. Sveistrup, M. Bilodeau, and F. Knoefel.
Context-aware smart home monitoring through pressure measure-
ment sequences. In Proceedings of the IEEE International Work-
shop on Medical Measurement and Applications (MeMeA), pages
32–37, Apr. 2010. DOI 10.1109/MEMEA.2010.5480223.

3. F. Armknecht, J. Girao, A. Matos, and R. L. Aguiar. Who said
that? privacy at link layer. In IEEE International Conference on
Computer Communications (INFOCOM), pages 2521–2525, May
2007. DOI 10.1109/INFCOM.2007.313.

4. S. Avancha, A. Baxi, and D. Kotz. Privacy in mobile technol-
ogy for personal healthcare. ACM Computing Surveys, 45(1),
Mar. 2013. Online at http://www.cs.dartmouth.edu/∼dfk/papers/
avancha-survey.pdf.

5. F. Buttussi and L. Chittaro. Smarter phones for healthier lifestyles:
An adaptive fitness game. IEEE Pervasive Computing, 9(4):51–57,
Oct. 2010. DOI 10.1109/MPRV.2010.52.

6. L. Buttyan and T. Holczer. Traffic analysis attacks and coun-
termeasures in wireless body area sensor networks. In IEEE
International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), pages 1–6, June 2012. DOI
10.1109/WoWMoM.2012.6263774.

7. H.-L. Chang, M. J. Shaw, F. Lai, W.-J. Ko, Y.-L. Ho, H.-S. Chen,
and C.-C. Shu. U-health: an example of a high-quality individu-
alized healthcare service. Personalized Medicine, 7(6):677–687,
Nov. 2010. DOI 10.2217/pme.10.64.

8. TI eZ430 Chronos. http://processors.wiki.ti.com/index.php/
EZ430-Chronos.

9. S. Coyle, F. Benito-Lopez, R. Byrne, and D. Diamond. On-body
chemical sensors for monitoring sweat. In Wearable and Au-
tonomous Biomedical Devices and Systems for Smart Environment,
volume 75 of Lecture Notes in Electrical Engineering, pages 177–
193. Springer, 2010. DOI 10.1007/978-3-642-15687-8 9.

10. B. Greenstein, D. McCoy, J. Pang, T. Kohno, S. Seshan, and
D. Wetherall. Improving wireless privacy with an identifier-free
link layer protocol. In Proceedings of the International Conference
on Mobile Systems, Applications, and Services (MobiSys), pages
40–53. ACM, June 2008. DOI 10.1145/1378600.1378607.

11. D. Kotz. A threat taxonomy for mHealth privacy. In Proceedings
of the Workshop on Networked Healthcare Technology (NetHealth).
IEEE Press, Jan. 2011. DOI 10.1109/COMSNETS.2011.5716518.

12. A. Kumar, N. Saxena, G. Tsudik, and E. Uzun. A comparative study
of secure device pairing methods. Pervasive and Mobile Computing,
5(6):734–749, 2009. DOI 10.1016/j.pmcj.2009.07.008.

13. Monsoon power monitor. http://www.msoon.com/LabEquipment/
PowerMonitor/.

14. J. Pang. Quantifying and Mitigating Privacy Threats in Wireless
Protocols and Services. PhD thesis, School of Computer Science,
Carnegie Mellon University, 2009.

15. N. Patwari and S. K. Kasera. Robust location distinction using
temporal link signatures. In Proceedings of the ACM International
Conference on Mobile Computing and Networking (MobiCom),
pages 111–122. ACM, 2007. DOI 10.1145/1287853.1287867.

16. A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler.
SPINS: security protocols for sensor networks. Wireless Networks,
8(5):521–534, Sept. 2002. DOI 10.1023/A:1016598314198.

17. J. Portilla, A. Otero, E. de la Torre, T. Riesgo, O. Stecklina, S. Pe-
ter, and P. Langendörfer. Adaptable security in wireless sensor
networks by using reconfigurable ECC hardware coprocessors. In-
ternational Journal of Distributed Sensor Networks, 2010. DOI
10.1155/2010/740823.

18. N. R. Prasad and M. Alam. Security framework for wireless sensor
networks. Wireless Personal Communications, 37:455–469, 2006.
DOI 10.1007/s11277-006-9044-7.

19. L. A. Saxon, D. L. Hayes, F. R. Gilliam, P. A. Heidenreich,
J. Day, M. Seth, T. E. Meyer, P. W. Jones, and J. P. Boehmer.
Long-term outcome after ICD and CRT implantation and in-
fluence of remote device follow-up: The ALTITUDE survival
study. Circulation, 122(23):2359–2367, Dec. 2010. DOI 10.1161/
CIRCULATIONAHA.110.960633.

20. T. Shon, B. Koo, H. Choi, and Y. Park. Security architecture for
IEEE 802.15.4-based wireless sensor network. In Proceedings
of the International Symposium on Wireless Pervasive Comput-
ing (ISWPC), pages 1–5, Feb. 2009. DOI 10.1109/ISWPC.2009.
4800607.

21. D. Singelée and B. Preneel. Location privacy in wireless personal
area networks. In Proceedings of the ACM Workshop on Wireless
Security (WiSe), pages 11–18. ACM, 2006. DOI 10.1145/1161289.
1161292.

22. J. M. Sorber, M. Shin, R. Peterson, and D. Kotz. Plug-n-Trust:
Practical trusted sensing for mHealth. In Proceedings of the Inter-
national Conference on Mobile Systems, Applications, and Services
(MobiSys), pages 309–322, June 2012. DOI 10.1145/2307636.
2307665.

23. C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M.
Masson. Uncovering spoken phrases in encrypted voice over
IP conversations. ACM Transactions on Information and Sys-
tem Security (TISSEC), 13(4):35:1–35:30, Dec. 2010. DOI
10.1145/1880022.1880029.

http://dx.doi.org/10.1089/tmj.2009.0165
http://dx.doi.org/10.1109/MEMEA.2010.5480223
http://dx.doi.org/10.1109/INFCOM.2007.313
http://www.cs.dartmouth.edu/~dfk/papers/avancha-survey.pdf
http://www.cs.dartmouth.edu/~dfk/papers/avancha-survey.pdf
http://dx.doi.org/10.1109/MPRV.2010.52
http://dx.doi.org/10.1109/WoWMoM.2012.6263774
http://dx.doi.org/10.2217/pme.10.64
http://processors.wiki.ti.com/index.php/EZ430-Chronos
http://processors.wiki.ti.com/index.php/EZ430-Chronos
http://dx.doi.org/10.1007/978-3-642-15687-8_9
http://dx.doi.org/10.1145/1378600.1378607
http://dx.doi.org/10.1109/COMSNETS.2011.5716518
http://dx.doi.org/10.1016/j.pmcj.2009.07.008
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://dx.doi.org/10.1145/1287853.1287867
http://dx.doi.org/10.1023/A:1016598314198
http://dx.doi.org/10.1155/2010/740823
http://dx.doi.org/10.1007/s11277-006-9044-7
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.960633
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.960633
http://dx.doi.org/10.1109/ISWPC.2009.4800607
http://dx.doi.org/10.1109/ISWPC.2009.4800607
http://dx.doi.org/10.1145/1161289.1161292
http://dx.doi.org/10.1145/1161289.1161292
http://dx.doi.org/10.1145/2307636.2307665
http://dx.doi.org/10.1145/2307636.2307665
http://dx.doi.org/10.1145/1880022.1880029

	Introduction
	Security model
	Hide-n-Sense
	Security and privacy analysis
	Evaluation
	Discussion
	Related work
	Conclusion

