
Poster: Enabling Computational Jewelry for mHealth
Applications

Andres Molina-Markham
Dartmouth College

Ronald A. Peterson
Dartmouth College

Joseph Skinner
Dartmouth College

Ryan J. Halter
Dartmouth College

Jacob Sorber
Clemson University

David Kotz
Dartmouth College

Many of the most compelling mHealth applications are
designed to enable long-term health monitoring for outpa-
tients with chronic medical conditions, for individuals seek-
ing to change behavior, for physicians seeking to quantify
and detect behavioral aberrations for early diagnosis, for
home-care providers needing to track movements of elders
under their care in order to respond quickly to emergen-
cies, or for athletes monitoring their physiology to improve
performance. Developing BAHN applications that require
consistent presence and strong security, without depend-
ing on a smartphone or without building lots of compu-
tation/communication resources into every BAHN device
presents a critical challenge for the wide-spread adoption of
mHealth technologies. The smartphone is not always with
its user [1]: many people set aside their phone while at home
or while driving, exercising, or bathing. According to a Pew
study, a third of smartphones have been lost or stolen [2]!
When the smartphone is not present, the BAHN could lose
its foundation; valuable data could be lost, critical events
may go unrecognized. Second, smartphones have limited
means to authenticate or identify the person holding them;
if the phone has been lost or stolen, an app could inappropri-
ately disclose personal health information about the phone’s
owner. Third, smartphones are general-purpose devices, not
dedicated to health-related applications; it is thus more dif-
ficult to evaluate the safety and security of a system when
it is sharing resources with other applications.

For these reasons, we are developing wearable devices as
the foundation for a consistently present and highly available
body-area mHealth network. Our vision is that a small de-
vice, such as a bracelet or pendant, will provide the availabil-
ity and reliability properties essential for successful body-
area mHealth networks. We call this class of device com-
putational jewelry, and expect it will be the next frontier of
mobile systems.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
MobiSys’14, June 16–19, 2014, Bretton Woods, New Hampshire, USA.
ACM 978-1-4503-2793-0/14/06.
http://dx.doi.org/10.1145/2594368.2601454.

We prototyped our first piece of computational jewelry,
which we call amulet , to enable our previously proposed vi-
sion [3]. It runs applications that may collect sensor data
from built-in sensors or from other devices, analyze and log
the data, queue information for later upload, and interact
with the wearer. Independent developers can develop appli-
cations that can be vetted and installed on an amulet.

We achieve our goal of allowing applications to run on
a small ultra-low-power device by means of (1) a multi-
processor hardware architecture and (2) an event-driven soft-
ware architecture that allows applications to survive routine
processor shutdowns. (1) We use a two-processor architec-
ture: an application processor capable of performing compu-
tationally intensive tasks and a coprocessor that manages ra-
dio communications and internal sensors (in our prototype:
accelerometer, gyroscope, magnetometer, temperature sen-
sor, light sensor, and microphone). To save power the appli-
cation processor is powered o↵ most of the time, while the
coprocessor handles all real-time device interactions. Min-
utes or hours of sensor data and other messages from the
coprocessor are staged in queues, stored in shared Ferro-
electric RAM, until it is necessary to boot the application
processor. (2) Most mHealth applications are reactive, run-
ning only when an event of interest occurs. Our architecture
provides a state-machine event-driven programming model.
Programmers define an application as a finite-state machine
and a set of functions to handle events of interest. Our archi-
tecture allows applications to identify computational state
that should be retained between events. Explicitly manag-
ing program state (rather than implicitly managing state
in a thread’s run-time stack) allows our run-time system to
e�ciently save application state to persistent memory and
power down the main processor, with no harm to applica-
tions. This approach dramatically extends battery life, in-
creasing overall application availability.

Prototype Implementation

Key goals of our previously proposed vision [3] were to cre-
ate a system that is consistently present and highly available,
while providing a flexible application programming model.
To achieve consistent presence, an amulet must be able to
be implemented in a small package so it will have a wear-
able form factor. Therefore, the battery must be small:
e.g., a typical 150 mAh battery requires only 1.71 cm3. To
achieve high availability, despite a tiny battery, an amulet
must be extremely power e�cient so it can function for sev-

374



eral days. To achieve independence from the smartphone,
for interesting applications, an amulet must be capable of
performing digital signal processing, cryptographic opera-
tions, and, sensor-data classification. Thus, our approach
involves a dual-processor design: an ultra-low-power proces-
sor tends to communications and sensing (I/O coprocessor),
and a more-capable application processor runs applications.
Although this approach is not uncommon, our hardware-
software architecture is specifically designed to shut down
the application processor – not just put it to sleep – most
of the time. This approach drives another requirement: the
application processor (and its OS) must transition quickly
from o↵ mode to active mode. Our approach drives two re-
quirements: first, applications must be able to survive rou-
tine system reboots; second, the application processor must
be able to return from o↵ state to active state, load its op-
erating system, and reload an application extremely fast.1

Our architecture achieves these requirements by providing
an event-driven programming model. This approach works
well for mHealth applications, many of which are idle most
of the time, waiting for something to happen.

Amulet applications are defined as finite-state machines
(FSMs) with memory. Thus, each application is defined as
a set of states, a small set of variables, and a set of event han-
dlers by which the application responds to events of interest.
When an event is delivered to the application, the system
calls the appropriate handler function and transitions the
application to the designated next state. The non-blocking
handler is a function that may consume data arriving with
the event, update application variable(s), or send events to
system services (or to itself), in any combination. The ap-
plication subscribes to certain events when it is initialized,
and can add or adjust subscriptions as part of the action
in an event handler. This approach makes application state
explicit; because handlers run to completion,2 there are no
threads with stack-based state information to preserve be-
tween events, let alone across processor reboots. Applica-
tion code and variables are kept in persistent storage, as is
a record of the current state of each application; thus, when
the event queue becomes empty, the application processor
simply shuts o↵.

The application processor remains o↵ until the I/O co-
processor wakes it up. On request, the I/O coprocessor
produces messages to carry the output from internal sensors
(e.g., temperature, accelerometer), an input from the wearer
(e.g., a button press), or the reception of a network message
from an external mHealth device. The coprocessor inserts
each new message into the interprocessor message queue; the
memory controller uses a set of queue-management policies
to determine when to wake the application processor (exam-
ples include the insertion of a high-priority message or the
queue being near full). While the application processor is
awake, it draws messages from the interprocessor queue and
copies it into a new event message inserted into its internal
event queue.

We implemented the following OS services and managers
in C: Sensor Manager, Actuator Manager, Storage Manager,
Network Manager, Interprocessor Communication Manager

1In the applications we consider, an application may execute
a task every few seconds and the task may only require a
few milliseconds to complete.
2A supervisor enforces a timeout to prevent handlers from
blocking or running too long.

and Authorization Manager. Each consist of two parts, an
event-driven application – which we implemented in a sim-
ilar way to applications – and a set of routines that have
access to lower level drivers. The event-driven part allows
these managers to receive and process event messages. The
set of routines with low level access are not available to ap-
plications. We implemented the I/O coprocessor as a single
finite state machine with timers and hardware interrupts.
We also implemented three devices to simulate a heart-rate
monitor, a galvanic skin response sensor, and a nicotine sen-
sor that communicate via ANT with our prototype. The
three devices are development boards that use the same
ANT SoC as in our prototype (Nordic Semi nRF51422). We
implemented the message queue using an ultra-low-power
MCU with FRAM (MSP430). FRAM o↵ers persistent stor-
age without power, and it is one hundred times faster than
flash. On writes FRAM uses 250 times less power than flash
(⇡ µA at 12kB/s). The FRAM MCU bu↵ers data until one
of two conditions are met: (i) the FRAM is full, or (ii) the
I/O coprocessor observes an event that must wake up the
application processor. This may happen when an applica-
tion subscribes to a particular data value from a sensor.

Our first wearable prototype is 3.7⇥3.5 cm. We optimized
it for development and not yet for size. Our programming
model allows multiple independently-developed applications
to run simultaneously and e�ciently. Our current prototype
provides 14 to 26 hours of battery life with a 150mAh battery
when running two mHealth applications (for stress manage-
ment and smoking cessation) with realistic workloads. For
news about the Amulet project, visit amulet-project.org and
‘follow’ our blog.

Acknowledgements

We thank Kevin Freeman, Bhargav Golla, Emily Greene,
Hilary Johnson, Adam Labrie, Tim Pierson, and Tianlong
Yun for their participation in this project. This research
results from a research program at the Institute for Secu-
rity, Technology, and Society, supported by the National Sci-
ence Foundation under award numbers CNS-1314281, CNS-
1314342, and TC-0910842, and by the Department of Health
and Human Services (SHARP program) under award num-
ber 90TR0003-01. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as necessarily representing the o�cial policies,
either expressed or implied, of the sponsors.

1. REFERENCES

[1] A. K. Dey, K. Wac, D. Ferreira, K. Tassini, J. H. Hong,
and J. Ramos. Getting closer: an empirical
investigation of the proximity of user to their smart
phones. In Proceedings of the International Conference
on Ubiquitous Computing (UbiComp), pages 163–172,
Sept. 2011. DOI 10.1145/2030112.2030135.

[2] K. Hill. Sorry, smartphone owners, but you’re more
likely to have your privacy invaded. Forbes, Sept. 2012.
Online at http://tinyurl.com/hill-smartphone.

[3] J. Sorber, M. Shin, R. Peterson, C. Cornelius, S. Mare,
A. Prasad, Z. Marois, E. Smithayer, and D. Kotz. An
Amulet for trustworthy wearable mHealth. In
Proceedings of the Workshop on Mobile Computing
Systems and Applications (HotMobile), Feb. 2012. DOI
10.1145/2162081.2162092.

375




