
Copyright 1998 by Katsuhiro Moizumi and George Cybenko.
Submitted to "Mathematics of Control, Signals and Systems," January 1998.
Available at <http://agent.cs.dartmouth.edu/papers/moizumi:agent-plan.ps.Z>.

The Travelling Agent Problem

Katsuhiro Moizumi (katsuhiro.moizumi@dartmouth.edu)
George Cybenko, Corresponding author (gvc@dartmouth.edu)

Thayer School of Engineering, Dartmouth College, Hanover NH 03755 USA
Voice: (603) 646-3843 FAX: (603) 646-2277

February 4, 1998

Abstract

This paper considers a sequencing problem which arises naturally in the scheduling of software agents.
We are given n sites at which a certain task might be successfully performed. The probability of success
is pi at the ith site and these probabilities are independent. Visiting site i and trying the task there
requires time (or some other cost metric) ti whether successful or not. Latencies between sites i and
j are lij , that is, the travel time between those two sites. Should the task be successfully completed
at a site then any remaining sites do not need to be visited. The Travelling Agent Problem is to �nd
the sequence which minimizes the expected time to complete the task. The general formulation of this
problem is NP -Complete. However, if the latencies are constant we show that the problem can be solved
in polynomial time by sorting the ratios pi=ti according to decreasing value and visiting the sites in
that order. This result then leads to an e�cient algorithm when groups of sites form subnets in which
latencies within a subnet are constant but can vary across subnets. We also study the case when there
are deadlines for solving the problem in which case the goal is to maximize probability of success subject
to satisfying the deadlines. Applications to mobile and intelligent agents are described.

Keywords: Stochastic control, mobile agents, intelligent agents, planning, dynamic programming.

1

1 Introduction

Suppose you are shopping for a speci�c item known to be sold in n + 1 stores, si where 0 � i � n. The
probability that store i has the item is known and given by pi. Moreover, it takes a known time ti to navigate
through store i to the section where the item is stocked thereby determining whether the item is available or
not. Going from store i to store j requires travel time lij . Starting and ending at store s0, with 0 = t0 = p0,
what is the minimal expected time to �nd the item or conclude that it is not available?

As this shopping analogy suggests, once the item is found, you are done and can return to s0 by the most
expedient route which may or not may be taking the direct path requiring li0 travel time if the item was
found at si. With probability

Qn

i=1(1� pi) =
Qn

i=0(1� pi) all sites must be visited. Moreover, once a store
is visited and found not to have the item in stock, there is no reason to go back to that store. Probabilities
for success at di�erent sites are assumed independent. Site s0 is the start and end of the shopping task and
can be considered \home." Since 0 = p0 = t0, s0 only contributes to the problem through latencies.

This problem arises when planning the actions of mobile software \agents" [G, JvRS, W]. Mobile agents
are programs which autonomously move within a computer network from machine to machine typically in
an e�ort to satisfy an information retrieval and processing requirement. Using the shopping metaphor from
above, the \stores" are information servers such as databases or web servers. The probabilities of success,
pi can be thought of as estimated from relevance scores given by search engines such as Altavista, Infoseek
and others. Compute times, ti, and latencies, lij , are obtained from network status monitors.

In this framework, an agent has a speci�c information request to satisfy, such as �nding a topographical
map of a given region say. The search engine or directory service identi�es locations, si for i = 1; :::; n,
together with probabilities (relevance scores), pi, for �nding the required data at the corresponding sites.

The agent then queries the network status monitor to �nd latencies and estimated compute times, lij
and ti, for those sites. Based on this information, an autonomous agent must plan its itinerary to minimize
expected time for successfully completing the task. Such a mobile agent system has been developed by us at
Dartmouth [G, RRK] and is known as Agent Tcl. See http://www.cs.dartmouth.edu/~ agent/. In addition
to this mobile agent application, there are numerous other planning and scheduling problems which can be
formulated in these terms [P].

Some work on agent planning follows heuristic methods developed by the arti�cial intelligence community
[AIS, CT, DB, FN]. Our work is devoted to �nding optimal solutions to speci�c planning problems using
e�cient algorithms from combinatorial optimization, operations research and stochastic control [B57, B85,
CGM, H].

Formally, we state the problem as:

The Travelling Agent Problem { There are n + 1 sites, si with 0 � i � n. Each site has a
known probability, 0 � pi � 1, of being able to successfully complete the agent's task and a time,
ti > 0, required for the agent to attempt the task at si regardless of whether successful or not.
These probabilities are independent of each other. Travel times or latencies for the agent to move
between sites are also known and given by lij � 0 for moving between site i and site j. When
the agent's task has been successfully completed at some site, the agent must return to site 0
from which it started. For site 0, p0 = t0 = 0. The Travelling Agent Problem is to minimize the
expected time to successfully complete the task.

Several comments are appropriate.

� The latencies, lij, can be assumed to be the minimal travel time between nodes i and j as would
typically be used in network routing. This observation avoids the situation where an indirect path
between nodes, without \stopping" at the sites along the indirect path, might be shorter that the
direct path.

2

� The probabilities, pi, can be thought of as conditioned on attempting the task at site i. That is

pi = Prob(success at site i j site i not visited yet):

Accordingly,
Prob(success at site i j site i has been visited) = 0 or 1:

This formally handles the site revisiting issue.

� This problem can be formulated as a Markov Decision Problem or discrete stochastic control problem
[B85, H] in which the state space consists of vectors indexed by sites with coordinate values indicating
whether a site has been visited already or not. Standard dynamic programming algorithms could be
used on this formulation but since the state space is exponentially large in the number of sites, this
formulation is not scalable. However, we will see that in certain cases, the state space can be simpli�ed
leading to e�cient dynamic programming solutions.

� If all sites must be visited (so that pi is irrelevant), then the problem reduces to the classical Travelling
Salesman Problem (TSP) which is known to be NP -Complete.

Section 2 contains the main body of technical results, namely e�cient algorithms for restricted instances
of the problem. Extensions of results from Section 3 to the so-called multiple subnetwork case using dynamic
programming are given. Section 4 deals with deadlines while Section 5 is the conclusion and summary.

2 The Travelling Agent Problem

The formal de�nition of the Travelling Agent Problem has been described in the previous section. A so-
lution to the problem consists of specifying the order in which to visit the sites, namely a permutation
< i1; i2; :::; in > of 1 through n. Such a permutation will be called a tour in keeping with tradition for such
problems.

The expected time to complete the task or visit all sites in failure for a tour T =< i1; i2; :::; in > is

CT = l0i1 + ti1 + pi1 li10 +
nX

k=2

8<
:(

j=k�1Y
j=1

(1� pij))

9=
; (lik�1ik + tik + pik lik0) +

nY
j=1

(1� pj)ln0: (1)

This formula can be understood as follows. The �rst site, si1 , on the tour is always visited and requires
travel time l0i1 to reach. Upon arrival, time ti1 must be spent there regardless of success or failure. With
probability pi1 the task is successfully completed in which case the agent can return to site 0 with time cost
li10. However, with probability (1 � pi1) there was failure and the agent proceeds to site i2. The expected
value of the contribution involving moving from site i1 to site i2 and succeeding there is

(1 � pi1)(li1i2 + ti2 + pi2 li20):

Here the factor (1� pi2) is the probability of failing at site i2. The third term comes from failing at sites i1
and i2 so has probability (1 � pi1)(1 � pi2) which is multiplied by the expected time for success at site i3.
The general term then has the form:

(probability of failure at the �rst k � 1 sites)� (expected time for success at site ik):

Finally, the last term arises when failure occurs at all nodes and we must return to the originating site. We
have used independence of the various probabilities here. Not surprisingly, this problem is NP -complete [K]
as will be shown below. Note that in the proof, the question is altered so that we are asking whether there
is a tour whose cost, as above, is smaller than or equal to some total length B. This can be used in a binary
search method to �nd the minimum.

3

Theorem 1 The Travelling Agent Problem (TAP) is NP -Complete.

Proof { We start by showing that TAP belongs to NP . Given a tour, T , we can verify if the total
expected length CT is smaller than or equal to B by merely using the formula. This veri�cation can clearly
be performed in polynomial time (O(n2) steps speci�cally). Thus, TAP belongs to NP .

Next, we show that the problem is NP -Hard, by proving that the HamiltonianCycle Problem [GJ] can be
reduced to TAP. A Hamiltonian Cycle in graph G =< V;E > is a simple circuit that includes all the vertices
V . Thus, a cycle is expressed as an ordering of the vertices < v1; v2; :::::; vk > such that fvi; vi+1g 2 E for
1 � i � k and fvk; v1g 2 E.

De�ne a TAP with probabilities strictly between 0 and 1 and

lij + tj =

�
0 if i; j 2 E
1 if i; j =2 E;

so that tj = 0 for any vertex on an edge in E and lij = 0 for any edge in E. This formation can be done in
polynomial time.

The graph G has a Hamiltonian cycle if and only if the corresponding TAP has a tour with expected
cost of 0. To see this, assume that the graph G has a Hamiltonian cycle H. The corresponding tour T in
the TAP will have cost 0 because all the time costs for T are 0. On the other hand, if the tour T has cost
0, the latencies and site times must all be 0 along this tour by construction. Here we use the fact that the
probabilities are strictly between 0 and 1 so that the only way for the cost to be 0 is for the times to be 0
along the tour. Thus graph G has a Hamiltonian cycle since all the edges in the tour T have to belong to E
by construction again. Q.E.D.

2.1 Constant Latencies

The complexity of the problem can be reduced when latencies between nodes are equal. For example, if the
processing time at each node is extremely large (compared to the latency between the nodes), di�erences
among the latencies could be ignored, or even taken to be zero. Alternately, if no informationabout internodal
latencies are known, we might assume all of them to be constant. The constant latency assumption is
reasonable in the case of a single subnetwork as well. Accordingly, the assumption that we employ in this
section is:

Assumption 1 Latencies between nodes are all the same.

Under this assumption, it turns out that the TAP can be solved in polynomial time, as we will see below.

Theorem 2 Assume in the TAP that l = lij = lkm � 0 for all i; j; k;m, namely Assumption 1. Compute
times, ti, and probabilities, pi, can be arbitrary. Then the optimal tour for the TAP is attained if the nodes
are visited in decreasing order of pi=(ti + l).

Proof { The proof uses an interchange argument commonly used in �nance and economics. See [B87]
for example. For notational convenience and without loss of generality consider the speci�c tour T =<
1; 2; 3; :::; n >. The total expected cost for the tour T is as in equation (1) with notational changes:

CT = l01 + t1 + p1l10 +
nX

k=2

f(
k�1Y
j=1

(1� pj))g(lk�1k + tk + pklk0) +
nY

j=1

(1� pj)ln0

= l + t1 + p1l +
nX

k=2

f(
k�1Y
j=1

(1� pj))g(l + tk + pkl) +
nY

j=1

(1� pj)l

= 2l + t1 +
nX

k=2

f
k�1Y
j=1

(1� pj)g(tj + l)

4

where we have used the fact that

pk � l �

k�1Y
j=1

(1� pj) + l �

kY
j=1

(1� pj) = l �

k�1Y
j=1

(1� pj):

This also eliminates the last term so note that pn does not explicitly arise in the �nal expression because
regardless of the value of pn, we return to s0 after visiting sn.

Now consider the e�ect of switching the order of two adjacent sites on the tour, say i and i+ 1 for some
1 � i � n� 1. Call this new tour, T 0.

In the above expression for the expected cost, only the ith and (i+1)st terms are a�ected by the switch.
The terms appearing before the ith term do not contain anything which involves i or i + 1. On the other
hand, terms that follow the (i + 1)st term all contain (1� pi) � (1 � pi+1) in precisely the same way but no
other ingredients that depend on either i or i+ 1. Note that for i + 1 = n there are no terms following the
two terms we are isolating so we can handle that case as well by the following argument.

The di�erence in expected cost between T and T 0 can be calculated by comparing only these two terms.
The di�erence in the expected cost is therefore:

CT � CT 0 = (ti + l)
i�1Y
j=1

(1� pj) + (ti+1 + l)
iY

j=1

(1� pj)

�(ti+1 + l)
i�1Y
j=1

(1� pj) � (ti + l)(1� pi+1)
i�1Y
j=1

(1� pj)

= (ti + l + (ti+1 + l)(1� pi)� ti+1 � l � (ti + l)(1� pi+1))
i�1Y
j=1

(1� pj)

= (pi+1(ti + l) � pi(ti+1 + l))
i�1Y
j=1

(1� pj):

Thus, T is a better tour (has smaller expected cost) if

pi+1(ti + l) < pi(ti+1 + l)

or equivalently,
pi

ti + l
>

pi+1
ti+1 + l

:

This shows that when two adjacent sites have the above ratios out of order (that is the ith site on the tour
has a smaller ratio than the (i+ 1)st site), then we can decrease the expected cost by switching them.

So we can for example perform a Bubble Sort on any initial tour ordering and every swap in the Bubble
Sort will decrease the expected time for the tour. The optimal value is then the sequence with decreasing
ratios as above. Q.E.D.

Since it is possible for some of the pi and/or ti+ l to be zero, we should handle that case as well. Clearly,
any site for which pi = 0 should not be visited at all, that is, it should be dropped from any prospective
tour. Moreover, it might be that ti + l = 0 for some of the remaining sites. In that case, we can modify the
�nal steps of the above proof so that we visit the sites in order of increasing (ti + l)=pi since pi 6= 0.

Theorem 3 Suppose that all latencies are that same and that some pi = 0 and ti+ l = 0. Then the optimal
tour consists of:

� First dropping sites with pi = 0;

5

� Secondly, sorting the ratios for the remaining sites,

ti + l

pi
;

into increasing order and visiting the sites in that order.

An important observation is the fact that ti + l is the expected time to reach site i and process there
after failing at site i � 1. We would obtain the same results if we used the expected time after site i but
before reaching sites i + 1 or the home sites, s0. That expected time is

ti + (1� pi)l + pil

which is equal to ti + l and does not change the result of above.
In fact, the expected time, ti+l can be replaced by any expected time which is independent of the position

of the site within the tour. This will be of key importance in the next section.
This observation and a small construction allows us to solve the following modi�ed problem.

Theorem 4 Suppose the latency from the home site, s0, to all the other sites is a constant, l0 6= l, where l
is the latency between sites i and j for 1 � i; j � n. Then the optimal tour is still obtained by:

� Dropping sites with pi = 0;

� Sorting the sites into increasing order of
ti + l

pi
:

Proof { Create a new site, s�, whose latency to all sites si for i > 0 is l and whose latency to site s0 is l0� l
(this might be negative but it does not a�ect the argument). Consider any tour, T , using this site, s�, as
the home. Call the cost of the tour using s� as home, DT . Let the cost of the tour for the original problem
be CT .

Then the relationship between the costs of the tours is

DT = CT � 2(l0 � l)

because any tour must start and end at either s0 or s�, even if l0� l < 0. Because of this relationship between
costs, the minimal expected time tour for the two problems are the same. The best tour using s� can be
computed using Theorem 1 and by the above is the best tour for this modi�ed problem as well. Q.E.D.

We will use a simple technical lemma based on the proof of Theorem 1. For this lemma, suppose that
we have a general TAP with arbitrary latencies. This means that the expected time to visit site si, where
expected time is measured from the time an agent arrives at si until it either successfully �nishes or travels
to the next site. If site si is followed by site sj , then that time is

t�i = ti + pili0 + (1� pi)lij :

In general, this time is variable but the lemma addresses the case when a subsequence of a tour can be
rearranged without a�ecting these expected times.

Theorem 5 Suppose that we have a general TAP with a tour, T =< s1; s2; s3; :::; sn >. Suppose that for
a subsequence of the tour, < si; :::; sj > for i < j, any permutation of the sites si; :::; sj results in the
same expected execution times, t�i , for each of those sites, then the optimal ordering for the subsequence
(that is, the permutation of the subsequence that minimizes expected time) is obtained by the permutation
< ski ; ski+1 ; :::; skj > in which

t�ki
pki

�
t�ki+1

pki+1

� ::: �
t�kj
pkj

:

6

Proof { As in the proof of Theorem 2, consider switching two adjacent sites, say skm ; skm+1 , in any
ordering of the subsequence in question. Call the original tour T and the tour with switched sites T 0. Since
the expected times for these sites are independent of their ordering in the subsequence, we as above see that

CT �CT 0 = P (pkm+1t
�

km
� pkmt

�

km+1
) � 0

if and only if
t�km+1

pkm+1

�
t�km
pkm

:

Thus this sorted order minimizes the expected time for the subsequence of sites. Q.E.D.

2.2 The Multiple Subnetwork Case

Assumption 1 and Theorem 2 address the case of completely constant latencies. Theorem 3 o�ers a small
generalization in which latencies to the home node can be di�erent but still constant. However, many situa-
tions can be modeled by variable latencies which are constant within subnetworks and across subnetworks.
Speci�cally, consider the case of two subnetworks (one in Japan and one in the US). Latencies between any
two nodes within the same subnetwork are constant as are latencies across the two subnetworks. That is, for
sites in Japan, latencies are a constant, lJ , and in the USA they are lU . Latencies between two nodes, one
in Japan and one in the USA, are a third constant, lJU . Formally, we de�ne the Two Subnetwork Travelling
Agent Problem (TSTAP) as follows.

Assumption 2 The relevant sites belong to two subnetworks, S1 and S2. Sites in Si are sij where 1 �
j � ni. There are three latencies: L1; L2; L12 � 0. For s1j 2 S1; s2k 2 S2, l1j2k = l2k1j = L12 while
for s1j; s1k 2 S1, we have l1j1k = l1k1j = L1. Similarly, for s2j; s2k 2 S2, we have l2j2k = l2k2j = L2.
Probabilities, pmj > 0 are nonzero and independent as before. Compute times tmj � 0 are arbitrary but
nonnegative. Latencies between the home site, s0, and sites in Si are L0i. We assume that L0i; Li2 � Li.
That is, latencies within a subnetwork are smaller than latencies across networks and to the home sites.

Under Assumption 2, the Two Subnetwork Travelling Agent Problem (TSTAP) can be solved in poly-
nomial time using the results of Theorem 4 and dynamic programming. The result can be generalized in
several ways but we defer that discussion until after the basic case is handled. Formally, we will show:

Theorem 6 The optimal (minimal expected time) sequence for the TSTAP can be computed in polynomial
time, O(n1 logn1 + n2 logn2 + (n1 + 1)(n2 + 1)).

Outline of the proof { The proof consists of two steps. The major di�erence between this problem and
the previous cases of all constant latencies is that now the optimal solution requires making choices about
whether to stay in the same subnetwork or to cross over to the other subnet after each site is visited.

We �rst show that the order in which sites are visited in one of the subnets is given by the ordering
speci�ed by Theorems 2, 3 and 4. This greatly reduces the number of choices necessary { after visiting a
site, we only need to decide which of the eligible sites, one per subnetwork at most, should be visited next.
The sorting requires O(n1 logn1 + n2 logn2) steps.

This sorted ordering is used in the second step where a dynamic programming algorithm is used to
compute the optimal solution. Even though the problem is stochastic, it can be solved by a deterministic
dynamic programming algorithm in roughly O((n1 + 1)(n2 + 1)) steps.
Proof { As before, eliminate all sites with pij = 0 since they contribute time but no possibility of solution.

Assertion 1 { Suppose that the optimal tour is

< si1j1 ; si2j2 ; :::; siMjM >

7

where M = n1n2. Without loss of generality, let the sites in Si be visited in this order:

si1; si2; si3; :::; sini:

Then
ti(j�1) + pi(j�1)Li0 + (1� pi(j�1))Li

pi(j�1)
�
ti(j) + pi(j)Li0 + (1� pi(j))Li

pi(j)

for 1 � j � 1 � ni � 1.

We will show the result for subnetwork 1 and then see that it applies by symmetry to subnetwork 2 as
well.

First of all, note that if a tour consists of consecutive visits to sites within S1, then those sites within S1
must be ordered according to the claim of the theorem by the interchange argument of Theorems 2, 3 and 4.
That is, switching any two adjacent sites, s1j and s1(j+1), within S1 (without a intervening trip to S2) leads
to a di�erence in the expected time that is precisely of the form seen before. This means that the ordering
has to follow

t�1j=p1j � t�1(j+1)=p1(j+1):

Notice that although the last site within S1 before crossing over to S2 has a latency L12 > L1 but that
latency is independent of which S1 is the last.

The only remaining case is when two sites within S1 are separated on a tour by a visit to some sites
within S2. This case establishes the claim of the theorem by using agregatated sites and works only for the
optimal tour, not any valid tour. We will point out where optimality of the tour is used.

De�nemetasites to be aggregated sites within subnetwork 2 that are visited between visits to subnetwork 1.
Using the above notation, suppose that between visiting s1j and s1(j+1) we visit only sites within subnetwork
2, say s2k; :::; s2m. We will treat the subnetwork 2 sites s2k; :::; s2m as if they were a single site.

The expected time from starting at s1j and arriving at s2k is technically t1j + p1jL10 + (1� p1j)L12 and
the probability of success is p1j. However, let us de�ne a modi�ed site, s�1j with

t�1j = t1j + p1jL10 + (1� p1j)L1

as the new expected time and probability of success p�1j = p1j as before.
For the metasite ms2k:2m, de�ne the expected time to be

tms2k:2m = L12 � L1 + t2k + p2kL20 + (1� p2k)L2

+(1� p2k)(t2(k+1) + p2(k+1)L20 + (1� p2(k+1))L2 + :::+ (1� p2m)L12::)))):

The probability of success for this metasite is

pms2k:2m = p2k + (1� p2k)p2(k+1) + (1� p2k)(1 � p2(k+1))p2(k+2) + :::

m�1Y
i=k

(1� p2i)p2m:

This time is merely the expected time to start at s2k and either �nish successfully or travel and start at
site s1k together with the di�erence L12 � L1 which is leftover from the s1j to s2k travel time that is not
accounted for in t�1j.

By splitting the expected time for site s1j and the metasite ms2k:2m in this way, we see that the expected
time to complete visiting s1j and ms2k:2m is independent of whether another S1 node follows s1j or such a
metasite follows s1j. Similarly, the time for ms2k:2m is independent of which S1 site preceds it.

To reiterate, we have rede�ned the expected time for s1j so that it is as if the next site were an S1
site instead of ms2k:2m. Moreover, the excess latency we removed from s1j has been added to the time for
ms2k:2m.

8

s

Subnet 2

Subnet 1

Following
site
can be on
either subnet
 or home

s

s

1(j+1)

2(k+1) 2m

L

L L

L

2 2

12

1x

s

Lx1

2k

L 12

Preceeding
site
can
be on either
subnet or
home

c

b
d

ea

s

1j

Consecutive subnet 2 sites are grouped to make a metasite.

Figure 1: De�nition of sites a; b; c; d; e.

This means that as long as either another S1 site follows s�1j or ms2k:2m follows s�1j, the expected time
for s�1j is constant. Similarly, as long as the site preceding ms2k:2m has a latency of L1 to reach the site
following it (that is, it is an S1 site), the expected time for ms2k:2m is constant.

For notational simplicity, we will use the following names:

� The site preceding s�1j in S1 is called a where an agent makes a decision whether it should stay in S�1
or move to another subnetwork;

� Sites s1j ; ms2k:2m; s1(j+1) are called b; c; d respectively;

� The site following d is called e.

This situation is depicted in Figure 1.
Now suppose that the �ve sites, a; b; c; d; e, form part of the optimal tour. Our goal is to show that

pb=tb =
p1j

t1j + p1jL10 + (1� p1j)L1
= p1j=t

�

1j

� pd=td =
p1(j+1)

t1(j+1) + p1(j+1)L10 + (1� p1(j+1))L1
= p1(j+1)=t

�

1(j+1):

We do this in two steps:

1. Showing that pb=tb � pc=tc;

2. Showing that pc=tc � pd=td.

Step 1 { Let the cost of the optimal tour with the subsequence a; b; c; d; e be Cabcde and consider the
cost of the tour with sites b and c switched. Let the cost of the tour with b and c switched be Cacbde. Then
by optimality

0 � Cabcdef �Cadcbef

= P � (Lx1 � Lx2 + (tb + pbL10 + (1� pb)L12) + (1� pb)(tc + pcL20 + (1� pc)(L21)

�(tc + pcL20 + (1� pc)L21) � (1� pc)(tb + pbL10 + (1� pb)L1))

= X � X � P � (Lx1 � Lx2 + L21 � L1):

Here P > 0 is the probability that failure has occurred at all nodes preceding b in the tour so that we in fact
visit b. Lx1 and Lx2 are the latencies from a to S1 and S2 respectively since a can be either in S1, S2 or s0,

9

the home site. The other terms arise from the parts of the tours between b and d. Note that once we arrive
at d, the remaining costs are identical for both tours and therefore cancel each other in the di�erence. The
term L12 � L1 arises as the di�erence in latencies in going from a to b versus a to c.

Finally, we note that Lx1 � Lx2 + L21 � L1 is 0, 2L12 � L1 � L2 or L01 � L02 + L12 � L1 = L12 � L1

depending on whether x is 1, 2 or 0 which are all nonegative by assumptions on the latencies. This explains
the last inequality.

Continuing, we have

0 � X � P � (Lx1 � Lx2 + L12 � L1)

= P � (tb + pbL10 + (1 � pb)L1 + (1 � pb)(tc + L21 � L1 + pcL20 + (1� pc)L12)

�(tc + pcL20 + (1� pc)L21 + L12 � L1)� (1� pc)(tb + pbL10 + (1� pb)L1))

= P � (pctb � pbtc)

which shows that pb=tb � pc=tc as claimed.
Step 2 { We now switch c and d in an optimal tour as above, and with the same notational conventions,

we have

0 � Cabcde � Cabdce = P � (L12 � L1 + tc + pcL20 + (1� pc)L12 + (1� pc)(td + pdL10 + (1� pd)L1x)

�(td + pdL10 + (1� pd)L12)� (1� pd)(tc + pcL20 + (1 � pc)L2x

= X � X � P � (1� pc)(1� pd)(L1x � L2x + L12 � L1)

= P � (tc + (1� pc)td � td � (1� pd)tc)

= P � (pdtc � pctd)

so that pc=tc � pd=td. Again, L1x � L2x + L12 � L1 is nonegative as in step 1.
The two inequalities derived from Steps 1 and 2 combine to show that pb=tb � pd=td as claimed.
which shows tc=pc � td=pd is implied by The two inequalities derived from Steps 1 and 2 combine to

show that if abcde is part of the optimal tour then pb=tb � pc=tc � pd=td as claimed.

Assertion 2 { The TAP of Theorem 3 can be solved in O((n1+1)(n2+1)) time using dynamic
programming after the nodes are sorted as speci�ed in Step 1 which requires O(n1 logn1 +
n2 logn2) steps.

By Assertion 1, we can assume that the nodes have been ordered into the required sequence which dictates
the order in which they are visited in each subnetwork. We de�ne a Markov Decision Problem (MDP) with
states

S = f(i; j; k)j0 � i � n1; 0 � j � n2; k = 0 or 1g [fFg

where state (i; j; k) means that an agent has already visited sites s11; :::; s1i and s21; :::; s2j and is presently
on subnetwork k. The terminal state is F . The states (0; 0; 1) and (0; 0; 2) are the same initial state.

For instance, (0; 3; 2) means that sites s21; s22; s23 have been visited and the agent is at subnetwork 2
while no sites from subnetwork 1 have yet been visited.

In the MDP framework, we need to describe actions for each state, corresponding transition probabilities
and immediate costs. For the state (i; j; 1) there are two possible actions: G1 and G2, meaning attempt to
go to the next site in subnet 1 or subnet 2. For state (i; j; 1) and action G1 the next state is (i+ 1; j; 1) with
probability (1� p1i) and F with probability p1j. The expected immediate cost is

t1j + p1jL10 + (1� p1j)L1:

For state (i; j; 1) and action G2, the next state is (i; j + 1; 2) with probability (1 � p1j) and F with
probability p1j. The expected immediate cost is

t1j + p1jL10 + (1� p1j)L12:

10

The same de�nitions apply to states (i; j; 2) with actions G1 and G2 as above with appropriate changes.
For states (n1; j; k) the only allowable action is G2 and for states (i; n2; k) the only allowable actions are

G1. For state (n1; n2; k) there is only one action, to go to the terminal state F with appropriate costs.
This MDP has no cycles and so the optimal cost-to-go values can be computed using backtracking from

the terminal node in time proportional to the total number of states which is (n1 + 1)(n2 + 1). Q.E.D.

2.3 Extensions and Discussion

The above algorithm and results apply to situations with multiple subnetworks providing that internetwork
latencies and latencies to the home site are larger that internetwork latencies which are constant. In that
case, the algorithm requires time

(n1 + 1)(n2 + 1):::(nm + 1)

for m subnetworks. In the case where ni = 1, this reduces to the general case of the TAP which is NP-Hard
and the algorithm is exponential.

We can use these results as approximation methods for general TAP's by organizing subnetworks with
constant latencies that approximate the original latencies.

We have shown that the TAP is NP -complete in the general formulation. However, by clustering multiple
sites and approximating latencies among them to be constant, the complexity of the problem is decreased
into a polynomial time computation.

The problems dealt with in this paper assumes that (1) a single agent executes a task and that (2) network
properties are static. In many cases, a task can be �nished in a shorter time by multiple agents rather than
a single agent. The TAP should be extended to the case where multiple agents are involved in the same
task. Network properties tend not to be static in real life, and even not to be stationary. Replanning in the
case of changing network statistics can be a solution to the second problem.

3 The Travelling Agent Problem with Deadlines

The above results are relevant to agent planning problems without deadline. In this section, we address the
important problem of handling a deadline for each site (The Travelling Agent Problem with Deadlines). For
example, agents encounter this situation when they have information about when sites are going to shutdown
or be isolated due to link disconnection. The goal of the problem is to obtain tours that �nish an agent's task
with the highest probability of success before machines become unusable. We present a pseudo-polynomial
algorithm for �nding such optimal tours below.

Assumption 3 Each site i (including the home site s0) has a deadline, Di, by which time an agent must
visit the site or else the site becomes unavailable.

Theorem 7 Assume in the TAP that l = lij = lkm � 0 for all i; j; k;m, namely Assumption 1. Compute
times, ti, and probabilities, pi, can be arbitrary but l and ti are integer. The agent must �nish its task by
visiting sites and returning to the home site before the respective deadlines. The optimal tour for this TAP
with Deadlines maximizes the probability of success without exceeding a deadline at each site. (The deadline
time Di is measured from the time the agent leaves the home site.) Such an optimal tour can be computed
in pseudo-polynomial time using a dynamic programming algorithm. Input times are assumed to be integer
and pseudo-polynomial means polynomial in the values of the input times, not the number of bits required to
represent them.

Proof { The proof consists of four steps. In the �rst step, we formalize the concept of a task's completion
before deadlines. The second step is an observation that in order to avoid missing deadlines, sites should be
visited in increasing order of their deadlines. The third step introduces two arrays, e(j; s) and p(j; s). The

11

�rst array holds the boolean function which is true if there is a subset which consists of the �rst through jth
sorted sites and which has the total time equal to s, without violating any deadlines. The second array holds
the total probability of success p(j; s) of the subset that makes e(j; s) = true. The fourth step constructs
these arrays in pseudo-polynomial time using dynamic programming. The optimal tour is the sorted subset
that maximizes p(j; s).

Step 1 - We formalize the meaning of task's completion before deadlines in this step. We assume that
the agent start time is � = 0 and that the agent must visit site i before � = Di. If an agent visits si, this
means that it failed at every site it visited before. The time to visit all sites before im in failure for a tour
T 0(m) =< i1; i2; ::::; im > where m � n and return to the home site is:

CT 0(m) = l01 + ti1 +
mX
k=2

(lik�1ik + tik)

=
mX
k=1

(l + tik)

= m � l +
mX
k=1

tik

The above CT 0 (m) can be no greater than the deadline Dim at the site im and, in addition, the total
time for all tours T 0(k) for k < m should not exceed the deadline Dik . Although the order of visiting sites
does not a�ects the total time CT 0(m) and the total probability of success for the tour, the wrong order may
violate the deadline constraints.

The tour which maximizes the probability of successful completion can be computed in pseudo-polynomial
time using dynamic programming is shown in the following steps. Pseudo-polynomial time means that the
compute time is bounded by a polynomial in the value of the inputs, not the number of bits required to
represent the input.

Step 2 - Consider a tour T =< 1; 2; ::::; n > with sites sorted according to increasing deadlines. This tour
has the minimummaximum lateness where the minimal maximal lateness for a tour T � =< i1; i2; :::; in > is
de�ned to be minT�fmaxnk=1(C

0

T�(k) �Dik)g where C0

T�(k) represents the completion time at the ikth site
as above. This result is derived from Jackson's work [J] and is critical to the following property used below:
If the completion times for a sequence of sites that has increasing deadlines violate some deadline then every
other ordering of that sequence will violate some deadline as well. This follows from Jackson's result since
the increasing deadline ordering minimizes the maximal lateness, which if positive must be better than the
lateness of any other ordering. Therefore, all other orderings have larger lateness which by virtue of being
positive means that some deadline is missed. Algorithmically, this means that we can reject a sequence of
sites if they are ordered by increasing deadlines and violate some deadline { we only need to check that
ordering for infeasibility of the whole set of sites.

Step 3 - We introduce two arrays of size n (number of sites) by min(B;D0� l) where B =
Pn

k=1 tk+n � l
(total possible time for visiting all sites) and D0 � l represents the deadline that an agent should leave the
last site for its home machine.

For integer 1 � j � n, let e(j; s) = 1 if there is a subset of f1; 2; ::; jg for which the total maximum
time is exactly s and each site of which can be visited no later than its deadline. If such a subset does not
exist, e(j; s) = 0 so e is essentially Boolean. We also de�ne the array value p(j; s) = 0 if e(j; s) = 0 and
p(j; s) = 1 �

Q
k2Te(j;s)

(1 � pk) if e(j; s) = 1. Here Te(j;s) is the set of sites whose times add up to s (thus

making the deadline constraint transparent). This subset of sites has the maximum probability of success
among all such subsets and each of its sites can be visited no later than the site's deadline. That probability
is precisely what is stored in p(j; s).

Step 4 - The values of e(j; s) and p(j; s) are obtained by dynamic programming. The dimensions of the
arrays e and p are both n by min(B;D0 � l). They are initialized to be all 0.

12

We start the algorithm with the row j = 1 and proceed to calculate the following rows of e from the
previous rows. For j = 1, e(1; s) = 1 if and only if either s = 0, or s = l + t1 and s � D1. If e(1; s) = 0, or
e(1; s) = 1 and s = 0, p(1; s) is set to be 0. If e(j; s) = 1 and s = l + t1, p(j; s) = p1 = 1� (1� p1).

For j � 2, we set the value of e(j; s) = 1 if and only if e(j�1; s) = 1 is true, l+tj � s and e(j�1; s�l�tj) =
1 where s � Dj , or l + tj = s. This means that we can construct a tour with total cost s in the case of
failure in one of three possible ways:

1. There was already a tour involving sites 1; 2; :::; j� 1 with total time s (the case e(j � 1; s) = 1), each
site of which can be visited no later than its deadline;

2. There is a nonempty tour with total time s� tj � l involving a subset of sites 1; 2; :::; j� 1 and we can
add the site j to that tour if s � Dj (this is the case, e(j � 1; s � tj � l) = 1 and l + tj � s where
s � Dj) ;

3. l + tj = s and so we have a tour with only the site j on it if s � Dj .

In the second case, we check that if we can add the site j to a tour by comparing s and Dj when
e(j � 1; s � l � tj) = 1 and l + tj � s. It is obvious that a tour which satis�es e(j � 1; s � l � tj) = 1
has a maximum lateness 0 since the tour does not violate the deadline constraints. Now if we append the
site j at the end of the tour, the total time becomes s. The maximum lateness of sites in the new tour is
maxf0; s � Djg because those sites are sorted in increasing order of their deadlines. Since the maximum
lateness is minimumamong those of all possible permutations of sites in the tour, it is impossible to decrease
the maximum lateness by changing the order of sites in the tour. Thus, site j cannot be added to the tour
that satis�es e(j; s) = 1 if s > Dj .

We also de�ne elements of the jth row of p as follows. If e(j; s) = 0, p(j; s) = 0. We handle the cases for
which e(j; s) = 1 in the following way:

1. There was a tour already involving a subset of 1; 2; :::; j � 1 with a total time of s with each site of
which can be visited no later than its deadline but j could not be added to any previous tour to get a
new tour (case for which e(j � 1; s) = 1 but e(j � 1; s� tj � l) = 0): p(j; s) = p(j � 1; s);

2. There was no tour with total time s based on sites 1; 2; :::; j� 1 but there is one when sj is added to
a tour (case when e(j � 1; s) = 0 and e(j � 1; s� tj � l) = 1): p(j; s) = pj if s � Dj ;

3. There was already a tour involving a subset of 1; 2; :::; j � 1 with a total time of s and another tour
with total time s � l � tj using sites 1; 2; :::; j � 1 which can be visited no later than their respective
deadlines (the case when e(j � 1; s) = 1, and e(j � 1; s � tj � l) = 1 and s � Dj): p(j; s) =
maxfp(j � 1; s); 1� (1� pj)(1� p(j � 1; s� l � tj))g;

4. s = l + tj, e(j � 1; s) = 1 and s � Dj in which case p(j; s) = maxfp(j � 1; s); pjg.

This handles all cases and clearly requires only a single scan of each row, therefore about O(min(D0� l; B))
operations per row for n rows yielding a complexity of O(min(D0 � l; B) � n) steps..

The subset which maximizes the probability of the agent's success and whose sites can be visited no later
than their respective deadlines is the one that maximizes p(n; s) for s � D0 � l (recall that p(j; s) = 0 if
e(j; s) = 0). D0 � l is the deadline by which time an agent has to leave the last site for its home site 0. By
visiting all the sites in that subset in increasing order of their deadline, no exceeding of deadlines will occur.
However, this order cannot guarantee the minimum expected time in visiting all the sites no later than their
respective deadlines. The theorem about the optimal order (the minimum expected time) will be discussed
later.

It takes at most n logn to sort the subset in increasing order of deadlines. Therefore, the optimal solution
can be obtained in time that is polynomial at most in n and B, O(2 �n �minf

Pn

k=1 tk+n � l; D0� lg+n logn).

13

The only remaining issue is that of maintaining the list of sites on a tour corresponding to e(j; s) = 1
and the value of p(j; s) recorded in the array. This can clearly be handled within the time bounds we have
demonstrated. Q.E.D.

As mentioned above, this solution for TAP with deadlines optimizes the probability of success but does not
necessarily minimize the expected time to visit all sites on the tour while satisfying the respective deadlines.
Note that the maximal probability tour subject to the deadline constraints may not have a minimal expected
time of completion. E�cient algorithms for actually minimizing the expected time appear to be di�cult to
obtain and remains an open problem to our knowledge, even in the sense of pseudo-polynomial performance.

4 Conclusion

Mobile agents have received a lot of attention recently as a way to e�ciently access distributed resources in
a low bandwidth network. Planning is a required capability so that agents can make the best use of available
resources. This paper proposes a planning problem for mobile agents that is often observed in information
retrieval and data-mining applications. The problem is to �nd the best sequence of locations so that an
agent can �nd desired information in minimum time if there are several possible sites that may contain the
information with some probability and network statistics such as latency, bandwidth and machine load are
available. We prove that the complexity of the problem is NP -complete in the general formulation but have
successfully reduced the complexity to be polynomial time by employing realistic subnetwork assumptions.
E�cient algorithms for maximizing probabilities of success in the presence of deadlines are also demonstrated.

5 Acknowledgements

This work was partially supported by Air Force O�ce of Scienti�c Research grants F49620-97-1-0382 and
F49620-95-1-0305. The authors thank D. Bertsekas and S. Patek for pointing out some related work and
references.

References

[AIS] J. Ambros-Ingerson and S. Steel. Integrating planning, execution and monitoring In Proceedings of
the Seventh National Conference on Arti�cial Intelligence (AAAI-88), Morgan Kaufmann, St. Paul.
Minnesota, 1972

[B57] Richard .E. Bellman. Dynamic programming,Princeton University Press, Princeton, New Jersey 1957

[B87] D. M. Bertsekas. Dynamic Programming, Prentice Hall, Englewood Cli�s , NJ, 1987.

[B85] D. M. Bertsekas. Dynamic Programming and Optimal Control, Athena Scienti�c, Belmont, Mas-
sachusetts, 1995.

[CT] K.W. Currie and A. Tate. O-Plan: The Open Planning Architecture Arti�cial Intelligence, 52(1). 1991

[CGM] G. Cybenko, R. Gray, and K. Moizumi. Q-learning: A Tutorial and Extensions Mathematics of
Neural Networks, Kluwer Academic Publishers, Boston/London/Dordrecht, 1997

[DB] M. Drummond and J. Bresian. Anytime synthetic projection: Maximizing the probability of goal
satisfaction In Proceedings of AAAI-90, Boston, 1990

[FN] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the application of theorem proving to
problem solving Arti�cial Intelligence, 2(3-4), 1971

14

[GJ] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP -
Completeness, W.H. Freeman and Company, San Francisco, 1979

[G] Robert Gray. Agent Tcl : A exible and secure mobile-agent system Proceeding of the 1996 Tcl/Tk
Workshop, July 1996.

[H] R. A. Howard. Dynamic programming and Markov Processes, MIT Press, Cambridge, Massachusetts,
1960

[J] J. R. Jackson. \Scheduling a production line to minimize maximum tardiness" Research Report 43,
Management Science Research Project University of California, Los Angeles, 1955

[JvRS] Dag Johansen, Robbert van Renesse, and Fred B. Scheidner. Operating system support for mobile
agents In Proceeding of the 5th IEEE Workshop on Hot Topics in Operating Systems, 1995

[K] R. M. Karp. Reducibility among combinatorial problems in R.E. Miller and J.W. Thatcher (eds.), Com-
plexity of Computer Computations, Plenum Press, New York, 1972

[RRK] D. Rus, R. Gray, and D. Kotz. Autonomous and adaptive agents that gather information In AAAI
96 International Workshop on Intelligent Adaptive Agents, August 1996.

[S] E. D. Sacerdoti. The nonlinear nature of plans In Proceedings of the Fourth International Joint Conference
on Arti�cial Intelligence(IJCAL75), Tbilisi, Georgia, 1975

[W] J. E. White. Telescript technology: The foundation for the electronic marketplace General Magic White
Paper, General Magic, 1994

[P] S. Patek. Ingress planning in FASM, ALPHATECH Technical Report, Burlington, MA, 1997.

15

