
Dealing with Massive Data:

from Parallel I/O to Grid I/O

Master’s Thesis

Rainer Hubovsky Florian Kunz

rainer@hubovsky.net flo@post.com

Advisor: ao.Univ.-Prof. Dr. Erich Schikuta
Institute for Applied Computer Science and Information Systems

Department of Data Engineering, University of Vienna

Rathausstr. 19/4, A-1010 Vienna, Austria

January 16, 2004

Acknowledgements

Many people have helped us find our way during the development of this thesis. Erich

Schikuta, our supervisor, provided a motivating, enthusiastic, and critical atmosphere dur-

ing our discussions. It was a great pleasure for us to conduct this thesis under his su-

pervision. We also acknowledge Heinz and Kurt Stockinger who provided constructive

comments. We would also like to thank everybody for providing us with feedback.

Contents

1 Introduction 7

2 Classification 9

3 Grid Projects 11

4 Dictionary 45

5 Abbreviations 257

List of Figures

3.1 CCTK: Main Program Flow . 13

3.2 CoG: A Computing Portal . 15

3.3 Condor: Matchmaker Architecture . 17

3.4 DODS: Architecture . 20

3.5 EDG: Structure and Work Packages . 21

3.6 Entropia: Architecture . 24

3.7 ESG-II: Component Level View . 25

3.8 MONARC: The LHC Data Grid Hierarchy model 35

3.9 Neesgrid: System Overview . 36

3.10 SETI@home: Data Distribution . 39

3.11 SETI@home: Collection and Analysis of Results 39

3.12 UNICORE: System Architecture . 41

4.1 Abacus: Objects . 47

4.2 Abacus: Run-time System . 47

4.3 AdaptRaid: Distribution of Data Blocks 52

4.4 AdaptRaid: Example of Pattern Repetition 52

4.5 ADFS: Architecture . 54

4.6 ADIO: Concept . 55

4.7 ADR: Application Suite . 58

4.8 April: Library Architecture and Prefetching, Prestaging, Migration 59

4.9 Armada: Typical Graph . 61

4.10 Armada: Restructured Graph . 61

4.11 Armada: Hierarchy of Ships . 62

4.12 CASTOR: Layout . 65

4.13 DataCutter: System Architecture . 77

4.14 DFS: Typical Scenario . 82

LIST OF FIGURES 4

4.15 DGRA: Principal Data Grid Components 84

4.16 DGRA: Major Components . 85

4.17 DIOM: General Architecture . 86

4.18 Discretionary Caching: System Architecture 88

4.19 DPFS: System Architecture . 91

4.20 DPSS: Architecture . 93

4.21 EDG Replication Manager: Main Components 98

4.22 Expand: Architecture . 104

4.23 Frangipani: Layering . 107

4.24 FTC: Architecture . 109

4.25 GC: System Overview . 112

4.26 Gfarm: Software Architecture . 117

4.27 Globus Replication Management Architecture: Data Selection Scenario . . 125

4.28 Greedy Writing: Duality between Prefetching Priority and Output Step . . . 128

4.29 GridExpand: Architecture . 130

4.30 HPSS: System Overview . 137

4.31 I/O Communities: Model . 142

4.32 Java I/O Extensions: New Subclasses . 145

4.33 Kangaroo: Two Hop Kangaroo . 147

4.34 LH � RS: (a) Bucket Group (b) Data and Parity Records 153

4.35 LH � RS: Scalable Availability of LH � RS File 154

4.36 List I/O: Dataflow for Noncontiguous I/O 155

4.37 Load-Managed Active Storage: Basic Data Containers 157

4.38 MEMS: Architecture . 162

4.39 MercutIO: Non-Collective BAFS . 163

4.40 MercutIO: BAFS Model for Non-Blocking I/O 164

4.41 Minerva: Objects . 166

4.42 Minerva: Control Flow . 167

4.43 MOCHA: Architecture . 169

4.44 MOPI: File Structure . 171

4.45 Multiple I/O: Dataflow for Noncontiguous I/O 176

4.46 NeST: Software Design . 178

4.47 netCDF: Design of Parallel netCDF on a Parallel I/O Architecture 180

4.48 Netsolve: Architecture . 182

4.49 Noncontiguous Data Access: Possible Noncontiguous Data Accesses 183

LIST OF FIGURES 5

4.50 OGSA-DAI: Creating a Grid Data Service 190

4.51 Panda: System Architecture . 196

4.52 Parallel Data Compression: Data Flow with Simulation/Migration 197

4.53 PDM: Two Configurations . 203

4.54 Persistent Archive: Persistent Collection Process 206

4.55 Petal: Physical View . 208

4.56 PPFS II: Real-Time Control Component Architecture 209

4.57 RAID-x: Orthogonal Striping and Mirroring 215

4.58 RAID-x: 4 x 3 Architecture with Orthogonal Striping and Mirroring 215

4.59 RIO: Mechanism . 219

4.60 SAM: Station Components . 222

4.61 SAM: Overview of Distributed Components 223

4.62 SDM: Architecture . 225

4.63 SFIO: Functional Architecture . 228

4.64 SRB: Process Model . 233

4.65 SRB: Pipelined SRB Sequence . 234

4.66 STACS: Architecture . 236

4.67 Sub-Filing: A Global Tape-Resident Array Divided into 64 Chunks 239

4.68 Sub-Filing: An Access Pattern and its Cover 239

4.69 TIP: Estimation . 241

4.70 TPIE: Structure of the Kernel . 243

4.71 Trapeze: Prototype . 245

4.72 TSS: Storage Organization . 247

4.73 WiND: System Architecture . 253

List of Tables

3.1 CoG: Technologies Used to Develop Grid Computing Environments 16

4.1 LEDA-SM: Layers . 150

4.2 Parallel Unix Commands: Commands . 198

Chapter 1

Introduction

Increasing requirements in High-Performance Computing (HPC) led to improvements of

CPU power, but bandwidth of I/O subsystems does not keep up with the performance of

processors any more. This problem is commonly known as the I/O bottleneck.

Additionally, new and stimulating data-intensive problems in biology, physics, astronomy,

space exploration, human genom research arise, which bring new high-performance appli-

cations dealing with massive data spread over globally distributed storage resources.

Therefore research in HPC focuses more on I/O systems: all leading hardware vendors

of multiprocessor systems provided powerful concurrent I/O subsystems. In accordance

researchers focus on the design of appropriate programming tools and models to take ad-

vantage of the available hardware resources.

Numerous projects about this topic have appeared, from which a large and unmanageable

quantity of publications have come. These publications concern themselves to a large

extent with very special problems. Due to the time of their appearance the few overview

papers deal with Parallel I/O or Cluster I/O [184, 306, 333].

Substantial progress has been made in these research areas since then. Grid Computing

has emerged as an important new field, distinguished from conventional Distributed Com-

puting by its focus on large-scale resource sharing, innovative applications and, in some

cases, high-performance orientation. Over the past five years, research and development

efforts within the Grid community have produced protocols, services and tools that address

precisely the challenges that arise when we try to build Grids, I/O being an important part

of it.

Similar to Heinz Stockinger’s work Dictionary on Input/Output [333], which is based on

the Parallel I/O Archive by David Kotz [266], we give an overview of I/O in HPC. Query

optimization is not part of our work. Apart from few exceptions, only sources were con-

CHAPTER 1. INTRODUCTION 8

sidered which are not older than 2000.

Classification has been made and is presented in [type]. More details about the classification

are given in chapter Classification. To be sure that the information is not wrong or outdated,

we gave the project leaders, named in [contact], the opportunity to make corrections or

additions to the entries before we included them in the final version. The corresponding

webpage follows in [url]. The [description] section gives a short overview, [motivation] and

[features] are stated. [application] names projects in which the software or idea gets used.

After presenting [related work], citation names the sources of information for the respective

entry. Most of the text and figures are taken out of these papers. [details] describe the entry.

To accommodate the fact that the Grid is an all dominating topic in the Distributed Com-

puting community nowadays, we dedicate chapter Grid Projects to this topic.

Layout and Text Style

Text in Helvetica 16 presents keywords followed by a body of explanation. Text written

in italics is used to emphasize. Within the text, two kinds of references can be found:

� keyword refers to a project which is explained in chapter Projects

� keyword refers to an entry in chapter Dictionary

Chapter 2

Classification

In order to get an overview of the very heterogeneous range of topics, we structured the

material. The entries were assigned to the following groups:

Access Anticipation Method: tries to foresee the I/O access characteristics of the appli-

cation based on programmer’s hints, anticipated knowledge or reaction to identified

behaviour.

Application Level Method: organizes the mappings of the application’s main memory

objects to respective disk objects to make disk accesses more efficient by exploiting

data locality.

Data Access System: provides mechanisms for tools and applications that require high-

performance access to data located mostly in remote, potentially parallel file systems

or Grids.

Data Format: provides a schema for efficiently storing, transferring and accessing data

by defining physical data structures for images, multidimensional arrays, tables etc.

Data Transfer Protocol: mechanisms for reliably transferring data in HPC and Grid en-

vironments.

Definition: presents and identifies terms.

Device Level Method: reorganizes the disk access operations according to the applica-

tion’s request to optimize the performance of the I/O system.

CHAPTER 2. CLASSIFICATION 10

File System: for organizing directories and files stored on a given drive (single partition,

shared disk, etc.), generally in terms of how it is implemented in the disk operating

system.

Filter System: provides the possibility to place processes near data to filter and process

data close to the source thereby reducing the amount of data transferred over the

network. With some systems it is even possible to push down processing as far as

into the hard disks.

General Method: basic I/O method.

Intelligent I/O System: software architecture which hides the physical disk accesses from

the application developer by providing a transparent logical I/O environment.

Library: for the application developer and consists basically of a set of highly specialized

I/O functions.

Mass Storage System: high-capacity, external, large-scale data archive, such as disk or

tape, more intelligent than storage system, global view.

Other: miscellaneous.

Replication: used for managing copies of file instances, or replicas, within specified stor-

age systems.

Standardization: effort to define standard interfaces and behaviours of components.

Storage System: computer system that provides storage for one or more hosts.

Toolkit: integrated set of software routines or utilities used to develop and maintain appli-

cations or whole systems and to provide core functionalities to users of these systems.

Chapter 3

Grid Projects

CCTK (Cactus Computational Toolkit)

contact:
cactusmaint@cactuscode.org

url:
http://www.cactuscode.org

description:
CCTK is an open source problem solving environment designed for scientists and en-

gineers. Its modular structure easily enables highly modular, multi-language, paral-

lel applications to be developed by single researchers and large collaborations alike.

CCTK is not an application in itself, but a development environment in which an

application can be developed and run.

motivation:
The CCTK was originally developed to provide a framework for the numerical solu-

tion of Einstein’s Equations [316]. The large and varied computational requirements

of solving these equations for scenarios such as black hole or neutron star collisions,

make them a good example for demonstrating the need for Grid Computing, and an

ideal testbed for developing new techniques. In developing the CCTK infrastructure

to make full use of the Grid for such problems these advances are then immediately

available for all applications.

features:� highly portable

� powerful application programming interface

CHAPTER 3. GRID PROJECTS 12

� advanced computational toolkit

� collaborative development

� exhaustive numerical relativity and astrophysical applications

application:
Science applications in fields such as numerical relativity, climate modelling, chem-

ical engineering, fusion modelling and astrophysics.

related work:� Condor, � Globus, � Legion

citation:
[10], [11], [12], [14], [15], [155]

details:
The code is structured as a core, the flesh and modules which are referred to as thorns.

The flesh is independent of all thorns and provides the main program, which parses

the parameters and activates the appropriate thorns, passing control to thorns as re-

quired. It contains utility routines which may be used by thorns to determine in-

formation about variables, which thorns are compiled in or active, or perform non-

thorn-specific tasks.

A thorn is the basic working module within CCTK. They are organized into logical

units referred to as arrangements. Once the code is built these have no further mean-

ing - they are used to group thorns into collections on disk according to function

or developer or source. All user-supplied code goes into thorns, which are, by and

large, independent of each other. Thorns communicate with each other via calls to

the flesh API, plus, more rarely, custom APIs of other thorns.

The connection from a thorn to the flesh or to other thorns is specified in configu-

ration files which are parsed at compile time and used to generate glue code which

encapsulates the external appearance of a thorn.

When the code is built a separate build tree, referred to as a configuration is created

for each distinct combination of architecture and configuration options. Associated

with each configuration is a list of thorns which are actually to be compiled into the

resulting executable, this is referred to as a thornlist.

At run time the executable reads a parameter file which details which thorns are to be

active, rather than merely compiled in, and specifies values for the control parameters

CHAPTER 3. GRID PROJECTS 13

Figure 3.1: CCTK: Main Program Flow

for these thorns. Non-active thorns have no effect on the code execution. The main

program flow is shown in Figure 3.1.

The flesh has minimal knowledge of the I/O, but provides a mechanism so that thorn

authors can call for output of their variables and the appropriate I/O routines will be

called. All thorns providing I/O routines register themselves with the flesh, saying

they provide an I/O method, which is a unique string identifier. Associated with

an I/O method are three functions: one to output all variables which need output,

one to output a specific variable, and one to determine if a variable requires output.

The first two of these routines then have analogues in the flesh which traverses all

I/O methods calling the appropriate routines, or call the routine corresponding to a

specific I/O method. Once per iteration the master evolution loop calls the routine to

output all variables by all I/O methods. Thorns providing I/O methods typically have

string parameters which list the variables which should be output, how frequently and

where the output should go. The IOUtil thorn provides various default parameters

such as the output directory, the number of iterations between output of variables,

various down-sampling parameters and other parameters which may need to be used

by thorns providing output of the same data but in different formats. It also provides

common utility routines for I/O.

CHAPTER 3. GRID PROJECTS 14

CoG (Globus COmmodity Grid Toolkit)

contact:
Gregor von Laszweski, gregor@mcs.anl.gov

url:
http://www.globus.org/cog/

description:
CoG toolkits provide the middleware for accessing the functionality of the Grid from

a variety of commodity technologies, frameworks, and languages. Technologies and

frameworks of interest currently include CORBA [267], Java [385, 389], Perl [360],

Python [187], and Web Services [392].

motivation:� enabling developers of Problem Solving Environments (PSEs) [289] to exploit

commodity technologies wherever possible

� exporting Grid technologies to commodity computing for easy integration in

PSEs

features:
CoGs should be:

� problem-oriented

� integrated

� distributed

� persistent

� open, flexible, adaptive

� graphical, visual

application:
Active Thermochemical Table Framework [391]

related work:� GASS, � Globus, � GridFTP, GSI [68]

citation:
[187], [267], [360], [377], [385], [386], [387], [388], [389], [390]

CHAPTER 3. GRID PROJECTS 15

Figure 3.2: CoG: A Computing Portal

details:
A portal toolkit includes a set of services exposed via APIs that can be used to assem-

ble a point solution for a problem. Figure 3.2 outlines the various groups of services

that must be integrated into a portal toolkit. Each portal component may have several

subcomponents that support the tasks performed as part of the computing portal for

problem solving environments. The components in bold text of Figure 3.2 are devel-

oped as part of the CoG toolkit. Other components are provided either by commodity

software or the application programmers. The flexible design makes it possible to

integrate new components into the framework or replace existing modules.

Because of the use of different commodity technologies as part of different applica-

tion requirements, a variety of CoG toolkits must be supported. In Table 3.1 a subset

of commodity technologies are shown that are useful to developing Grid Computing

Environments (GCEs).

Since the implementations of the CoG toolkits are based on � Globus, components

like � GASS, � GridFTP, and GSI [68] are used.

CHAPTER 3. GRID PROJECTS 16

Table 3.1: CoG: Technologies Used to Develop Grid Computing Environments

Condor

contact:
condor-admin@cs.wisc.edu

url:
http://www.cs.wisc.edu/condor/

description:
Condor is a specialized workload management system for compute-intensive jobs.

Like other full-featured batch systems, Condor provides a job queuing mechanism,

scheduling policy, priority scheme, resource monitoring, and resource management.

motivation:
The goal of the Condor Project is to develop, implement, deploy, and evaluate mech-

anisms and policies that supports HTC on large collections of distributively owned

computing resources.

features:� checkpoint and migration

� remote system calls

� no changes necessary to user’s source code

� pools of machines can be hooked together

� jobs can be ordered

� Condor enables Grid Computing

� sensitive to the desires of machine owners

� ClassAds [94]

related work:� Globus

CHAPTER 3. GRID PROJECTS 17

Figure 3.3: Condor: Matchmaker Architecture

citation:
[218], [285], [299], [348]

details:
In Condor, each user is represented by a customer agent, which manages a queue

of application descriptions and sends resource requests to the matchmaker. Each

resource is represented by a resource agent, which implements the policies of the re-

source owner and sends resource offers to the matchmaker. Using the ClassAds [94]

mechanism the matchmaker is responsible for finding matches between resource re-

quests and resource offers and notifying the agents when a match is found. Upon

notification, the costumer agent and the resource agent perform a claiming proto-

col to initiate the allocation. This architecture is illustrated in Figure 3.3. Resource

requests and offers contain constraints which specify if a match is acceptable. The

matchmaker implements systemwide policies by imposing its own set of constraints

on matches.

The resource management architecture of Condor benefits from a layered system

design. This approach yields a modular system design, where the interface to each

system layer is defined in the resource management model, allowing the implementa-

tion of each layer to change so long as the interface continues to be supported. This

architecture separates the advertising, matchmaking, and claiming protocols. The

agents advertise resource offers and requests asynchronously to the matchmaker, and

the matchmaker notifies the agents when a match is found.

CHAPTER 3. GRID PROJECTS 18

CrossGrid

contact:
Marian Noga, marian.noga@cyfronet.krakow.pl

url:
http://www.crossgrid.org/

description:
CrossGrid will develop techniques for large-scale Grid-enabled simulations and vi-

sualizations that require responses in real-time.

motivation:
The main objective of the CrossGrid project is to extend the Grid environment across

Europe, and to a new category of applications.

features:� distribution of source data

� simulation and visualization

� virtual time management

� interactive simulation and visualization rollback

� platform-independent virtual reality

application:
The four main application areas addressed by CrossGrid are:

� pretreatment planning in vascular intervention and surgery

� Grid-based support for flood defence and prevention

� analysis of simulations in physics

� weather forecasting and air pollution modelling

related work:� EDG, � GGF, � GridStart, � GriPhyN, � PPDG

citation:
[100]

details:
The CrossGrid project is divided into four work packages which deal with the tech-

nical aspects of the project, and one work package dealing with management, dis-

semination, and exploitation:

CHAPTER 3. GRID PROJECTS 19

WP1 – CrossGrid Application Development

WP2 – Grid Application Programming Environments development, integration

and testing of tools that facilitate the development and tuning of parallel, dis-

tributed, and interactive applications on the Grid.

WP3 – New Grid Services and Tools develops the new, generic CrossGrid services

and software infrastructure to support the Grid users, applications and tools as

defined in the work packages WP1 and WP2.

WP4 – International Testbed Organization collects all of the developments from

the work packages WP1-3 and integrates them into successive software re-

leases. It also gathers and transmits all feedback from the end-to-end applica-

tion experiments back to the developers, thereby linking development, testing,

and user experience.

WP5 Project Management ensures the professional management of the project and

active dissemination and exploitation of its results.

DODS (Distributed Oceanographic Data System)

contact:
support@unidata.ucar.edu

url:
http://www.unidata.ucar.edu/packages/dods/index.html

description:
DODS is a framework that simplifies all aspects of scientific data networking.

motivation:
The goal of DODS is to build a highly distributed system that allows users to control

the distribution of their own data and the way they access data from remote sites.

related work:� ESG-II

citation:
[113], [115]

details:
DODS is a software framework that simplifies all aspects of scientific data network-

ing, allowing simple access to remote data. Local data can be made accessible to

CHAPTER 3. GRID PROJECTS 20

Figure 3.4: DODS: Architecture

remote locations regardless of local storage format by using DODS servers as shown

in Figure 3.4. Existing, familiar data analysis and visualization applications can be

transformed into DODS clients.

DODS is a protocol for requesting and transporting data across the web. The current

DODS Data Access Protocol (DAP) uses HTTP to frame the requests and responses.

EDG (European DataGrid)

contact:
Alexia Augier-Bochon, Alexia.Augier-Bochon@cern.ch

url:
http://www.edg.org

description:
The EDG project will devise and develop scalable software solutions and testbeds to

handle many Petabytes of distributed data, tens of thousand of computing resources

including processors, disks, other devices and thousands of simultaneous users from

collaborating research institutes.

motivation:
The objective of EDG is to enable next generation scientific exploration which re-

quires intensive computation and the analysis of shared, large-scale databases.

features:� job scheduling

� data management

� grid monitoring

CHAPTER 3. GRID PROJECTS 21

Figure 3.5: EDG: Structure and Work Packages

� fabric management

� mass storage management

application:� HEP

� biology and medical image processing

� earth observations led by the European Space Agency

related work:� CrossGrid, � GGF, � GridStart, � GriPhyN, � PPDG

citation:
[118], [315]

details:
The EDG project is divided into twelve work packages distributed over four working

groups: Computational & EDG Middleware, Testbed and Infrastructure, Applica-

tions, Management and Dissemination. Figure 3.5 illustrates the structure of the

project and the interactions between the work packages.

CHAPTER 3. GRID PROJECTS 22

Work Packages:

Middleware

1. Grid Work Scheduling

2. Grid Data Management: � EDG Replica Manager, � GDMP, � Spitfire

3. Grid Monitoring Services

4. Fabric Management

5. Mass Storage Management

Infrastructure

6. Testbed and Demonstrators

7. Network Services

Applications

8. HEP Applications

9. Earth Observation Applications

10. Biology Applications

Management

11. Dissemination

12. Project Management

Entropia

contact:
Andrew Chien, achien@ucsd.edu

url:
http://www.entropia.com/

description:
Entropia is a powerful and cost-effective PC Grid Computing platform that provides

HPC capabilities by aggregating the unused processing cycles of networks of existing

Windows-based PCs.

motivation:
Entropia enables a PC desktop environment for Grid Computing.

features:� physical node management

CHAPTER 3. GRID PROJECTS 23

� resource scheduling

� job management

related work:� Globus

citation:
[89], [331]

details:
The Entropia system aggregates raw desktop resources into a single logical resource.

Entropia’s approach to application integration, a process known as sandboxing, is to

automatically wrap an application in the virtual machine technology. The Entropia

system architecture is composed of three separate layers (Figure 3.6). At the bottom

is the Physical Node Management layer that provides basic communication and nam-

ing, security, resource management, and application control. On top of this layer is

the Resource Scheduling layer that provides resource matching, scheduling and fault

tolerance. The Physical Node Management layer and Resource Scheduling layer

span the servers and client machines. Users can interact directly with the Resource

Scheduling layer through the available APIs or alternatively, users can access the

system through the Job Management layer that provides management facilities for

handling large numbers of computations and files. The Job Management layer runs

only on the servers. Other job management systems can be used with the system.

ESG-II (Earth System Grid)

contact:
Arie Shoshani, shoshani@lbl.gov

url:
http://sdm.lbl.gov/indexproj.php?ProjectID=ESG

description:
ESG-II is a virtual collaborative environment that links distributed centres, users,

models, and data.

motivation:
ESG-II will provide scientists with virtual proximity to the distributed data and re-

sources that they require to perform their research.

CHAPTER 3. GRID PROJECTS 24

Figure 3.6: Entropia: Architecture

features:� data publication

� data replication

� request specification

� multi-site request execution and monitoring

� data extraction and data assembly [124]

related work:� DataCutter, � DODS

citation:
[8], [123], [124], [171]

details:
ESG-II will integrate and extend a range of Grid and collaboratory technologies,

including the � DODS remote access protocols for environmental data, � Globus

Toolkit technologies for authentication, resource discovery, and resource access, and

Grid technologies developed in other projects. The design of ESG-II is a layered

system architecture with well-defined protocols and interfaces at each layer bound-

ary. A layered design helps control the complexity of the overall system, simplifies

development, deployment and maintenance tasks and maximizes the ability to reuse

existing services and tools.

CHAPTER 3. GRID PROJECTS 25

Figure 3.7: ESG-II: Component Level View

Figure 3.7 shows a component level view of the ESG-II architecture. A request ser-

vice that mediates between user-level applications and the underlying Grid services

and a filtering server that extracts specified data elements from files and performs

some analysis on the data as part of responding to a data request are of special re-

search and development interests.

EUROGRID

contact:
Daniel Mallmann, d.mallmann@fz-juelich.de

url:
http://www.eurogrid.org

description:
The EUROGRID project demonstrates the use of Grid technology in selected scien-

tific and industrial communities. Core Grid software components were developed

and integrated into an environment providing fast file transfer, resource brokerage,

interfaces for coupled applications and interactive access.

motivation:� support the e-Science concept

� integrate resources of leading European HPC centres into a European HPC Grid

� develop new software components for Grid Computing

� demonstrates the Application Service Provider (ASP) model for HPC access

application:� Work Package 1 – Bio GRID [61]

CHAPTER 3. GRID PROJECTS 26

� Work Package 2 – Meteo GRID
� Work Package 3 – CAE GRID

related work:� UNICORE

citation:
[126], [177]

details:
The systems is based on � UNICORE. The following additional Grid components are

part of EUROGRID:

� efficient data transfer
� ASP infrastructure
� resource broker
� application coupling
� interactive access

The project ends on the 31st of January 2004.

GGF (Global Grid Forum)

type:
Standardization Effort

contact:
Charlie Catlett, catlett@mcs.anl.gov

url:
http://www.gridforum.org/

description:
The GGF is a community-initiated forum of 5000+ individual researchers and prac-

titioners working on Distributed Computing, or Grid technologies.

motivation:
GGF’s primary objective is to promote and support the development, deployment,

and implementation of Grid technologies and applications via the creation and doc-

umentation of best practices-technical specifications, user experiences, and imple-

mentation guidelines.

Moreover GGF’s goals are:

CHAPTER 3. GRID PROJECTS 27

� to address architecture, infrastructure, standards and other technical require-

ments for Computational Grids and to facilitate and find solutions to obstacles

inhibiting the creation of these Grids

� to educate the scientific community, industry, government and the public re-

garding the technologies involved in, and potential uses and benefits of, com-

putational Grids

� to facilitate the application of Grid technologies within educational, research,

governmental, healthcare and other industries

related work:� Globus, � OGSA, � OGSA-DAI, � OGSI

citation:
[152]

details:
GGF efforts are aimed at the development of a broadly based Integrated Grid Archi-

tecture that can serve to guide the research, development, and deployment activities

of the emerging Grid communities. Defining such an architecture will advance the

Grid agenda through the broad deployment and adoption of fundamental basic ser-

vices and by sharing code among different applications with common requirements.

The work of GGF is performed within its various working groups and research

groups. A working group is generally focused on a very specific technology or is-

sue with the intention to develop one or more specific documents aimed generally

at providing specifications, guidelines or recommendations. A research group is of-

ten longer-term focused, intending to explore an area where it may be premature to

develop specifications.

The following working groups are concerned especially with I/O:

Database Access and Integration Services This group seeks to promote standards

for the development of Grid database services, focusing principally on provid-

ing consistent access to existing, autonomously managed databases. � OGSA-

DAI.

Data Format Description Language The aim of this working group is to define

an XML-based language, the Data Format Description Language (DFDL), for

describing the structure of binary and character encoded (ASCII/Unicode) files

CHAPTER 3. GRID PROJECTS 28

and data streams so that their format, structure, and meta-data can be exposed

[111].

GridFTP This group should focus on improvements of FTP and � GridFTP v1.0

protocol with the goal to produce bulk file transfer protocol suitable for Grid

applications.

OGSA Replication Services This group intended to create, review and refine Grid

service specifications for data replication services. � OGSA, � OGSI.

The research groups which work in the area of I/O are:

Data Transport The goal of this group is to provide a forum where parties inter-

ested in the secure, robust, high speed transport of data in the wide-area and

related technologies can discuss and coordinate issues, and develop standards

to ensure interoperability of implementations.

Persistent Archives The Persistent Archive Research Group of the GGF promotes

the development of an architecture for the construction of persistent archives.� Persistent Archives.

Globus

contact:
Ian Foster, foster@mcs.anl.gov

url:
http://www.globus.org/

description:
The Globus Project provides software tools that make it easier to build computational

Grids and Grid-based applications. These tools are collectively called the Globus

Toolkit.

motivation:
The Globus system is intended to achieve a vertically integrated treatment of appli-

cation, middleware, and network.

related work:� Condor

citation:
[132], [133]

CHAPTER 3. GRID PROJECTS 29

details:
The open source Globus Toolkit version 2 (GT2) defined and implemented protocols,

APIs, and services used in hundreds of Grid deployments worldwide. By providing

solutions to common problems such as authentication, resource discovery, resource

access, and data movement, GT2 accelerated the construction of real Grid applica-

tions. And by defining and implementing standard protocols and services, GT pio-

neered the creation of interoperable Grid systems and enabled significant progress on

Grid programming tools. This standardization played a significant role in spurring

the subsequent explosion of interest, tools, applications, and deployments.

As interest in Grids continued to grow, and in particular as industrial interest emerged,

the importance of true standards increased. In particular, 2002 saw the emergence

of the � OGSA, a community standard with multiple implementations–including

the OGSA-based GT version 3 (GT3) [398] released in 2003. Building on and sig-

nificantly extending GT2 concepts and technologies, � OGSA aligns Grid Com-

puting with broad industry initiatives in service-oriented architectures and Web ser-

vices [392].

A low-level Globus Toolkit provides basic mechanisms such as communication, au-

thentication, network information, and data access. These mechanisms are used to

construct various higher-level metacomputing services, such as parallel program-

ming tools and schedulers.

The Globus Toolkit consists of the following components:

� security: GSI [68]

� data management: � GridFTP, Replica Catalog, Replica Management

� resource management: GRAM [159]

� information services: MDS [153]

� packaging technology

Globus I/O functions are implemented in the globus io library [154].

CHAPTER 3. GRID PROJECTS 30

GridLab

contact:
Jarek Nabrzyski, naber@man.poznan.pl

url:
http://www.gridlab.org/

description:
The GridLab project will develop an easy-to-use, flexible, generic, and modular Grid

Application Toolkit (GAT), enabling todays applications to make innovative use of

global computing resources.

motivation:� the co-development of infrastructure with real applications and user communi-

ties, leading to working scenarios

� dynamic use of Grids, with self-aware simulations adapting to their changing

environment

related work:� GridStart

citation:
[13]

details:
The GridLab project consists of 12 core work packages, with additional work pack-

ages covering exploitation, dissemination and project management.

TB – Technical Board (TB)

WP1 – Grid Application Toolkit (GAT) The GAT provides a link between Grid

middleware and applications.

WP2 – Cactus Grid Application Toolkit (CGAT) The CGAT provides an extended

GAT interface for � CCTK.

WP3 – Work-Flow Application Toolkit (TGAT) The TGAT will develop Grid ca-

pabilities for Triana [368], a widely used data flow programming environment.

WP4 – Grid Portals

WP5 – Testbed Management

WP6 – Security

CHAPTER 3. GRID PROJECTS 31

WP7 – Adaptive Grid Components

WP8 – Data Handling and Visualization

WP9 – Resource Management

WP10 – Information Services

WP11 – Monitoring

WP12 – Access for Mobile Users

WP13 – Exploitation and Dissemination

WP14 – Project Management

GridStart

contact:
Maureen Wilkinson, m.wilkinson@epcc.ed.ac.uk

url:
http://www.gridstart.org/

description:
GridStart is an initiative sponsored by the European Commission with the specific

objective of consolidating technical advances in Europe, encouraging interaction

amongst similar activities both in Europe and the rest of the world and stimulat-

ing the early take-up by industry and research of Grid-enabled applications. The

initiative brings together technologists, scientists and industry in a multi-disciplinary

approach to develop the Grid infrastructure. The clear goal is to develop sustainable,

effective and universal solutions addressing the needs of science, industry and the

public.

The following projects are part of GridStart:

AVO [39]� CrossGrid

DAMIEN [105]

DataTag [106]

ESGO [125]� EUROGRID

GRIA [160]

CHAPTER 3. GRID PROJECTS 32

� Gridlab

GRIP [164]

GriPhyN (Grid Physics Network)

contact:
Paul Avery, avery@phys.ufl.edu

url:
http://www.griphyn.org/

description:
The GriPhyN Project is developing Grid technologies for scientific and engineering

projects that must collect and analyze distributed, petabyte-scale datasets. GriPhyN

research will enable the development of Peta-Scale Virtual Data Grids (PVDGs)

through its � VDT.

motivation:
Driving the project are unprecedented requirements for geographically dispersed ex-

traction of complex scientific information from very large collections of measured

data.

application:
ATLAS [36], CMS [95], LIGO (Laser Interferometer Gravitational-wave Observa-

tory) [213], SDSS (Sloan Digital Sky Survey) [311]

related work:
DataTAG [106], � EDG, � Globus, iVDGL [186], TeraGrid [342]

citation:
[132]

details:
GriPhyN is primarily focused on achieving the fundamental IT advances required to

create PVDGs, but will also work synergistically on creating PVDG software sys-

tems for community use. GriPhyN will create a multi-faceted, domain-independent� VDT, and use this toolkit to prototype the PVDGs and to support the ATLAS (A

Toroidal LHC ApparatuS) [36], CMS (Compact Muon Solenoid) [95], LIGO (Laser

Interferometer Gravitational-wave Observatory) [213], and SDSS (Sloan Digital Sky

Survey) [311] analysis tasks.

CHAPTER 3. GRID PROJECTS 33

Legion

contact:
legion@virginia.edu

url:
http://legion.virginia.edu

description:
Legion is an object-based Grid OS charged with reconciling a collection of hetero-

geneous resources, dispersed across a wide-area, with a single virtual system image.

motivation:
The Legion OS solves the wide-area computing problem [163] by abstracting over a

complex set of resources and providing high-level means for sharing and managing

them.

features:� single name space

� file system: � LegionFS

� security

� process creation and management

� interprocess communication

� input-output

� resource management

� accounting

� complexity management

� wide-area access

� heterogeneity management

� multi-language support

� legacy application support

application:
Centurion [76]

related work:� Condor, � Globus, � LegionFS

CHAPTER 3. GRID PROJECTS 34

citation:
[163], [210], [246], [399]

details:
The single virtual machine view of the Grid provided by Legion enables users to

access and use a Grid without necessarily facing the complexity of the components

of the Grid. Legion is built around the following concepts::

Object-basedness In Legion, most important components of a Grid are first-class

objects. Object-based design offers three advantages. First, it leads to a modu-

lar design wherein the complexity of a component is managed within a single

object. Second, it enables extending functionality by designing specialized ver-

sions of basic objects. Third, it enables selecting an intuitive boundary around

an object for enforcing security.

Naming & Transparency Every object in Legion, be it a machine, a user, a file, a

subdirectory, an application, a running job or a scheduler, has a name. Legion

unifies the multiple name spaces of traditional systems by providing a single

name space for behaviourally-diverse and geographically-distributed compo-

nents. Every Legion object has an ID associated with it - its Legion Objects

Identifier (LOID). The LOID of an object is a sequence of bits that identifies

the object uniquely in a given Grid (and also across different Grids) without

forcing subsequent accesses to violate transparency.

Service - Policy vs. Mechanism An important philosophical tenet in Legion is that

mechanisms can be mandated but not policies. Users and administrators of a

Grid must be free to configure a Grid and its components in any suitable manner

by constructing policies over mechanisms.

Security Security in Legion is based on a PKI for authentication and Access Control

Lists (ACLs) for authorization. Legion requires no central certificate authority to

determine the public key of a named object, because the object’s LOID contains

its public key.

Extensibility Specialized objects can be constructed from basic objects for special

functionality. New objects can be constructed and deployed in an existing Grid,

thus extending the functionality of the Grid.

Interfaces Legion supports a variety of interfaces such as command-line tools, pro-

grammatic interfaces and access through familiar and traditional tools.

CHAPTER 3. GRID PROJECTS 35

Figure 3.8: MONARC: The LHC Data Grid Hierarchy Model

Integration Legion is designed in order to mask complexity from the user. One

of the ways in which Legion masks complexity is by providing an integrated

system.

MONARC (Models of Networked Analysis at Regional Centres)

contact:
Michael Aderholz, mia@mppmu.mpg.de

url:
http://monarc.web.cern.ch/MONARC/

description:
The MONARC project has provided key information on the design and operation

of the worldwide Distributed Computing models for the LHC experiments. The

MONARC work led to the concept of a Regional Centre hierarchy, as shown in Fig-

ure 3.8, as the best candidate for a cost-effective and efficient means of facilitating

access to the data and processing resources.

related work:� EDG, � GIOD, LCG [205]

citation:
[2], [67]

CHAPTER 3. GRID PROJECTS 36

Figure 3.9: Neesgrid: System Overview

NEESgrid

contact:
Bill Spencer, bfs@uiuc.edu

url:
http://www.neesgrid.org/

description:
NEESgrid will link earthquake researchers across the USA with leading-edge com-

puting resources and research equipment, allowing collaborative teams to plan, per-

form, and publish their experiments.

A system overview is depicted in Figure 3.9. The NEESpop server hosts the Com-

prehensive Collaborative Framework (CHEF) and other non-time-critical NEESgrid

services. Streaming data services are managed through the NEESgrid Streaming

Data Server (NSDS). The Telepresence Management (TPM) server is responsible for

video telepresence services etc. The Data Acquisition systems capture data and video

from the actual experiment. DAQ is the LabView daemon. Remote sites communi-

cate, primarily via a web browser interface, with the CHEF server on the NEESpop

at the equipment site. A set of Central NEESgrid Services are hosted at NCSA.

related work:� Globus

citation:
[193]

CHAPTER 3. GRID PROJECTS 37

PPDG (Particle Physics Data Grid)

contact:
mailman-owner@lbnl2.ppdg.net

url:
http://www.ppdg.net/

description:
The PPDG is a collaboration formed in 1999 because its members were keenly aware

of the need for Data Grid services to enable the worldwide Distributed Computing

model of current and future HENP experiments. It has provided an opportunity for

early development of the Data Grid architecture as well as evaluating some prototype

Grid middleware.

motivation:
The challenge of creating the vertically integrated technology and software needed

to drive a data-intensive collaboratory for particle and nuclear physics is daunting.

PPDG is providing a practical set of Grid-enabled tools that meet the deployment

schedule of the HENP experiments.

related work:� GriPhyN

citation:
[150], [239]

details:
The PPDG work plan focuses on several distinct areas as follows:

� deployment, and where necessary enhancement or development of distributed

data management tools:

– distributed file catalog and web browser-based file and database explo-

ration toolset

– data transfer tools and services

– storage management tools

– resource discovery and management utilities

� instrumentation needed to diagnose and correct performance and reliability

problems

CHAPTER 3. GRID PROJECTS 38

� deployment of distributed data services (based on the above components) for a

limited number of key sites per physics collaboration

� exploratory work with limited deployment for advanced services

The principal work areas:

� obtaining, collecting and managing status information on resources and appli-

cations

� storage management services in a Grid environment

� reliable, efficient and fault-tolerant data movement

� job description languages and reliable job control infrastructure for Grid re-

sources

SETI@home (Search for Extraterrestrial Intelligence)

contact:
Diane Richards, pio@seti.org

url:
http://www:seti.org

description:
SETI@home uses computers in homes and offices around the world to analyze radio

telescope signals.

motivation:
SETI is a scientific area whose goal is to detect intelligent life outside Earth [325].

citation:
[23], [318]

details:
The signal data is divided into fixed-size work units that are distributed, via the Inter-

net, to a client program running on numerous computers. The client program com-

putes a result (a set of candidate signals), returns it to the server, and gets another

work unit. There is no communication between clients. SETI@home does redundant

computation: each work unit is processed multiple times. As seen in Figure 3.10

after recording and splitting signal data a relational database server is used to store

information about tapes, workunits, results, users, and other aspects of the project. A

CHAPTER 3. GRID PROJECTS 39

Figure 3.10: SETI@home: Data Distribution

Figure 3.11: SETI@home: Collection and Analysis of Results

multi-threaded data/result server distributes work units to clients. Work units are 350

KB - enough data to keep a typical computer busy for about a day, but small enough

to download over a slow modem in a few minutes. A garbage collector program

removes work units from disk, clearing an on-disk flag in their database records. Re-

sults are returned to the SETI@home server complex, where they are recorded and

analyzed (see Figure 3.11). Scientific and accounting results are processed and a

redundancy elimination program examines each group of redundant results.

CHAPTER 3. GRID PROJECTS 40

UNICORE (UNiform Interface to COmputing REsources)

contact:
Dietmar Erwin, D.Erwin@fz-juelich.de

url:
http://www.unicore.org

description:
UNICORE provides a science and engineering Grid combining resources of super-

computer centres and making them available through the Internet.

motivation:
The goal of UNICORE is to develop a Grid infrastructure together with a computing

portal for engineers and scientists to access supercomputer centres from anywhere

on the Internet.

related work:� EUROGRID, GRIP [164]

citation:
[122], [257]

details:
The system architecture of UNICORE is illustrated in Figure 3.12. The UNICORE

client enables the user to create, submit and control jobs from any workstation or

PC on the Internet. The client connects to a UNICORE gateway which authenticates

both client and user, before contacting the UNICORE servers, which in turn man-

age the submitted UNICORE jobs. They incarnate abstract tasks destined for local

hosts into batch jobs and run them on the native batch subsystem. Tasks to be run

at a remote site are transferred to a peer UNICORE gateway. All necessary data

transfers and synchronizations are performed by the servers. They also retain status

information and job output, passing it to the client upon user request. The protocol

between the components is defined in terms of Java objects. A low-level layer called

the UNICORE Protocol Layer (UPL) handles authentication, SSL communication

and transfer of data as inlined byte-streams and a high-level layer (the Abstract Job

Object (AJO) class library) contains the classes to define UNICORE jobs, tasks and

resource requests.

CHAPTER 3. GRID PROJECTS 41

Figure 3.12: UNICORE: System Architecture

VDG (Virtual Data Grid)

contact:
Ian Foster, foster@mcs.anl.gov

description:
A VDG is the result of a more expansive view of a data system architecture based

on an integrated treatment of not only data but also the computational procedures

used to manipulate data and the computations that apply those procedures to data. In

such a VDG, data, procedures, and computations are all first class entities, and can

be published, discovered, and manipulated. It is called virtual because it allows for

the representation and manipulation of data that does not exist, being defined only

by computational procedures.

motivation:
Research communities require a scalable system for managing, tracing, communi-

cating, and exploring the derivation and analysis of diverse data objects.

features:� general but powerful abstractions for representing data and computation
� VDG architecture on top of � OGSA

related work:� Giggle, ZOO [183]

CHAPTER 3. GRID PROJECTS 42

citation:
[142]

details:
The system has two components:

Virtual Data Schema The virtual data schema defines the data objects and relation-

ships of the virtual data model. An implementation within a particular virtual

data service instance might be a relational database, object-oriented database,

XML repository, or even a hierarchical directory such as a file system or LDAP

database.

Datasets A dataset is the unit of data managed within the virtual data model.

This abstraction allows for the tracking of data in more general forms than

files, tables, etc., and to insulate users from low-level data representations.

A dataset is the unit of data manipulated by a transformation and the unit

of data that may be stored in any of a variety of containers.

Types Each dataset has a type, which specifies various characteristics of the

dataset, including how it is structured or represented on storage or data

servers and what kind of data it contains.

Transformations A transformation is a typed computational procedure that

may take as arguments both strings passed by value and datasets passed by

reference. A transformation may create, delete, read, and/or write datasets

passed as arguments. There are simple transformations, which act as a

black box, and compound transformations, which compose one or more

transformations.

Derivation A derivation specializes a transformation by specifying the actual

arguments (strings and/or datasets) and other information (e.g., in some

situations, environment variable values) required to perform a specific ex-

ecution of its associated transformation. A derivation record can serve both

as a historical record of what was done and as a recipe for operations that

can be performed in the future.

Invocation An invocation specializes a derivation by specifying a specific en-

vironment and context (e.g., date, time, processor, OS) in which its associ-

ated derivation was executed.

Virtual Data System The purpose of the Virtual Data System is to maintain and

provide access to the information in the Virtual Data Schema in a distributed,

CHAPTER 3. GRID PROJECTS 43

multi-user, multi-institutional environment, to address the larger goals of scal-

ability, manageability, and support for discovery and sharing.

It consists mainly of two components:

Virtual Data Catalog (VDC) The term virtual data catalog denotes a service

that maintains information defined by the virtual data schema. A VDC

is, in general, an abstract notion: the VDC contents will typically be dis-

tributed over multiple information resources with varying degrees of au-

thenticity and coherency.

Federated Indices Federated indices integrate information about selected ob-

jects from multiple VDCs. Presumably such federating indices would be

differentiated according to their scope (user interest, all community data,

community approved data, etc.), accuracy (depth of index, update fre-

quency), cost, access control etc.

The realization of the concepts described above requires a variety of enabling in-

frastructure, including mechanisms for establishing inter-catalog references (and, in

general, for naming VDG entities), establishing identity and authority, service dis-

covery, virtualizing compute resources, and so forth. The current prototype builds

on � Globus Toolkit v2 technology and the intention of the developers is to build

future systems on the Grid infrastructure defined within � OGSA and implemented

by the � Globus Toolkit v3.

VDT (Virtual Data Toolkit)

contact:
vdt-support@ivdgl.org

url:
http://www.lsc-group.phys.uwm.edu/vdt/

description:
VDT is a set of software that supports the needs of the research groups and experi-

ments involved in the � GriPhyN project.

The VDT consists of three pieces, the server, the client, and the SDK. The server

contains the � Globus gatekeeper, � Condor, � Chimera, etc. The client contains

software for running jobs at a remote Grid site. The SDK contains libraries to develop

new software. For a complete reference see [374].

CHAPTER 3. GRID PROJECTS 44

application:� EDG, � GriPhyN, iVDGL [186]

related work:� Condor, � Globus, � GriPhyN

citation:
[375]

Chapter 4

Dictionary

A

Abacus

type:
Filter

contact:
Khalil Amiri, amiri@cs.cmu.edu

url:
http://www.pdl.cmu.edu/Abacus/index.html

description:
Abacus is a run-time system that monitors and dynamically changes function place-

ment for applications that manipulate large datasets.

motivation:
Abacus aims to effectively utilize cluster resources.

features:� migration and location-transparent invocation

� resource monitoring and management

application:
object-based distributed file system built for Abacus [1, figure 3]

related work:
River [32]

A 46

citation:
[21], [273], [299]

details:
Abacus consists of a programming model and a run-time system. The Abacus pro-

gramming model encourages the programmer to compose data-intensive applications

from small, functionally independent components or objects. These mobile objects

provide explicit methods which checkpoint and restore their state during migration.

Figure 4.1 represents a sketch of objects in Abacus. Objects have private state that

is only accessible through their exported interface. The private state can contain

references to embedded objects, or to external objects. Anchored objects include

storage objects which provide persistent storage. A part of each application is usu-

ally anchored to the node where the application starts. The console is usually not

data-intensive but serves for initialization and user/system interface functions.

The Abacus run-time system consists of a Migration and Location-Transparent In-

vocation Component, and a Resource Monitoring and Management Component. The

first component is responsible for the creation of location-transparent references to

mobile objects, for the redirection of method invocations in the face of object mi-

grations, and or enacting object migrations. For example, Figure 4.2 shows a filter

accessing a striped file. Functionality is partitioned into objects. Inter-object method

invocations are transparently redirected by the location transparent invocation com-

ponent of the Abacus run-time, which also updates the resource monitoring compo-

nent on each procedure call, and return from a mobile object (arrows labeled ”U”).

Clients periodically send digests of the statistics to the server. Resource managers at

the server collect the relevant statistics and initiate migration decisions (”M”).

The Resource Monitoring and Management Component uses the notifications to

collect statistics about bytes moved between objects and about the resources used

by active objects. Moreover, this component monitors the availability of resources

throughout the cluster. An analytic model is used to predict the performance benefit

of moving to an alternative placement.

A 47

Figure 4.1: Abacus: Objects

Figure 4.2: Abacus: Run-time System

A 48

Active Buffering

type:
Application Level Method

contact:
Marianne Winslett, winslett@uiuc.edu

description:
Active Buffering is a method in which processors actively organize their idle memory

into a hierarchy of buffers for periodic output data.

motivation:
Efficient transfer of output from main memory to secondary storage is very important

to achieve high-performance for scientific applications.

features:� the buffering scheme automatically adjusts to available memory space

� implementation in � Panda available

application:� Panda

related work:
[85] focuses on buffering for the purpose of aggregating small or non-continuous

writes into long, sequential writes for better output performance. In contrast, Active

Buffering tries to hide the cost of writing by increasing the overlap between I/O and

communication, instead of trying to speed up the actual writes.

Active Buffering with Threads [220], Active Buffering plus Compressed Migration

[207]

citation:
[219]

details:
To take full advantage of the parallelism between I/O activities and computation extra

processors called I/O processors are used as dedicated writers which run the server

executable of the � Collective I/O library.

The clients periodically write out snapshot or checkpoint data using collective write

calls. In such a call, the clients send a write request to the servers and exchange

information with them on how to carry out the write operation. Then each client

A 49

copies as much of its output data as possible into local buffers and sends overflowing

data to the server(s).

The servers listen for requests from the clients. When one arrives, each server col-

lects the data it is responsible for from the appropriate clients by explicit messages

or using one-sided communication, and writes them to disk.

Both the servers and the clients utilize available local memory for Active Buffering.

The servers can use most of their memory for this purpose. The clients can use idle

memory not used by the compute application.

If client-side buffers have room for all the output, the clients will return to computa-

tion as soon as their data are copied to local buffers and the immediately visible I/O

cost is only the cost of that copying. If the amount of output data exceeds local buffer

capacity, the overflow will be sent to the servers using MPI [243] messages and the

immediately visible I/O cost will include both copying and message passing costs.

Further, if the total amount of overflow sent to a server exceeds its buffer capacity, it

has to write out data to make room for new incoming data and the immediately visi-

ble I/O cost will include the costs of local copying, message passing, and file system

requests.

However, because dedicated I/O servers are not always available or convenient to

use, the authors investigate using Active Buffering with threads to hide � Collective

I/O cost, instead of using dedicated I/O servers [220].

In [207] Lee et al. propose a novel execution environment that integrates Active

Buffering and data migration with compression.

Active Disk

type:
Storage System

contact:
Christos Faloutsos, christos@cs.cmu.edu

url:
http://www.pdl.cmu.edu/Active/

description:
An Active Disk storage device combines on-drive processing and memory with soft-

ware downloadability to allow disks to execute application-level functions directly

A 50

at the device.

motivation:
Active Disks are able to leverage the processing power of tens or 100s of disks, which

can more than compensate for the lower relative MIPS of single drives compared to

host processors.

features:� leverage the parallelism available in systems with many disks

� operate with a small amount of state, processing data as it streams off the disk

� execute relatively few instructions per byte of data

application:� ADFS

related work:� ADFS, NASD [151]

citation:
[290], [291], [371]

details:
Most current-generation drives fit all core drive-control and communications func-

tions into a single ASIC. A specialized drive circuitry occupies approximately one-

quarter of the chip, leaving sufficient area to include a 200-MHz ARM [29] core or

similar embedded microprocessor. Processing power and memory inside disk drives

currently optimize functions behind standardized interfaces such as SCSI or ATA,

but limiting the interface to low-level, general-purpose tasks also limits the possible

benefits of that processing power. With Active Disks, the rigid interface is broken and

the excess computation power in drives is directly available for application-specific

functions. The most compelling use of such processing power that scales with data

size is large parallel scans.

AdaptRaid

type:
Storage System

contact:
Toni Cortes, toni@ac.upc.es

A 51

url:
http://people.ac.upc.es/toni/AdaptRaid.html

description:
AdaptRaid is a block-distribution algorithm that can be used to build disk arrays from

a heterogeneous set of disks.

motivation:
Heterogeneous disk arrays are becoming a common configuration in many sites. To

handle this kind of disk arrays, current systems do not take into account the differ-

ences between the disks. All disks are treated as if they had same capacity (the small-

est one) and performance (the slowest one). This is not the best approach because

improvements in both capacity and response time of heterogeneous arrays could be

achieved if each disk were used accordingly to its characteristics.

features:� works on any kind of disk array (hardware or software, tightly or loosely cou-

pled)

� works with RAID0 (Striping) and RAID5 (Block-Interleaved Distributed-

Parity) [83]

related work:
HP AutoRAID [402]

citation:
[96]

details:
Following the idea to place more data blocks in the larger disks than in the smaller

ones, all D disks (as in a regular RAID0) are used for as many stripes as blocks can

fit in the smallest disk. Once the smallest disk is full, the rest of the disks are used as

if there is a disk array with D � 1 disks. This distribution continues until all disks are

full with data. A side effect of this distribution is that the system may have stripes

with different lengths. Figure 4.3 shows the distribution of blocks in a five-disk array

where disks have different capacities.

To evenly distribute the location of long and short stripes all over the array and re-

duce the variance between the accesses in the different portions of the disk array the

concept of pattern of stripes is introduced. The algorithm assumes, for a moment,

that disks are smaller than they actually are (but with the same proportions in size)

A 52

Figure 4.3: AdaptRaid: Distribution of Data Blocks

Figure 4.4: AdaptRaid: Example of Pattern Repetition

and distributes the blocks in this smaller array. This distribution becomes the pattern

that is repeated until all disks are full. The resulting distribution has the same number

of stripes as the previous version of the algorithm. Furthermore, each disk also has

the same number of blocks as in the previous version. The only difference is that

short and long stripes are distributed all over the array, which was the objective. An

example of this pattern repetition can be seen in Figure 4.4.

A similar algorithm exists for RAID5. The only difference is that stripes will have

one less data block because one block is needed to keep the parity for each stripe. A

few small optimizations have also been included to avoid increasing the number of

small writes.

A 53

ADFS (Active Disk-Based File System)

type:
File System

contact:
Hyeran Lim, hrlim@cs.umn.edu

description:
ADFS is a file system for the � Active Disk-based data server. All data files stored

on � Active Disks are provided with operations, forming objects.

motivation:
ADFS was developed to reduce the application-processing overhead of the system

by running application-specific operations by disk processors.

application:
CORBA simulation of the Active Disk based file system [214, page 111]

related work:� Active Disk

citation:
[214]

details:
The Central File Manager, Clients, and a Group of � Active Disks are attached

to a high-speed network. The file manager will be involved only in system-wide

decisions such as creation or deletion of classes and creation/deletion/replication of

an object. � Active Disks take over the most of the functionality of the file manager

and present the file system based interfaces to clients, and clients cooperate with the� Active Disks by embedding the part of file system interfaces. A set of file system

client-server modules is shown in Figure 4.5.

In ADFS, each file is seen as a named object with operation codes combined. When

some objects represent the same characteristics and share the same operations but

their data components are different, the objects form a class of the type. The data

stored in an � Active Disk is seen as objects to clients and the central file manager.

A request is processed through several layers with libraries available to each layer.

The layers are � Active Disk, Object-Oriented Disk (OOD), and Block Oriented Disk

(BOD), where BOD is the abstract representation of the traditional disk that exports

a block-oriented view to the other components. The OOD is implemented on top of

A 54

Figure 4.5: ADFS:Architecture

BOD, providing an object-oriented view of data stored on BOD. Clients are allowed

to access data located by offsets with an Object Identifier (OID). The Active module

(ADisk) is implemented on top of OOD. All servers running on an Active Disk share

ADisk to communicate with OOD and serve their duties to clients or the central

file manager. On top of ADisk several Active Disk Server (ASrv) and File System

Server (DSrv) are running. ASrv is responsible for serving data requests from clients.

DSrv is a file system server also running on top of ADisk, which serves individual

file system services to clients. The Active Disk Manager (AMgr) is responsible for

maintaining storage space in an � Active Disk by creating and deleting objects on

the � Active Disk.

The File Manager has two main functions: disk management and overall file system

operations. The Disk Manager (DMgr) keeps track of the � Active Disks currently

in the system. It is the responsibility of DMgr to support dynamic disk management.

The File System Manger (FSMgr) needs to make system-wide decisions such as file

creation. Two ADFS components running on the kernel of a client are Active Disk

Client (AClnt) and File System Client (FSClnt). AClnt is responsible for manipulating

data stored on � Active Disks. FSClnt provides the file system functionality to client

programs. It interacts with DSrv on the � Active Disks where the accessed objects

lie. It contacts the File Manager when it creates a new file.

A 55

ADIO (Abstract Device Interface for I/O)

type:
I/O Library

contact:
Rajeev Thakur, thakur@mcs.anl.gov

url:
http://www.mcs.anl.gov/˜thakur/adio/

description:
ADIO is a strategy for implementing any user-level Parallel I/O interface portably on

multiple file systems.

motivation:
A limiting factor in I/O-intensive computing is the lack of of a standard, portable

API for Parallel I/O. Instead of a single standard API, a number of different APIs

are supported by different vendors and research projects. The goal of ADIO is to

facilitate a high-performance implementation of any existing or new Parallel I/O

API on any existing or new file-system.

features:� ADIO uses MPI [243] for portability and high-performance wherever possible

� very low overhead

application:� RIO

related work:
MPICH [165] uses a similar abstract-device interface approach.

citation:
[352]

details:
As illustrated in Figure 4.6 ADIO consists of a small set of basic functions for per-

forming Parallel I/O. Any Parallel I/O API (including a file-system interface) can

be implemented in a portable fashion on top of ADIO. ADIO in turn must be im-

plemented in an optimized manner on each different file system separately. In other

words, ADIO separates the machine-dependent and machine-independent aspects in-

volved in implementing an API. The machine-independent part can be implemented

A 56

Figure 4.6: ADIO Concept

portably on top of ADIO. The machine-dependent part is ADIO itself, which must be

implemented separately on each different system.

ADR (Active Data Repository)

type:
Mass Storage System

contact:
Joel Saltz, saltz-1@medctr.osu.edu

url:
http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/adr/

description:
ADR is an object-oriented framework designed to efficiently integrate application-

specific processing with the storage and retrieval of multi-dimensional datasets on a

parallel machine with a disk farm.

motivation:
ADR optimizes storage, retrieval and processing of very large multi-dimensional

datasets.

application:
Bay and Estuary Simulation [50], Titan [366], Virtual Microscope [3], Volume Visu-

alization [382]

related work:� DataCutter

citation:
[78], [129], [202], [203]

A 57

details:
ADR consists of a set of modular services, implemented as a C++ class library, and

a run-time system. Several of the services allow customization for user-defined pro-

cessing. An application developer has to provide accumulator data structures, and

functions that operate on in-core data to implement application-specific processing

of out-of-core data (� EM (External Memory) Algorithms and Data Structures). An

application implemented using ADR consists of one or more clients, a front-end pro-

cess, and a customized back-end. See Figure 4.7. The shaded bars represent func-

tions added to ADR by the user as part of the customization process. Client A is a

sequential program while client B is a parallel program.

The front-end interacts with clients, translates client requests into queries and sends

one or more queries to the parallel back-end. The back-end is responsible for storing

datasets and carrying out application-specific processing of the data on the parallel

machine. The customizable ADR services in the back-end include:

1. an attribute space service that manages the registration and use of user-defined

mapping functions

2. a dataset service that manages the datasets stored in the ADR back-end and

provides utility functions for loading datasets into ADR

3. an indexing service that manages various indices for the datasets stored in ADR

4. a data aggregation service that manages the user-provided functions to be used

in aggregation operations, and functions to generate the final outputs

AJO (Abstract Job Object) see � UNICORE

April

type:
Data Access System

contact:
Gokhan Memik, memik@ece.nwu.edu

description:
April is a run-time library for tape-resident data.

A 58

Figure 4.7: ADR: Application Suite

motivation:
April allows programmers to access data located on tape via a convenient interface

expressed in terms of arrays and array portions (regions) rather than files and offsets.

features:� prestaging

� migration

� � Sub-Filing

related work:� Sub-Filing

citation:
[229]

details:
The library provides routines to efficiently perform I/O required in sequential and

parallel applications. It can be used for both in-core and out-of-core applications

(� EM (External Memory) Algorithms and Data Structures).

It provides a portable interface on top of � HPSS and � MPI-IO. It can also be used

by an optimizing compiler that targets programs whose datasets require transfers

between secondary storage and tertiary storage. It might even be possible to employ

the library within a database management system for multi-dimensional data.

The library uses an optimization technique called � Sub-Filing, � Collective I/O us-

ing a � Two-Phase I/O method, data prestaging, � Prefetching, and data migration.

A 59

Figure 4.8: April: Library Architecture and Prefetching, Prestaging, Migration

� Sub-Filing is invisible to the user and helps to efficiently manage the storage hier-

archy which can consist of a tape sub-system, a disk sub-system and a main memory.

The main advantage of the � Collective I/O, on the other hand, is that it results in

high-granularity data transfers between processors and disks, and it also makes use

of the higher bandwidth of the processor interconnection network. Computation and

tape I/O is overlapped by prestaging by bringing the required data ahead of the time it

will be used. It issues asynchronous read calls to the tape sub-system, which helps to

overlap the reading of the next data portion with the computation being performed on

the current dataset. The data � Prefetching is similar except that it overlaps the disk

I/O time with the computation time. The connections between different components

are shown in Figure 4.8.

Armada

type:
Intelligent I/O System

contact:
Ron Oldfield, raoldfi@sandia.gov

url:
http://www.cs.dartmouth.edu/˜dfk/armada/

description:
The Armada framework for Parallel I/O provides a solution for data-intensive appli-

A 60

cations in which the application programmer and dataset provider deploy a network

of application-specific and dataset-specific functionality across the Grid.

motivation:
The goal of Armada is to develop an I/O framework that allows data-intensive appli-

cations to efficiently access geographically distributed datasets.

features:� ability to restructure the application graph

� flexibility

� remote processing of application code

application:
remote file copy [261, 5.1], seismic imaging [261, 5.2]

related work:� DataCutter, � dQUOB, HFS [200], PS [231], wrapFS [411]

citation:
[260], [261], [262], [263]

details:
Using the Armada framework [261, 262], Grid applications access remote data by

sending data requests through a graph of distributed application objects called ships.

From an operational perspective, requests flow (in a pipelined manner) from the

client processors, through the ships, to the data servers. Data then flows back to the

clients for reads, or toward the data servers for writes. A typical graph consists of

two distinct portions: one that describes the layout of the data (as defined by the data

provider), and one that describes the interface and processing required by the ap-

plication. Armada appends the two portions to form a single graph, restructures the

resulting graph to distribute computation and data flow, and assigns ships to Grid pro-

cessors so that data-reducing ships execute near the data source and data-increasing

ships execute near the data destination.

Figure 4.9 shows a typical Armada graph for an application accessing a replicated

and distributed dataset. It consists of a portion from the data provider that describes

the layout of the data and a portion from the application that describes required pre-

processing. As depicted in Figure 4.10 Armada restructured the original graph to

provide end-to-end parallelism. It moved the filter code close to the data source,

A 61

Figure 4.9: Armada: Typical Graph

Figure 4.10: Armada: Restructured Graph

A 62

Figure 4.11: Armada: Hierarchy of Ships

and it partitioned the graph into appropriate administrative domains (the grey blobs

represent the three LANs used by the application).

The Armada framework includes a rich set of extensible ship classes (shown in Fig-

ure 4.11) divided into two primary categories: structural and non-structural. Struc-

tural ships allow one-to-many and many-to-one connections in the Armada graph.

They provide functionality to distribute or merge sequences of requests and data.

Non-structural ships process and generate single sequences of requests and data.

Non-structural ships provide functionality for data processing and I/O optimization,

and are also used as interfaces for client applications and low-level storage servers.

A key feature of Armada is the ability to restructure the application graph [264].

Unlike existing database systems, that restructure graphs based on well-known rela-

tional operators, Armada’s restructuring algorithm uses programmer-defined proper-

ties to allow restructuring of a wide range of application classes (not just relational

databases).

Another important feature of the Armada system is placement. Modules that make

up the application graph execute on nodes near the client, nodes near the data, or

intermediate network processors. Our approach is to treat placement as a hierarchi-

cal graph-partitioning problem. Using the Chaco graph partitioning software [172],

the graph is first partitioned into administrative domains in an attempt to minimize

data transferred between domains. Then application modules in each domain are

partitioned to processors provided by domain-level resource managers. See [259]

for details of the placement algorithm.

ASU (Active Storage Unit) see Active Storage

Asynchronous Parallel Disk Sorting see greedyWriting

Automatic GASS see GASS

C 63

C

CASTOR (CERN Advanced STORage Manager)

type:
Mass Storage System

contact:
castor.support@cern.ch

url:
http://cern.ch/castor

description:
CASTOR is a Hierarchical Storage Management (HSM) system used to store physics

production files and user files. CASTOR manages disk cache(s) and the data on

tertiary storage or tapes.

motivation:
The goal of the CASTOR project is to handle LHC [211] data in a fully distributed

environment.

application:
LHC [211]

related work:� DPSS, � Enstore, � HPSS

citation:
[49]

details:
The CASTOR servers are all installed in the computer centre, while the CASTOR

client software is installed on most of the desktops at CERN. The main access to data

in CASTOR is through the use of RFIO (Remote File I/O). RFIO provides access to

local files, remote files not residing on the users’ machine and HSM files.

The STAGER has the primary role of a disk pool manager whose functions are to

allocate space on disk to store a file, to maintain a catalog of all the files in its disk

pools and to clear out old or least recently used files in these pools when more free

space is required, a process known as garbage collection. A DISK POOL is simply a

collection of file systems - from one to many. The STAGER must be the only process

C 64

that creates or deletes files in its disk pools so that it knows at all times the amount

of free space in each of its disk pools. The STAGER may be remote from the disk

pools and itself uses the RFIO mechanisms to handle file creation and deletion in the

DISK POOLS. The principal role of the NAME server is to implement a hierarchical

view of the CASTOR name space so that it appears that the files are in directories.

RTCOPY (Remote Tape COPY) is another important CASTOR component whose

function is to transfer data from disk to tape or vice versa, normally as part of a

migration of disk files to tape or as a recall from tape to disk. As a user you have no

way to select a tape drive for your use. Instead a server called Volume Drive Queue

Manager (VDQM) must be contacted. It knows about the available drives and their

status and which tape volumes are currently in use.

Tape Management System (TMS), an old system, has been replaced by the Volume

Manager (VMGR). Before a request is sent to mount a tape, the RTCOPY client

calls the VMGR to make sure the user has the rights to access the tape. The RTCPD

child tells the Tape Daemon (TPDAEMON) to mount the tape volume and position.

The tape daemon sends a message to the Message Daemon (MSGDAEMON) to tell

the central computer operations staff to mount the tape or that there is a robotic

tape request pending so that he can see if any error occurs. Figure 4.12 shows the

complete CASTOR software layout as it currently exists.

Chaos

type:
Other / Project

contact:
Alan Sussman, als@cs.umd.edu

url:
http://www.cs.umd.edu/projects/hpsl/chaos/

description:
Chaos is a project which focuses on run-time support and programming models for

data-intensive applications.

The origin of the name is a run-time library for parallelizing programs with com-

pletely irregular data distributions. That was the first work that really distinguished

C 65

Figure 4.12: CASTOR: Layout

this group. At that time, and until a couple of years ago, the project leader was Joel

Saltz, now at Ohio State University.

In particular the members concentrate on middleware for building data servers of

various types, that store, retrieve and process large quantities of data.

Some of the projects are:� ADR� Active Disk� DataCutter

citation:
[79]

C 66

Chimera

type:
Other / Virtual Data System

contact:
Ian Foster, foster@mcs.anl.gov

description:
The Chimera Virtual Data System (VDS) provides a catalog that can be used by

application environments to describe a set of application programs transformations,

and then track all the data files produced by executing those applications derivations.

Chimera contains the mechanism to locate the recipe to produce a given logical file,

in the form of an abstract program execution graph.

motivation:
Much scientific data is not obtained from measurements but rather derived from other

data by the application of computational procedures. In order to explore the benefits

of data derivation tracking and virtual data management, Chimera was developed.

application:
analysis of data from the Sloan Digital Sky Survey [24]

related work:
ZOO [183]

citation:
[90], [141]

details:
The architecture of the Chimera VDS comprises two principal components:

� Virtual Data Catalog(VDC) This implements the Chimera Virtual Data Schema.

� Virtual Data Language Interpreter This implements a variety of tasks in terms

of calls to virtual data catalog operations.

Applications access Chimera functions via a standard Virtual Data Language (VDL),

which supports both data definition and query statements. One important form of

query returns a representation of the tasks that, when executed on a Data Grid, cre-

ate a specified data product. Thus, VDL serves as a lingua franca for the Chimera� VDG, allowing components to determine virtual data relationships, to pass this

C 67

knowledge to other components, and to populate and query the VDC without having

to depend on the (potentially evolving) catalog schema.

The Chimera Virtual Data Schema defines a set of relations used to capture and

formalize descriptions of how a program can be invoked, and to record its potential

and/or actual invocations. The most important entities of the Virtual Data Schema

are:

Transformation A transformation is an executable program. Associated with a

transformation is information that might be used to characterize and locate it

and information needed to invoke it.

Derivation A derivation represents an execution of a transformation. Associated

with a derivation is the name of the associated transformation, the names of data

objects to which the transformation is applied, and other derivation-specific

information (e.g., values for parameters, time executed, execution time). While

transformation arguments are formal parameters, the arguments to a derivation

are actual parameters.

Data Object A data object is a named entity that may be consumed or produced by

a derivation. In the applications considered to date, a data object is always a

logical file, named by a Logical File Name (LFN). A separate replica catalog

or replica location service is used to map from logical file names to physical

location(s) for replicas. However, data objects could also be relations or objects.

Associated with a data object is information about that object: what is typically

referred to as meta-data.

The VDL provides various commands for extracting derivation and transformation

definitions. Since VDL is implemented in SQL, this query set is readily extensible.

VDL query commands allow one to search for transformations by specifying a trans-

formation name, application name, input LFN(s), output LFN(s), argument matches,

and/or other transformation meta-data. One can search for derivations by specifying

the associated transformation name, application name, input LFN(s), and/or output

LFN(s).

C 68

Chirp

type:
Data Transfer Protocol

contact:
Dan Bradley, dan@hep.wisc.edu

details:
Chirp is a simple and lightweight remote I/O protocol. It may be used indepen-

dently of � Condor, but one application of Chirp is to provide remote I/O services

to Vanilla [372] and Java Universe [188] jobs in � Condor, since these types of jobs

do not have direct access to � Condor’s remote system call mechanism. Instead

of accessing files directly, an application calls Chirp client functions which mimic

the POSIX file operations, such as open(), close(), read(), and write(). The

Chirp client communicates with a Chirp server, which access the requested files.

url:
http://www.cs.wisc.edu/condor/chirp/

related work:� Condor

Clusterfile

type:
File System

contact:
Florin Isaila, florin@ira.uka.de

url:
http://www.ipd.uka.de/˜florin

description:
Clusterfile is a parallel file system which offers a high degree of control of the file

layout over the cluster. It also allows applications to set arbitrary views on the files.

motivation:
Existing parallel file systems offer little control over matching the I/O access patterns

and file data layout. Without this matching the applications may face the following

problems: contention at I/O nodes, fragmentation of file data, false sharing, small

C 69

network messages, high overhead of scattering/gathering the data. Clusterfile ad-

dresses some of these inefficiencies.

features:� applications can physically partition a file in arbitrary patterns

� applications can set arbitrary views on files

� read and write operations are optimized by precomputing the direct mapping

between access patterns and disks

related work:� CXFS, � Frangipani, � GPFS

citation:
[185]

details:
Clusterfile has 3 main components:

Meta Data Manager There is one Metadata Manager running in the parallel file

system. The Metadata Manager gathers periodically or by request information

about a file from the I/O nodes and keeps them in a consistent state. It also

offers per request services involving file metadata to the compute nodes. The

Metadata Manager is not involved in the data transfer.

I/O Servers There is one I/O Server running on each I/O node in the parallel file

system. The main task of the I/O Server is writing and reading the data to/from

the subfiles

I/O Library Each compute node specifies operations on the file system by using an

I/O Library. The I/O Library implements the Unix standard file system inter-

face. The communication between the compute node and Metadata Manager

or I/O Servers is hidden by the I/O Library from the applications.

The following changes will be incorporated into the next release of Clusterfile:

� � MPI-IO interface and conversion of internal data types to MPI [243] data

types

� � Two-Phase I/O and � Disk-Directed I/O

� cooperative caching [104]

C 70

Collective I/O

type:
Application Level Method

contact:
Rajesh Bordawekar, rajesh@cacr.caltech.edu

description:
Collective I/O is a technique in which system entities (e.g. compute clients, or I/O

servers) share the data access and layout information and make coordinated, non-

overlapping, and independent I/O requests in a conforming manner.

Global data access information may include array dimension and distribution infor-

mation, while data layout information may include information about the file storage

order and the file striping strategy. A conforming access pattern consists of one or

more accesses, with each access reading or writing data from consecutive locations

to/from a file or disk. In other words, the order in which data are fetched by each

access matches the data storage pattern on file or disk.

There are three approaches to Collective I/O: � Two-Phase I/O, � Disk-Directed I/O

and � Server-Directed I/O.

In [228] Memik et al. introduce a new concept called Multi-Collective I/O (MCIO)

that extends conventional Collective I/O to optimize I/O accesses to multiple arrays

simultaneously. In this approach, as in � Collective I/O, multiple processors coor-

dinate to perform I/O on behalf of each other if doing so improves overall I/O time.

However, unlike � Collective I/O, MCIO considers multiple arrays simultaneously.

It has a more global view of the overall I/O behaviour exhibited by application.

In [227] a Compiler-Directed Collective I/O approach is presented, which detects

the opportunities for Collective I/O and inserts the necessary I/O calls in the code

automatically.

related work:
Compiler-Directed Collective I/O [227], Multi-Collective I/O (MCIO) [228]

citation:
[63]

C 71

CXFS (Clustered Extended File System

type:
File System

url:
http://www.sgi.com/products/storage/cxfs.html

description:
SGI CXFS is a robust multi-OS shared file system for SANs. Based on the XFS file

system [321, 337], CXFS provides a highly available, scalable, high-performance

environment for sharing data between multiple OSs on a SAN. CXFS supports IRIX,

Windows NT, Solaris, and will support other Unix platforms (including Linux).

motivation:
Traditional file serving and sharing methods such as NFS [302], CIFS/Samba [301]

and FTP, which are still in use in SANs, have performance, availability, and com-

plexity penalties. To completely remove these penalties and realize the promise of

SAN technology, SGI has developed CXFS, a shared file system for SANs that allows

multiple heterogeneous systems to simultaneously access all data on a SAN.

features:� 64-bit scalability supports file sizes up to 9 million Terabytes, file systems up

to 18 million Terabytes

� journaling for reliability and fast recovery

� POSIX compliant file locking

� supports memory-mapped files

� supports quotas

� dynamically allocated meta-data space

� centralized java-based management tools

� heterogenous client support

application:
Fleet Numerical Meteorology and Oceanography Center [131]

related work:� GPFS, XFS [321, 337]

citation:
[319], [320]

C 72

details:
CXFS was designed as an extension to the XFS file system. CXFS has retained

important XFS features while distributing I/O directly between disk and hosts.

CXFS disk volumes are constructed using the the SGI Volume Manager (XFM).

XVM augments the earlier volume manager by providing disk striping, mirroring,

and concatenation in any possible combination.

While file data flows directly between systems and disk, CXFS meta-data is managed

using a client-server approach. The Metadata Server acts as a central clearinghouse

for meta-data logging, file locking, buffer coherency, and other necessary coordina-

tion functions.

To manage and control file meta-data and file access CXFS uses tokens. There are

a number of tokens for each file being accessed via CXFS. These represent different

aspects of the file – timestamps, size, extents, data, etc.

POSIX, BSD, and SVR4 file locks are implemented by forwarding client lock re-

quests to the Metadata Server with RPCs. The server maintains information about

all locks being held. Locks behave the same whether the locking processes run on a

single host or on multiple hosts. No changes are required for an application to use

locking with CXFS.

The health of all systems sharing a file system is monitored across the TCP/IP net-

work using standard messaging and heartbeat. Should a system failure be detected,

the Metadata Server will automatically take steps to recover. The Metadata Server

inspects the XFS journal and rolls back any incomplete transactions the client had in

progress. Should the Metadata Server on a particular host fail or be disabled, control

will move to a host designated as a backup Metadata Server. This shift in control is

transparent to user processes using CXFS files.

CXFS takes advantage of the resiliency of the XFS log-based file system (journaling).

Metadata transactions are logged by the Metadata Server and mirrored for rapid and

reliable recovery. XFS file system recovery voids the need for time-consuming file

system checks during a recovery cycle after an ungraceful shutdown.

D 73

D

DAFS (Direct Access File System)

type:
Data Access System

contact:
Mark Wittle, mwittle@netapp.com

url:
http://www.dafscollaborative.org/

description:
DAFS is a new file-access protocol that is being designed to take advantage of

new standard memory-to-memory interconnect technologies such as VI and Infini-

Band [182] in data centre environments.

motivation:
DAFS is optimized for high-throughput, low-latency communication and for the re-

quirements of local file-sharing architectures.

features:� direct memory-to-memory transfer

� direct application access

citation:
[82], [108], [224]

details:
DAFS is implemented as a file access library, which will require a VI provider li-

brary implementation. Once an application is modified to link with DAFS, it is

independent of the OS for its data storage. DAFS uses the underlying VI capabil-

ities to provide direct application access to shared file servers. Local file sharing

requires high-performance file and record locking to maintain consistency. DAFS

allows locks to be cached so that repeated access to the same data need not result in

a file server interaction, and when required by a node, a lock cached by another node

is transferred without timeouts.

Direct memory-to-memory transfer and direct application access allows data to by-

pass the normal protocol processing. Applications can perform data transfer directly

D 74

to VI-compliant network interfaces, without OS involvement. The data is transferred

directly between appropriately aligned buffers on the communicating machines, and

the VI host adapters perform all message fragmentation, assembly, and alignment

in hardware and allow data transfer directly to or from application buffers in virtual

memory.

DARC (Distributed Active Resource ArChitecture)

type:
Storage System

contact:
Craig J. Patten, cjp@cs.adelaide.edu.au

description:
DARC enables the development of portable, extensible and adaptive storage services

in Grid environments which are independent of the underlying storage abstraction

and end-user interface.

motivation:
DARC enables the production of distributed, cooperative data services.

application:
distributed file system prototype using DARC [269, 4.],

GMS-5 Satellite Imagery [269, 5.]

related work:
Strata is a distributed file system which has been developed using the DARC archi-

tecture [269].

citation:
[269]

details:
A Node, the central element of DARC, is a daemon on each host which wishes to par-

ticipate in the architecture, and is the initial point of contact for establishing access to

that host. Through the local Node, the DataResource provides remote access to some

data storage and/or access mechanism. DataResources can represent some fixed local

or higher-level mobile storage media. DataResources are non-server-centric provid-

ing a distributed presence at all data production and consumption points to improve

D 75

flexibility and performance. When a client wishes to access some remote data ser-

vice, its Node initiates a local instantiation of the specified DataResource. This entity

then communicates with its remote peer instances, and potentially with other local

DataResources.

The architecture provides a generic abstraction for DataResource communications

through the Node. This abstraction which Nodes provide for bulk data transfers is

called an Xfer, and for meta-data transfers, a MetaXfer. An Xfer provides a mecha-

nism for a DataResource to transfer information to or from another. This information

consists of the requested data’s specification and source and destination host and re-

source identifiers.

Data Sieving

type:
Application Level Method

contact:
Rajeev Thakur, thakur@mcs.anl.gov

description:
Data Sieving is a technique that enables an implementation to make a few large,

contiguous requests to the file system even if the user’s request consists of several

small, � Noncontiguous Data Accesses.

If a user has made a single read request for five noncontiguous pieces of data, instead

of reading each noncontiguous piece separately, using Data Sieving the application

reads a single contiguous chunk of data starting from the first requested byte up to the

last requested byte into a temporary buffer in memory. It then extracts the requested

portions from the temporary buffer and places them in the user’s buffer.

The advantage of using Data Sieving to perform � Noncontiguous Data Accesses

is that multiple � Noncontiguous Data Accesses can be described by a single I/O

request. If the noncontiguous regions are nearby, the Data Sieving approach can

eliminate many I/O requests. The Data Sieving approach can perform poorly, how-

ever, if the noncontiguous regions are far apart on disk. This access pattern will cause

the single disk read to access a large amount of unused data that must move over the

network. In general, using Data Sieving to perform noncontiguous I/O can bene-

fit the user for � Noncontiguous Data Access patterns that have relatively densely

packed regions of desired data.

D 76

application:� ROMIO

related work:� Collective I/O, � Noncontiguous Data Access, � Two-Phase I/O

citation:
[91], [349], [353], [355]

DataCutter

type:
Filter

contact:
Alan Sussman, als@cs.umd.edu

url:
http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm

description:
The DataCutter framework is a middleware infrastructure that enables processing of

scientific datasets stored in archival storage systems across a wide-area network. It

provides support for subsetting of datasets through multi-dimensional range queries,

and application specific aggregation on scientific datasets stored in an archival stor-

age system.

motivation:
The main design objective in DataCutter is to extend and apply the salient features

of � ADR (i.e. support for accessing subsets of datasets via range queries and user-

defined aggregations and transformations) for very large datasets in archival storage

systems, in a shared Distributed Computing environment.

features:� subsetting of very large datasets through multi-dimensional range queries

� application specific non-spatial subsetting

application:
Virtual Microscope [3]

related work:� ADR, � dQUOB, � SRB

D 77

Figure 4.13: DataCutter: System Architecture

citation:
[59], [60], [299]

details:
DataCutter was developed following the filter-stream programming model [60]. This

model represents the processing units of a data-intensive application as a set of filters,

which are designed to be efficient in their use of memory and scratch space. In the

filter-stream programming model, an application is represented by a collection of

filters. A filter is a portion of the full application that performs some amount of

work. Communication with other filters is solely through the use of streams. A

stream is a communication abstraction that allows fixed sized untyped data buffers

to be transported from one filter to another.

Architecture The DataCutter infrastructure consists of two major components: Prox-

ies and DataCutters. A Proxy provides support for caching and management

of data near a set of clients. The goal is to reduce the response time seen by a

client, decrease the amount of redundant data transferred across the wide-area

network, and improve the scalability of data servers.

The application processing structure of DataCutter is decomposed into a set of

processes, called filters. They can execute anywhere but are intended to run on

a machine close to the archival storage server or within a Proxy.

The architecture of DataCutter (Figure 4.13) is being developed as a set of

modular services. The client interface service interacts with the clients an re-

ceives queries from them. The data service provides low-level I/O support for

accessing the datasets stored on archival storage systems. Both the filtering

D 78

and the indexing services use the data access service to read data and index

information from files stored on archival storage systems. The indexing service

manages the indices and indexing methods registered with DataCutter. The

filtering service manages the filters for application-specific aggregation opera-

tions.

Indexing A DataCutter supported dataset consists of a set of data files and a set of

index files. Data files contain the data elements of a dataset. Each data file is

viewed as consisting of a set of segments, which are the units of retrieval from

archival storage for spatial range queries. Because storing very large datasets

results in a large set of data files, each of which may itself be very large, it may

be expensive to manage the index and to perform a search to find segments

using a single index file. To alleviate this problem, DataCutter uses a multi-

level hierarchical indexing scheme implemented via summary index files and

detailed index files.

Filters Filters are used to perform non-spatial subsetting and data aggregation. A

filter is a specialized user program that preprocesses data segments retrieved

from archival storage before returning them of the requesting client. They can

be used for elimination of unnecessary data near the data source, preprocessing

of datasets in a pipelined fashion before sending them to the clients, and data

aggregation. Filters execute in a restricted environment and can execute any-

where, but are intended to run on a machine close to the archival storage server

or within a Proxy.

Filters consist of an initialization function, a processing function, and a final-

ization function. A filter may optionally contain scratch space but cannot dy-

namically allocate and deallocate space, which allows the filtering service to

better perform scheduling and enable execution in environments with limited

resources.

DDS (Distributed Data Structure)

type:
Data Format

contact:
Steven D. Gribble, gribble@cs.washington.edu

D 79

description:
A DDS is a scalable, distributed data structure for Internet service construction not

to be confound with � SDDS.

motivation:
DDS, is designed to simplify cluster-based Internet service construction.

features:� incremental scaling of throughput and data capacity

� fault tolerance and high-availability

� high concurrency

� consistency

� durability

application:
Sanctio is an instant messaging gateway [161, Chapter 6],

Web server [161, chapter 6]

related work:� LH � RS, � SDDS

citation:
[161]

details:
The architecture consists of the following components:

Client A client consists of service-specific software running on a client machine that

communicates across the wide-area with one of many service instances running

in the cluster.

Service A service is a set of cooperating software processes, each of which are

called a service instance.

Hash Table API The Hash Table API is the boundary between a service instance

and its DDS library. The API provides services with put(), get(), remove(),

create(), and destroy operations on hash tables.

DDS Library The DDS Library is a Java class library that presents the hash table

API to services. The library accepts hash table operations, and cooperates with

the Bricks to realize those operations.

D 80

Brick Bricks are the only system components that manage durable data. Each Brick

manages a set of network-accessible single node hash tables. A Brick consists

of a buffer cache, a lock manager, a persistent chained hash table implementa-

tion, and network stubs and skeletons for remote communication.

All service instances in the cluster see the same consistent image of the DDS. As a

result, any WAN client can communicate with any service instance.

A distributed hash table provides incremental scalability of throughput and data ca-

pacity as more nodes are added to the cluster. To achieve this, partition tables are

horizontally partitioned to spread operations and data across bricks. Each brick thus

stores some number of partitions of each table in the system, and when new nodes

are added to the cluster, this partitioning is altered so that data is spread onto the new

node.

To find the partition that manages a particular hash table key, and to determine the

list of replicas in partitions’ replica groups, the DDS libraries consult two Metadata

Maps that are replicated on each node of the cluster. The first map is called the Data

Partitioning (DP) map. Given a hash table key, the DP map returns the name of the

key’s partition. The second map is called the Replica Group (RG) membership map.

Given a partition name, the RG map returns a list of bricks that are currently serving

as replicas in the partition’s replica group.

Dfs (Distributed File System)

type:
File System

url:
http://www.microsoft.com/ntserver/nts/downloads/winfeatures/

NTSDistrFile/AdminGuide.asp

description:
The Microsoft Distributed File System (Dfs) is a network server component. It is a

means for uniting files on different computers into a single name space. Dfs makes it

easy to build a single, hierarchical view of multiple file servers and file server shares

on the network.

D 81

motivation:
Historically, with the Universal Naming Convention (UNC), a user or application was

required to specify the physical server and share in order to access file information.

As networks continue to grow in size mapping a single drive letter to individual

shares scales poorly. Dfs solves these problems by permitting the linking of servers

and shares into a simpler, more meaningful name space.

features:� custom hierarchical view of shared network resources: by linking shares to-

gether, administrators can create a single hierarchical volume that behaves as

though it were one giant hard drive. Individual users can create their own Dfs

volumes.

� flexible volume administration: individual shares participating in the Dfs vol-

ume can be taken offline without affecting the remaining portion of the volume

name space.

� higher data availability and load balancing: multiple copies of read only shares

can be mounted under the same logical Dfs name to provide alternate loca-

tions for accessing data and permitting limited load balancing between drives

or servers.

� name transparency: users navigate the logical name space without considera-

tion to the physical locations of their data.

related work:
NFS [302]

citation:
[233]

details:
A Dfs Root is a local share that serves as the starting point and host to other shares.

Any shared resource can be published into the Dfs Name Space. A Dfs Volume is

accessed using a standard UNC name:

\\Server_Name\Dfs_Share_Name\Path\File

where Server_Name is the name of the host Dfs computer name, Dfs_Share_Name

maps to any share that is designated to be the root of the Dfs, and Path\File is any

D 82

Figure 4.14: DFS: Typical Scenario

valid Win32 path name. Shares participating in a Dfs may be hosted by any server

accessible by clients of the Dfs. This includes shares from the local host, shares on

any Windows NT server or workstation, or shares accessible to Windows NT through

client software.

Figure 4.14 shows a typical Dfs scenario. Inter-Dfs Links join one Dfs volume to

another. Midlevel Junctions are a planned feature to support unlimited hierarchical

junctioning that does not require Inter-Dfs Links.

The Partition Knowledge Table (PKT) holds knowledge of all junction points. It

maps the Logical Dfs name space into physical referrals. When the Dfs Client at-

tempts to navigate a junction, it first looks to its locally cached PKT entries. If the

referral cannot be resolved, the client contacts the Dfs Root. If the referral still can-

not be resolved, an error occurs. If the referral is properly resolved, the client adds

the referral to its local table of entries. When a Dfs client obtains a referral from

the PKT, that referral is cached for five minutes. If the client reuses that referral, the

time to live is renewed. Otherwise, the cache expires. If alternate volumes exist for

a particular referral, all alternates are handed to and cached by the client. The client

randomly selects which referral to use.

DFSA (Direct File Access System) see MOSIX

D 83

DGRA (Data Grid Reference Architecture)

type:
Standardization Effort

contact:
Ian Foster, foster@mcs.anl.gov

description:
The DGRA defines interoperability mechanisms rather than a complete vertically

integrated solution.

motivation:� to establish a common vocabulary for use when discussing Data Grid systems

� to document what is seen as the key requirements for Data Grid systems

� to propose a specific approach to meeting these requirements

related work:� Globus, � GGF, � OGSA

citation:
[132], [134], [137]

details:
Figure 4.15 illustrates some of the principal elements in a Data Grid architecture.

Data Catalogs maintain information about data (meta-data) that is being manipulated

within the Grid, the transformations required to generate derived data, and the phys-

ical location of that data. Resources can be storage systems, computers, networks,

and code repositories. Application-specific Request Formulation Tools enable the

end user to define data requests, translating from domain-specific forms to standard

request formats, perhaps consulting application-specific ontologies. Request Plan-

ning and Request Execution is code that implements the logic required to transform

user requests for virtual data elements into the appropriate catalog, data access and

computational operations, and to control their execution. A clean separation of con-

cerns exists between virtual Data Catalogs and the control elements that operate on

that data (Request Manager).

Figure 4.16 illustrates the primary functional elements, placing them in the context

of a conventional Grid architecture to make clear how they relate to each other and to

other Grid services. Shading indicates some of the elements that must be developed

specifically to support Data Grids.

D 84

Figure 4.15: DGRA: Principal Data Grid Components

Fabric This lowest level of the Grid architecture comprises the basic resources from

which a Data Grid is constructed. Some of these elements – eg. storage systems

– must be extended to support Data Grid operation. In addition, new fabric

elements are required, such as catalogs and code repositories for virtual data

transformation programs.

Connectivity Services at this level are concerned with communication and authen-

tication.

Resource Services at this level are concerned with providing secure remote access

to storage, computing, and other resources.

Collective Services at this level support the coordinated management of multiple

resources. Significant new development is required: in particular, catalog ser-

vices, replica management services (� EDG Replica Manager, � Globus Repli-

cation Management Architecture), community policy services, coherency con-

trol mechanisms for replicated data, request formulation and management func-

tions for defining, planning and executing virtual data requests and replica se-

lection mechanisms.

Application This level represents the discipline-specific Data Grid applications.

D 85

Figure 4.16: DGRA: Major Components

DIOM (Distributed I/O Management)

type:
Intelligent I/O System

contact:
Martin Schulz, schulzm@in.tum.de

url:
http://www.csl.cornell.edu/˜schulz/projects.html

description:
DIOM is a data management infrastructure allowing for a consistent and transparent

handling of distributed data.

motivation:
DIOM enables data-intensive applications to take full advantage of the I/O poten-

tial in cluster environments by efficiently exploiting local resources present in most

current cluster architectures.

application:
PET Image Reconstruction [309, 4.]

related work:
Galley [252], PIOUS [240], � PPFS II, � PVFS2

D 86

Figure 4.17: DIOM: General Architecture

citation:
[309], [310]

details:
Figure 4.17 shows the three main tiers of the overall system – DIOM Tools, a cluster

entrance component located on a Front-End Server, and the software on the indi-

vidual Cluster Nodes themselves supporting the local resource access. The most

important user tools are the ones that control the data transfer to and from the cluster

(split, merge). Any tool accesses the DIOM services through a DIOM daemon

running on the cluster Front-End server. This daemon maintains a global directory

of all DIOM controlled data and also executes the actual work during the split

and merge operations. These operations are guided by additional semantic informa-

tion about both the data and the target application. On the cluster side the front-end

daemon communicates with the node local daemons, which are responsible for the

actual storage operations on the individual nodes. They also include support for the

maintenance of several storage directories on potentially different disks. Applica-

tions written for the DIOM system can access the distributed data with the help of a

separate library DIOMLIB, which offers the data in a highly structured manner based

on the data format contained within a self-describing file format.

One major challenge in this concept is to distribute the data among Cluster Nodes

in a manner useful for the I/O pattern of the applications, as this requires semantic

information about both data and application. Therefore, two separate descriptions are

introduced: one describing the data layout and one describing an application specific

splitting pattern. During the transfer of data to the cluster both definitions are then

combined resulting in a data dependent and application specific distribution.

D 87

Direct I/O

type:
Application Level Method

description:
Direct I/O is I/O to files which bypasses the OS’s buffer cache. It allows a file system

to copy data directly to and from a disk and a user buffer. This eliminates a memory

copy, as normal buffered I/O reads data off the disk into the buffer cache and then

copies it into the user buffer. Direct I/O can offer significant speed improvements in

accesses to large files, saves memory and boosts the performance of applications that

cache their own data independently.

related work:� Active Buffering

citation:
[114]

Discretionary Caching

type:
Application Level Method

contact:
Murali Vilayannur, vilayann@cse.psu.edu

description:
Discretionary Caching is a selective caching method for clusters based on � PVFS1.

motivation:
While caching is useful in some situations, it can hurt performance if one is not

careful about what to cache and when to bypass the cache. The introduced system

addresses this problem.

features:� builds on the architecture of � PVFS1

� compiler-directed techniques for identifying what data should be brought into

the cache

� run-time techniques for dynamic bypassing decisions

D 88

Figure 4.18: Discretionary Caching: System Architecture

related work:� PPFS II, � PVFS1

citation:
[378]

details:
The system provides two levels of caching, a Local Cache at every node of the cluster

where an application process executes, and a Global Cache that is shared by differ-

ent nodes (and possibly different) applications across the cluster. The Local Cache

is implemented within the Linux kernel (a dynamically-loadable module) and can

be shared across all the processes running on that node. Each Global Cache in the

system is a user-level process serving requests to a specific file running on a clus-

ter node, to which explicit requests are sent by the Local Caches, and is shared by

different applications.

Figure 4.18 shows the system architecture. Nodes 1..n are the clients where one

or more application processes run, and have a Local Cache present. Upon a miss,

requests are either directed to the Global Cache (one such entity for a file), or are sent

directly to the data server daemon IOD node(s) containing the data in the disk(s).

The original � PVFS1 library on the client aggregates the requests to a particular

IOD, before making a socket request (kernel call) to the node running that IOD. The

Local Cache intercepts this call and if the entire request can be satisfied without a

network message, then the data is returned to the � PVFS1 library and the application

proceeds. Otherwise, a subsequent message is sent to the Global Cache with this

D 89

request. If it can satisfy the request completely from its memory, it returns the data

to the requesting Local Cache. Otherwise, it sends a request message to each of the

IODs holding corresponding blocks, stores the blocks in its memory when it gets

responses from the IODs, and then returns the necessary data to the requesting Local

Cache.

As it is very important to be very careful in deciding what data to place in these

caches and when to avoid/bypass them, the system provisions mechanisms for by-

passing the Local and/or Global Caches for a read or write on a segment level. For

deciding what to cache there exist two compiler-based strategies and a run-time tech-

nique.

Disk-Directed I/O

type:
Device Level Method

contact:
David Kotz, dfk@cs.dartmouth.edu

description:
Disk-Directed I/O is one approach to � Collective I/O. It is a technique for optimiz-

ing data transfer given a high-level, � Collective I/O interface. In this scheme, the

complete high-level, collective request is passed to the I/O processors, which exam-

ine the request, make a list of disk blocks to be transferred, sort the list, and then use

double-buffering and special remote-memory get and put messages to pipeline the

transfer of data between compute-processor memories and the disks. Compared to a

traditional system with caches at the I/O processors, this strategy optimizes the disk

accesses, uses less memory (no cache at the I/O processors), and has less CPU and

message-passing overhead.

related work:� Collective I/O

citation:
[198], [199]

D 90

DPFS (Distributed Parallel File System)

type:
File System

contact:
Alok Choudhary, choudhar@ece.nwu.edu

description:
DPFS collects locally distributed unused storage resources as a supplement to the

internal storage of parallel computing systems to satisfy the storage capacity require-

ment of large-scale applications. In addition, like parallel file systems, DPFS pro-

vides striping mechanisms that divide a file into small pieces and distributes them

across multiple storage devices for parallel data access. The unique feature of DPFS

is that it provides three different striping methods.

motivation:
One of the challenges brought by large-scale scientific applications is how to avoid

remote storage access by collectively using enough local storage resources to hold

huge amount of data generated by the simulation while providing high-performance

I/O. DPFS is designed and implemented to address this problem.

features:� DPFS-API provides a hint structure for choosing a suitable striping method

� adopts � MPI-I/O derived data type approach

related work:� CXFS, � GFS

citation:
[323]

details:
DPFS adopts a client-server architecture: the client (compute node) sends requests

to the server (I/O node) whenever it needs to perform input or output. The server

which resides on a specific storage device is responsible for sending the requested

data to the client or storing data from the client on local storage.

Figure 4.19 shows the layered architecture of DPFS. At the top is the parallel com-

puting resource, which could be a distributed memory system such as IBM SP2, a

NOW or shared memory systems such as SGI Origin 2000.

D 91

Figure 4.19: DPFS: System Architecture

Under the computing resources is the storage subsystem for parallel systems. This

layer makes use of the local disk storage associated with the computing resource and

forms a native parallel file system to achieve high performance.

At the bottom is the DPFS). It utilizes unused storage resources distributed over net-

works. These resources can be found on various commodity workstations and per-

sonal computers. Since the main storage space of a user is located at a NFS [302],

much of the local disk space of these machines is unused. Aggregating these dis-

jointed storage by DPFS, it is possible to have a very large storage space to satisfy

the storage requirements of large-scale data-intensive applications.

As a repository for DPFS meta-data a database was chosen. Using a database so-

lution has many advantages. It can save programming efforts since SQL is a very

high-level and reliable interface compared to manipulating low level file directly.

Moreover, the transaction mechanism provided by database systems can help main-

tain meta-data consistency easily, especially in a distributed environment. The DPFS

meta-data keeps such information as what servers are available for I/O, what DPFS

directories and files are currently maintained by DPFS and so on.

Like traditional Unix file systems, DPFS also provides a user interface which pro-

vides users with commands that can help manage files and directories in the file

system. These commands include cp, mkdir, rm, ls, pwd and so on. DPFS

also allows data transfer between sequential files and DPFS.

D 92

DPSS (Distributed-Parallel Storage System)

type:
Data Access System

contact:
Brian L. Tierney, BLTierney@lbl.gov

url:
http://www-itg.lbl.gov/DPSS

description:
DPSS is a network striped disk array allowing client applications complete freedom

to determine optimal data layout, replication and/or coding redundancy strategy, se-

curity policy, and dynamic reconfiguration.

motivation:
Architecture and implementation of DPSS are intended to provide for easy and low-

cost scalability.

features:� provides high-speed parallel access to remote data

� similar to a striped RAID [83] system, but tuned for WAN access

� data is striped across both disks and servers

� on a high-speed network, can actually access remote data faster than from a

local disk

� data replication

– load balancing across servers

– fault tolerance

� automatic TCP buffer tuning

application:
Kaiser: medical imaging [189], Terravision [344], Wide-Area Large Data Object

Architecture (WALDO) [393]

related work:� GridFTP. � SRM borrowed several DPSS ideas.

citation:
[361], [362], [363], [364], [365]

D 93

Figure 4.20: DPSS: Architecture

details:
The DPSS is a collection of disk servers which operate in parallel over a wide-area

network to provide logical block level access to large datasets, as shown in Fig-

ure 4.20.

The DPSS is essentially a block server that can supply data to applications located

anywhere in the network in which it is deployed. Multiple low-cost, medium-speed

disk servers use the network to aggregate their data streams. Data blocks are declus-

tered (dispersed in such a way that as many system elements as possible can operate

simultaneously to satisfy a given request) across both disks and servers. This strat-

egy allows a large collection of disks to seek in parallel, and all servers to send the

resulting data to the application in parallel.

At the application level, the DPSS is a semi-persistent cache of named data-objects,

and at the storage level it is a logical block server. The overall data flow involves

third-party transfers from the storage servers directly to the data-consuming appli-

cation. Thus the application requests data, these requests are translated to physical

block addresses (server name, disk number, and disk block), and the servers deliver

data directly to the application.

Operated primarily as a network-based cache, the architecture supports cooperation

among independently owned resources to provide fast, large-scale, on-demand stor-

age to support data handling, simulation, and computation in a wide-area high-speed

network-based Internet environment.

D 94

dQUOB (dynamic QUery OBject)

type:
Filter

contact:
Beth Plale, plale@cs.indiana.edu

url:
http://www.cs.indiana.edu/˜plale/projects/dQUOB/

description:
dQUOB is a middleware system providing continuous evaluation of queries over

time sequenced data. The system provides access to data in data streams through

SQL queries.

motivation:
The dQUOB system addresses two key problems in large-scale data-streams:

� unmanaged data streams often over- or under-utilize resources

� it can be difficult to customize computations for certain streams and stream

behaviours and the potential exists for duplication of processing when multiple

computations are applied to a single data source

features:� declarative query language

� query optimization for partial evaluations

� queries as compiled code

� dynamic and continuous query re-optimization

application:
Scientists coupled a parallel and distributed global atmospheric transport model [275]

and a parallel chemical model. The primary client of the models is a visAD visual-

ization [173].

related work:� ADR, � DataCutter, Continual Query System [215]. Run-time detection in data

streams has been addressed in [4] and in [288].

citation:
[276], [277]

D 95

details:
The system architecture consists of a client and a server. The client is located close

to the user and is used for creating queries. It is a compiler which accepts a variant

of SQL queries, compiles the query into an intermediate form, optimizes the query

and generates a Tcl [341] script version of the code that is moved to the server.

Queries are portable entities that are embedded into the data streams at run-time, and

managed remotely during application execution.

The server is a centralized, application-wide service and query repository that ac-

cepts queries from clients and deploys them at Quoblets. The Quoblet consists of

an interpreter to decode the script, and the dQUOB library to dynamically create

efficient representations of queries at run-time. The resulting queries are stored in

compiled form. At startup the empty Quoblet contacts the server to receive the URL

for the data repository and the query in script form. Once compiled by a resident Tcl

interpreter the query starts receiving events from the data repository and executes the

queries.

During run-time, a re-optimizer gathers statistical information and periodically trig-

gers re-optimization to generate a more optimal version of a query, if eg. the data

stream behaviour has significantly changed or a new query has initially been opti-

mized based only on historical trace data.

DRA (Disk Resident Arrays)

type:
I/O Library

contact:
Jarek Nieplocha, j nieplocha@pnl.gov

description:
DRA is a model and library that extends the distributed array library called Global

Arrays (GA) to support I/O. This library allows parallel programs to use essentially

the same mechanisms to manage the movement of data between any two adjacent

levels in a hierarchical memory system.

motivation:
In out-of-core (� EM (External Memory) Algorithms and Data Structures) computa-

tions, disk storage is treated as another level in the memory hierarchy, below cache,

D 96

local memory, and (in a parallel computer) remote memories. However, the tools

used to manage this storage are typically quite different from those used to manage

access to local and remote memory. This disparity complicates implementation of

out-of-core algorithms and hinders portability.

features:� extends the GA model to another level, namely secondary storage

� forms a stand-alone I/O package and is also part of a larger system called

ChemIO [139]

� collective and asynchronous read and write operations

application:
ChemIO [139]

related work:
Global Arrays Library [251]

citation:
[140]

details:
The DRA model extends the GA model to another level in the storage hierarchy,

namely, secondary storage. It introduces the concept of a DRA, a disk-based repre-

sentation of an array, and provides functions for transferring blocks of data between

GA and Disk Resident Arrays. Hence, it allows programmers to access data located

on disk via a simple interface expressed in terms of arrays rather than files. The

benefits of GA (in particular, the absence of complex index calculations and the use

of optimized, blocked communication) can be extended to programs that operate on

arrays that are too large to fit into memory.

The DRA library encapsulates the details of data layout, addressing and I/O transfer.

DRA read and write operations can be applied both to entire arrays and to sections of

arrays (disk and/or GA); in either case, they are collective and asynchronous.

The DRA library distinguishes between temporary and persistent DRA. Persistent

DRA are retained after program termination and are then available to other programs;

temporary arrays are not. Persistent DRA must be organized so as to permit access

by programs executing on an arbitrary number of processors; temporary DRA do not

need to be organized in this fashion, which can sometimes improve performance.

E 97

E

EDG Replica Manager

type:
Replication

contact:
Peter Kunszt, peter.kunszt@cern.ch

url:
http://edg-wp2.web.cern.ch/edg-wp2/replication/index.html

description:
EDG Replica Manager is a high-level system for replica management in Data Grids.

It was developed within the context of the � EDG Project.

motivation:
Optimization of data access can be achieved via data replication, whereby identical

copies of data are generated and stored at various globally distributed sites. However,

dealing with replicas of files adds a number of issues not present if only a single file

instance exists. Replicas must be kept consistent and up-to-date, their location must

be stored in a catalog, their lifetime needs to be managed, etc. These and other issues

necessitate a high-level system for replica management in Data Grids.

features:� the EDG Replica Manager depends only on open source technologies

� adopts the web services paradigm [392] to be prepared to move to the � OGSA

standard

� provides replica optimization

related work:� SRB, � Giggle, � GDMP, � Globus Replication Management Architecture

citation:
[169], [201], [403], [404], [405], [406], [407]

details:
Figure 4.21 presents the components of the EDG Replication Manager from the

user’s point of view. It is a logical single entry point for the user to the replica man-

E 98

Figure 4.21: EDG Replication Manager: Main Components

agement system. It encapsulates the underlying systems and services and provides a

uniform interface to the user.

It consists of the following components:

Core The Core module coordinates the main functionality of replica management,

which is replica creation, deletion, and cataloging by interacting with third

party modules. To fulfill this function the core package requires access to the

following services:

Transport The Transport service provides the functionalities required for file

transfer and may be implemented by means of different techniques, such

as � GridFTP.

Processing The Processing API allows the incorporation of pre- and post-

processing steps before and after a file transfer respectively.

Replica Metadata Catalog (RMC) The Replica Metadata Catalog stores map-

pings between user defined Logical Filename (LFN) aliases and the glob-

ally unique Grid Unique Identifiers (GUID).

Replica Location Service (RLS) This service maintains and provides access

to information about replicas of data. It consists of two components:

� The Local Replica Catalog (LRC) is a system that maintains indepen-

dent and consistent information about replicas at a single site.

E 99

� The Replica Location Index (RLI) provides the means to locate in

which LRC the information about a given GUID is held.

This service has been designed together with the � Globus Project. See

also � Giggle.

Replica Optimization Service (ROS) This service provides information about ac-

cess costs for replicas based on network costs. This information is used for

selecting the best replicas.

Consistency Service This service takes care of keeping the set of replicas of a file

consistent as well as the meta information stored in various catalogs.

Subscription Service The Subscription Service manages subscription-based repli-

cation where data appearing at a data source is automatically replicated to sub-

scribed sites.

Session Management The Session Management component provides generic check-

pointing, restart, and rollback mechanisms to add fault tolerance to the system.

Collections are defined as sets of logical filenames and other collections.

Security Module The Security Module manages the required user authentication

and authorization, in particular, issues pertaining to whether a user is allowed

to create, delete, read, and write a file.

The EDG Replica Manager offers an API and a command line interface. Among

many more, the command line interface offers the following commands:

� copyAndRegisterFile for putting a local file into the Grid storage and register

it in the catalog

� registerFile for registering a file in the catalog

� unregisterFile for unregistering a file from the catalog

� replicateFile for replicating an existing file to a certain Grid storage and

updating catalog

� deleteFile for deleting a file from storage and remove entry from catalog

� getBestFile for replicating a file to the nearest storage element in the cheapest

way

E 100

Efficient I/O Operations

type:
Definition

contact:
Erich Schikuta, erich.schikuta@univie.ac.at

description:
Efficient I/O Operations can be summarized by the following characteristic goals:

� maximize the use of available Parallel I/O devices to increase the bandwidth

� minimize the number of disk read and write operations per device

� minimize the number of I/O specific messages between processes to avoid un-

necessary costly communication

� maximize the hit ratio to avoid unnecessary data accesses

related work:� EM Algorithms and Data Structures, � PDM, � TPIE

citation:
[306]

EM (External Memory) Algorithms and Data Structures

type:
General Method

contact:
Jeffrey Scott Vitter, jsv@purdue.edu

description:
Algorithms and data structures that explicitly manage data placement and movement

as EM algorithms and data structures. The terms I/O algorithms or out-of-core al-

gorithms are used likewise.

motivation:
EM algorithms and data structures exploit locality in order to reduce the I/O costs.

application:� TPIE

E 101

related work:� PDM, � TPIE

citation:
[27], [380]

details:
A variety of EM paradigms exist for solving batched and online problems in EM to

exploit locality efficiently. No preprocessing is done and the entire file of data items

must be processed in batched problems, whereas in online problems the computa-

tion is done in response to a continuous series of query operations. The data being

queried can be either static, which can be preprocessed for efficient query process-

ing, or dynamic, where the queries are intermixed with updates such as insertions

and deletions. The � PDM provides an elegant and reasonably accurate model for

analyzing the relative performance of EM Algorithms and Data Structures. The I/O

performance of many algorithms and data structures can be expressed in terms of the� I/O bounds for fundamental operations.

The most fundamental EM Data Structure is the B-tree [196], which corresponds to

an internal memory balanced search tree.

Enstore

type:
Mass Storage System

contact:
Jon Bakken, bakken@fnal.gov

url:
http://hppc.fnal.gov/enstore/

description:
Enstore provides a generic interface to efficiently use MSSs as easily as if they were

native file systems.

motivation:
Enstore is designed to provide high fault-tolerance and availability sufficient for Fer-

milab’s Run II [298] data acquisition needs, as well as easy administration and mon-

itoring.

E 102

features:� supports both automated and manual storage media libraries

� no upper hard limit on file size, no upper limit on the number of files that can

be stored on a single volume

� users can search and list the contents of media volumes as easily as native file

systems

� uses a client-server architecture which provides a generic interface for users

� optimized access to large (Petabyte) datasets made up of many (100s of millions

of) files of 1-2 GB in size.

application:� PPDG

related work:� HPSS, � SAM

citation:
[40]

details:
Enstore uses a client-server architecture to provide a generic interface for users to

efficiently use MSSs. The system architecture does not dictate an exact hardware

architecture. Rather, it specifies a set of general and generic networked hardware

and software components.

The system is written in Python [280], a scripting language that has advanced object-

oriented features.

Enstore has four major kinds of software components:

Pnfs Name Space The pnfs package implements an NFS [302] and mount daemon,

which do not serve a file system, but, instead make a collection of database

entries look like a file system. This name space is used for administration

interactions, configuration information and for user file information.

encp A program used to copy files to and from media libraries. It has a syntax

similar to the cp command in Unix.

Administration Tools

Servers

Volume Clerk keeps and administers volume information

E 103

File Clerk tracks files in the system

Library Manager is a server which queues up and dispatches work for a vir-

tual library

Mover is a task bound to a single drive, and seeks to use that drive to service

read and write requests; it is responsible for efficient data movement

Configuration Server maintains and distributes all information about system

configuration

Media Changer mounts an dismounts the media into and from the drive ac-

cording to a request from the Mover

Inquisitor obtains information from the Enstore system and creates reports

about the system status

Alarm Server maintains a record of alarms raised by other servers.

Expand (Expandable Parallel File System)

type:
File System

contact:
Félix Garcı́a, fgarcia@arcos.inf.uc3m.es

url:
http://www.arcos.inf.uc3m.es/˜xpn

description:
Expand is a parallel file system based on NFS [302] servers. It allows the transparent

use of multiple NFS servers as a single file system, providing a single name space.

The different NFS servers are combined to create a distributed partition where files

are striped.

motivation:
Current parallel file systems and Parallel I/O libraries lack generality and flexibil-

ity for general purpose distributed environments, because these systems do not use

standard servers. The main motivation of Expand is to build a parallel file system

for heterogeneous general purpose distributed environments with fault tolerance fea-

tures.

features:� provides POSIX and � MPI-IO interface

E 104

Figure 4.22: Expand: Architecture

� independent of the OS used at the server

� no changes to the NFS servers required

� independent of the OS used at the client

� parallel file system construction is greatly simplified, because all operations are

implemented on the clients

� allows parallel access to both data of different files and data of the same file

related work:
Bigfoot-NFS [194], � Slice

citation:
[147], [148]

details:
Figure 4.22 shows the architecture of Expand. Expand provides high-performance

I/O exploiting parallel access to files striped among several NFS servers. Expand is

designed as a client-server system with multiple NFS servers, with each file striped

across all NFS servers. All operations on clients are based on the NFS protocol.

Processes on the clients use the Expand Library to access the files.

E 105

A file in Expand consists of several subfiles, one for each NFS partition. All subfiles

are fully transparent to the users. Expand hides these subfiles, offering to the clients

a traditional view of the files. Each subfile of an Expand file has a small header at

the beginning of the subfile. This header stores the subfile’s meta-data.

To simplify the naming process and reduce potential bottlenecks, Expand does not

use a meta-data manager. The meta-data of a file resides in the header of a subfile

stored on a NFS Server, called the Master Node. To obtain the Master Node of a file,

the file name is hashed into the number of the node.

Fault tolerance is provided using the RAID [83] concept applied to files. Expand

transparently inserts parity blocks following a RAID5 (Block-Interleaved Distributed-

Parity) pattern. This solution can tolerate a failure in an I/O node or an NFS server.

Fault tolerant files have their meta-data replicated to several subfiles.

To enhance I/O, user requests are split by the Expand library into parallel sub-

requests sent to the involved NFS servers. When a request involves k NFS servers,

Expand issues k requests in parallel to the NFS servers, using threads to parallelize

the operations. The same criteria is used in all Expand operations. A parallel oper-

ation to k servers is divided into k individual operations that use RPC and the NFS

protocol to access the corresponding sub files.

F 106

F

Frangipani

type:
File System

contact:
Chandramohan A. Thekkath, thekkath@acm.org

url:
http://research.compaq.com/SRC/personal/thekkath/frangipani/home.html

description:
Frangipani is a scalable distributed file system that manages a collection of disks on

multiple machines as a single shared pool of storage.

motivation:
The ideal distributed file system would provide all its users with coherent, shared

access to the same set of files, yet would be arbitrarily scalable to provide more

storage space and higher performance to a growing user community. It would be

highly available in spite of component failures. It would require minimal human ad-

ministration and would not become more complex as more components were added.

Frangipani is a file system that approximates this ideal.

features:� very simple internal structure

� user programs get essentially the same semantic guarantees as on a local Unix

file system

� lock service to coordinate access

� per-file lock granularity

� write-ahead redo logging of meta-data, user data is not logged

� data replication

related work:� CXFS, � GPFS, � Petal

citation:
[359]

F 107

Figure 4.23: Frangipani: Layering

details:
Frangipani is layered on top of � Petal, an easy-to-administer distributed storage

system, that provides virtual disks to its clients. � Petal optionally replicates data

for high availability.

Figure 4.23 illustrates the layering in the Frangipani system. Multiple interchange-

able Frangipani Servers provide access to the same files by running on top of a shared� Petal Virtual Disk, coordinating their actions with locks to ensure coherence. The

file system layer can be scaled up by adding Frangipani Servers.

Frangipani uses write-ahead redo logging of meta-data to simplify failure recovery

and improve performance; user data is not logged. If a Frangipani Server crashes,

the system eventually detects the failure and a Recovery Daemon runs recovery on

that server’s log.

To coordinate access to the data and to keep the buffer caches coherent across the

multiple servers Frangipani uses a Lock Service. The Lock Service is a general-

purpose service that provides multiple-reader/single-writer locks to clients on the

network. Its implementation is distributed for fault tolerance and scalable perfor-

mance.

FTC (File Transfer Component)

type:
Data Transfer Protocol

contact:
Gregor von Laszewski, gregor@mcs.anl.gov

description:
FTC is a component for file transfers that separates issues related to requesting, per-

forming and visualizing the actual file transfer.

F 108

motivation:
FTC was designed to provide a single interface to connect to various servers using

different protocols.

features:� authentication

� connects to different transfer servers

� uses � RFT

� Java Client API to � GridFTP

� support for FTP

� drag and drop interface

related work:� GridFTP, � RFT

citation:
[384]

details:
The architecture is based on a number of reusable components. It can do both client

and server-side file transfers, however it is mostly used for client side.

Figure 4.24 shows the architecture that separates access, transfer, and display of data

related operations cleanly. Hence, it comprises three main components: the Access

Manager, the Transfer Manager, and the GUI.

The File Access Providers allow to access file systems based on API calls that are

implemented by using appropriate protocols. These providers are integrated into

FTC by using a single interface called File Access Interface which provides uniform

access to sources supporting multiple file transfer protocols.

The File Transfer Providers are responsible for transferring the files. The File Trans-

fer Interface provides uniform access to multiple File Transfer Providers.

FTP-Lite

type:
Data Transfer Protocol

contact:
condor-admin@cs.wisc.edu

F 109

Figure 4.24: FTC: Architecture

url:
http://www.cs.wisc.edu/condor/ftp lite/

description:
FTP-Lite is a simple implementation of � GridFTP. It provides a blocking, Unix-

like interface to the protocol. The interface is designed to be easily used by single-

threaded applications. In particular, FTP-Lite is used by � Parrot to attach FTP

services to ordinary POSIX programs.

related work:� Condor, � GridFTP, � Parrot

G 110

G

GASS (Global Access to Secondary Storage)

type:
Data Access System

contact:
Ian Foster, foster@mcs.anl.gov

url:
http://www.globus.org/gass/

description:
GASS consists of libraries and utilities which simplify the porting and running of

applications that use file I/O in the � Globus environment.

motivation:
The need of high-performance computations in Computational Grids to execute pro-

grams distant from their data leads to the following requirements that have to be met

simultaneously:

� impose few requirements on the application programmer

� impose few requirements on the resource provider

� allow high-performance implementations and support application-oriented man-

agement of bandwidth.

application:� Globus Executable Management (GEM) [102],

GASS Command Line Tools (globus-rcp, globusrun) [58, page 7], SF-Express [232]

related work:
Automatic GASS [37], � Globus

citation:
[58]

details:
GASS is not a general-purpose distributed file system but supports four I/O patterns

which are common in high-performance Grid applications with particularly simple

access patterns and coherency requirements:

G 111

� read-only access to an entire file assumed to contain constant data

� shared write access to an individual file is not required, meaning a policy can be

adopted that if multiple writers exist, the file written by the last writer produces

the final value of the entire file

� append-only access to a file with output required in real-time at a remote loca-

tion

� unrestricted read/write access to an entire file with no other concurrent accesses

These operations require no explicit coordination among accessing processes. Two

multiprocess I/O structures are explicitly excluded: information exchange by con-

current reading and writing of a shared file and cooperative construction of a single

output file via other than append operations.

GASS addresses bandwidth management issues by providing a File Cache. Accord-

ing to two default data movement strategies data is moved into and out of this cache

when files are opened and closed:

� fetch and cache on first read open

� flush cache and transfer on last write close

To enable streaming output, a remote file, that is opened in append mode, is not

placed in the cache but a communication stream is created to the remote location,

and write operations to the file are translated into communication operations on that

stream. GASS also provides mechanisms that allow programmers to refine these de-

fault data movement strategies. These mechanisms fall into two general classes: rela-

tively high-level mechanisms concerned with presstaging data into the cache prior to

program access and post-staging of data subsequent to program access and low-level

mechanisms that can be used to implement alternative data movement strategies.

The Automatic GASS [37] module can connect an arbitrary program to the GASS

system. It is an example application of Bypass [69], a software commonly used to

hook old programs up to new storage systems.

G 112

Figure 4.25: GC: System Overview

GC (Grid Console)

type:
Filter

contact:
condor-admin@cs.wisc.edu

url:
http://www.cs.wisc.edu/condor/bypass/examples/grid-console/

description:
GC is a system for getting mostly-continuous output from remote programs running

on an unreliable network. GC is implemented using Bypass [69] and consists of

two software components: an Agent and a Shadow. An Agent intercepts some of

the I/O operations performed by an application running on a remote machine. When

possible, it sends that output back to a Shadow process running on the home machine.

Any number of remote processes may use a single Shadow to record their output. A

GC system looks like Figure 4.25 when everything is working perfectly.

related work:
Bypass [69], � Condor, � dQUOB

GDMP (Grid Data Mirroring Package)

type:
Replication

contact:
Mehnaz Hafeez, Mehnaz.Hafeez@cern.ch

url:
http://cern.ch/GDMP

G 113

description:
The GDMP client-server software system is a generic file replication tool that repli-

cates files securely and efficiently from one site to another in a Data Grid environ-

ment using several � Globus Toolkit tools.

motivation:
Existing commercial database management systems provide replication features but

they fail to satisfy the stringent requirements of consistency, security and high-speed

transfers of huge amounts of data. An asynchronous replication mechanism that

supports different levels of consistency, a uniform security policy and an efficient

data transfer is necessary.

features:� high-speed file transfers

� secure access to remote files

� selection and synchronization of replicas

� incorporation of site specific policies

� partial replication for limiting the amount of files to be replicated

application:
CMS [95]

related work:� Globus Replication Management Architecture, � EDG Replica Manager,

citation:
[170], [300], [334]

details:
In addition to replication GDMP manages replica catalog entries for file replicas and

thus maintains a consistent view of names and locations of replicated files. All kinds

of file formats are supported for file transfer and all files are assumed to be read-only.

GDMP is a multi-threaded client-server system that is based on the � Globus Toolkit.

It consists of several modules that closely work together but are easily replaceable.

Control Communication Module This module takes care of the control of com-

munication between clients and servers, and uses the � Globus I/O library as

the middleware.

G 114

Data Mover Module This is the module which actually transfers files physically

from one location to another one. It uses � GridFTP.

Security Module This module provides methods to acquire credentials, initiate con-

text establishment on the client side and accept context establishment requests

on the server-side, and encrypting and decrypting messages and client autho-

rization.

Request Manager Module This module makes it possible to generate requests on

the client side and interpret these requests on the server side.

Database Manager Module This module interacts with the actual Database Man-

agement System. This is the only module which has to be swapped to use

GDMP in a different system.

The GDMP replication process is based on the producer-consumer model. Each

data production site publishes a set of newly created files (Export Catalog) to a set

of consumer sites, which build a list of files that have not been transfered to the

consumer sites (Import Catalog). The GDMP Servers deployed on each site ensure

that the necessary data transfer operations complete successfully.

GDMP allows a partial-replication model where not all the available files are repli-

cated. One or several filter criteria can be applied to the Export/Import Catalog in

order to sieve out certain files. This allows for partial replication where both the

producer and the consumer can limit the amount of files to be replicated.

GDS (Grid Data Services) see OGSA-DAI

GDSF (Grid Data Service Factory) see OGSA-DAI

Geo* (GIS on Massive Datasets)

type:
Other / Project

contact:
Jeffrey Scott Vitter, jsv@purdue.edu

url:
http://www.cs.duke.edu/geo*/

G 115

description:
The Geo* project deals with systems and algorithms for massive data computing,

focusing on geometric computing problems that are fundamental to GISs and other

spatial data processing.

related work:
The following work is part of Geo*:

� TerraFlow [343]: flow computation on massive grids

� � TPIE: I/O computing toolkit

� � Slice: scalable network storage

� � Trapeze: high-speed network I/O

Gfarm (Grid Datafarm)

type:
Mass Storage System

contact:
datafarm@apgrid.org

url:
http://datafarm.apgrid.org/

description:
Gfarm provides a global parallel file system with online peta-scale storage, scalable

I/O bandwidth, and scalable parallel processing, and it can exploit local I/O in a grid

of clusters with tens of thousands of nodes.

motivation:
Gfarm specifically targets applications where data primarily consists of a set of

records or objects which are analyzed independently.

features:� Parallel I/O and parallel processing for fast data analysis

� world-wide group-oriented authentication and access control

� thousands-node, wide-area resource management and scheduling

� multi-tier data sharing and efficient access

� program sharing and management

G 116

� system monitoring and administration

� fault tolerance dynamic reconfiguration / automated data regeneration or re-

computation

application:
HEP experiments at CERN [77]

related work:� GriPhyN

citation:
[339], [340]

details:
Large-scale data-intensive computing frequently involves a high degree of data ac-

cess locality. To exploit this access locality, Gfarm schedules programs on nodes

where the corresponding segments of data are stored to utilize local I/O scalability,

rather than transferring the large-scale data to compute nodes.

As shown in Figure 4.26, Gfarm consists of the Gfarm File System, the Gfarm Pro-

cess Scheduler, and Gfarm Parallel I/O APIs. The Gfarm File System is a parallel

file system with Gfarm File System Nodes and Gfarm Metadata Servers. Each Gfarm

File System Node acts as both an I/O node and a compute node with a large local

disk on the Grid. A Gfarm File is a large-scale file that is divided into fragments and

distributed across the disks of the Gfarm File System, and which will be accessed in

parallel. File replicas are managed by the Gfarm File System Metadata. Metadata

of the Gfarm File System is stored in the Gfarm Metadata Database. The Gfarm

File System Daemon, called gfsd, runs on each Gfarm File System Node to facilitate

remote file operations with access control in the Gfarm File System as well as user

authentication, file replication, fast invocation, node resource status monitoring, and

control.

To exploit the scalable local I/O bandwidth, the Gfarm Process Scheduler sched-

ules Gfarm File System Nodes used by a given Gfarm File for affinity scheduling of

process and storage.

Moreover, the Gfarm Parallel I/O APIs provide a local file view in which each pro-

cessor operates on its own file fragment of the Gfarm File. The local file view is also

used for newly created Gfarm Files.

G 117

Figure 4.26: Gfarm: Software Architecture

A Gfarm File is partitioned into fragments and distributed across the disks on Gfarm

File System Nodes. Fragments can be transferred and replicated in parallel by each

gfsd using parallel streams.

The Gfarm File System supports file replicas which are transparently accessed by a

Gfarm URL as long as at least one replicated fragment is available for each fragment.

When there is no replica, Gfarm files are dynamically recovered by re-computation.

GFS (Global File System)

type:
File System

contact:
Kenneth W. Preslan, kpreslan@sistina.com

url:
http://www.sistina.com/products gfs.htm

description:
GFS is a Linux cluster file system that allows multiple Linux machines to access and

share disk and tape devices on a fibre channel or SCSI storage network. It performs

well as a local file system, as a traditional network file system running over IP, and

as a high-performance cluster file system running over storage networks like fibre

channel.

motivation:
The goal was to develop a scalable (in number of clients and devices, capacity, con-

nectivity, and bandwidth) server-less file system that integrates IP-based NAS and

fibre channel-based SANs.

G 118

features:� open source

� 64-bit files and file system

� bypasses buffer cache to increase performance

� symmetric scaling

� quotas control allocation of storage resources to applications or clients across

entire cluster

� multi-journal for fast performance and quick recovery

� distributed meta-data: no architectural bottlenecks, no requirement for central

meta-data server

application:
[327]

related work:� Clusterfile, � CXFS, � Frangipani, � GPFS

citation:
GFS-1: [330], GFS-2: [329], GFS-3: [279], GFS-4: [278]

details:
The first versions of GFS were developed at the University of Minnesota in the USA.

Since 1997, Sistina Software Inc. [326] is marketing GFS.

For synchronization of client access to shared meta-data GFS up to version 3 used

Device Locks. They help maintain meta-data coherence when meta-data is cached

by several clients. The locks are implemented on the storage devices (disks) and

accessed with the SCSI Device Lock command called Dlock. The Dlock command

is independent of all other SCSI commands, so devices supporting the locks have no

awareness of the nature of the resource that is locked. The file system provides a

mapping between files and Dlocks. GFS-4 supports an abstract lock module that can

exploit almost any globally accessible lock space, not just Dlocks. This is important

because it allows GFS cluster architects to buy any disks they like, not just disks that

contain Dlock firmware.

To coalesce a heterogeneous collection of shared storage into a single logical volume

GFS uses the Pool Logical Volume Driver. It was developed with GFS to provide

simple logical device capabilities. If GFS is used as a local file system where no

locking is needed, then Pool is not required.

G 119

Meta-data is distributed throughout the network storage pool rather than concentrat-

ing it all into a single superblock. Multiple resource groups are used to partition

meta-data, data and data blocks, into separate groups to increase client parallelism

and file system scalability, avoid bottlenecks, and reduce the average size of typical

meta-data search operations. One or more resource groups may exist on a single

device or a single resource group may include multiple devices.

GFS uses a Transaction and Log Manager to implement the journaling functionality.

When a journal recovery is initiated by a client, a recovery kernel thread is called with

the expired client’s ID. The machine then attempts to begin recovery by acquiring the

journal lock of the failed client.

Giggle (GIGa-scale Global Location Engine)

type:
Replication

contact:
Ann Chervenak, annc@isi.edu

description:
Giggle a parameterized architectural framework within which a wide range of Replica

Location Services (RLS) can be defined.

motivation:
In wide-area computing systems, it is often desirable to create remote read-only

copies (replicas) of data elements (files). Replication can be used to reduce access la-

tency, improve data locality, and/or increase robustness, scalability and performance

for distributed applications. A system that includes replicas requires a mechanism

for locating them.

features:� design allows users to make tradeoffs among consistency, space overhead, reli-

ability, update costs, and query costs by varying six system parameters

� uses compression to reduce network traffic and the cost of maintaining Replica

Location Indices (RLIs)

related work:� EDG Replica Manager, � GDMP, � Globus

G 120

citation:
[88]

details:
A Local Replica Catalog (LRC) maintains information about replicas at a single

replica site. Among others, a LRC must meet the following requirements:

Contents It must maintain a mapping between arbitrary Logical File Names (LFNs)

and the Physical File Names (PFNs) associated with those LFNs on its storage

system(s).

Queries It must respond to the following queries: Given an LFN, find the set of

PFNs associated with that LFN. Given a PFN, find the set of LFNs associated

with that PFN.

State Propagation The LRC must periodically send information about its state.

While the various LRCs collectively provide a complete and locally consistent record

of all extant replicas, they do not directly support user queries about multiple replica

sites. An additional index structure is required to support these queries. The Giggle

framework structures this index as a set of one or more RLIs, each of which contains

a set of (LFN, pointer to an LRC) entries. A variety of index structures can be

defined with different performance characteristics, simply by varying the number of

RLIs and amount of redundancy and partitioning among the RLIs.

A wide range of global index structures can be characterized in terms of six param-

eters (G, PL, PR, R, S, C). The parameter G specifies the total number of RLIs in the

replica location service. PL determines the type of logical file name space partition-

ing of information sent to the RLIs. The parameter PR indicates the type of LRC

name space partitioning by which a particular RLI receives state updates from only

a subset portion of all LRCs. R indicates the number of redundant copies of each

RLI maintained in the replica location service. The soft state algorithm S indicates

the type and frequency of updates sent from LRCs to RLIs. Finally, the parameter

C indicates whether a compression scheme is used to reduce network traffic and the

cost of maintaining RLIs.

The following requirements must be met by an RLI node:

Secure Remote Access An RLI must support authentication, integrity and confi-

dentiality and implement local access control over its contents.

G 121

State Propagation An RLI must accept periodic inputs from LRCs describing their

state. If the RLI already contains an LFN entry associated with the LRC, then

the existing information is updated or replaced. Otherwise, the index node

creates a new entry.

Queries It must respond to queries asking for replicas associated with a specified

LFN by returning information about that LFN or an indication that the LFN is

not present in the index.

Soft State An RLI must implement time outs of information stored in the index. If

an RLI entry associated with an LRC has not received updated state information

from the LRC in the specified time out interval, the RLI must discard the entries

associated with that LRC.

The developers argue that strong consistency is not required in the RLS, which

allows to use a Soft State protocol to send LRC state information to relevant

RLIs, which then incorporate this information into their indices. Soft State is

information that times out and must be periodically refreshed. There are two

advantages to Soft State mechanisms. First, stale information is removed im-

plicitly, via time outs, rather than via explicit delete operations. Hence, removal

of data associated with failed or inaccessible replica sites can occur automati-

cally. Second, RLIs need not maintain persistent state information, since state

can be reconstructed after RLI failures using the periodic Soft State updates

from LRCs. Various Soft State update strategies with different performance

characteristics can be defined.

Failure Recovery An RLI must contain no persistent replica state information. That

is, it must be possible to recreate its contents following RLI failure using only

Soft State updates from LRCs.

GIOD (Globally Interconnected Object Databases)

type:
Other / Distributed Object Database

contact:
Julian Bunn, julian@cacr.caltech.edu

url:
http://pcbunn.cacr.caltech.edu

G 122

description:
In GIOD several key technologies have been adopted that seem likely to play sig-

nificant roles in the LHC [211] computing systems: OO software (C++ and Java),

commercial OO Database Management Systems (ODBMS) – specifically Objectiv-

ity/DB, Hierarchical Storage Management (HSM) systems (specifically � HPSS)

and fast networks. The kernel of the GIOD system prototype is a large (approx. 1

Terabyte) Object database of approx. 1,000,000 fully simulated LHC events.

related work:� HPSS, LHC [211]

citation:
[197]

Globus Replica Management

type:
Replication

contact:
Ann Chervenak, annc@isi.edu

url:
http://www.globus.org/datagrid/replica-management.html

description:
One fundamental data management service which is needed in a Grid environment

is the ability to register and locate multiple copies of data files. The Globus Replica

Management architecture is one implementation of this service.

motivation:
Goals are:

� support for data which is distributed and replicated to world-wide distributed

sites
� to provide a general replication system that sits on top of database management

systems or data stores since a broad user community will use several different

storage technologies

features:
The following services are provided by the Globus Replica Management architec-

ture:

G 123

� creating new copies of a complete or partial dataset

� registering these copies in a Replica Catalog

� allowing users and applications to query the catalog to find all existing copies

of a particular file or collection of files

� selecting the best replica for access based on storage and network performance

predictions provided by a Grid Information Service

related work:� � EDG Replica Manager, � GDMP, � Giggle

� In [116] a new Grid service, called Grid Consistency Service (GCS), is pro-

posed, which allows for replica update synchronization and consistency main-

tenance.

� [373] discusses the design an implementation of a high-level replica selection

service that uses information regarding replica location and user preference to

guide selection from among storage replica alternatives.

� In [175] the problem of building very large location tables containing at least

some 1010 objects is discussed.

citation:
[5], [6]

details:
The Globus Replica Management architecture is a layered architecture. For trans-

ferring files between sites � GridFTP is used. At the lowest level, the Fabric Layer

(see � DGRA), is a Replica Catalog that allows users to register files and provides

mappings between logical names for files and collections and the storage system lo-

cations of one or more replicas of these objects. At the Collective Layer there are

higher-level services for replica selection and management.

The Replica Catalog registers three types of entries:

Logical Collection This is a user-defined group of files. Aggregating files should

reduce both the number of entries in the catalog and the number of catalog

manipulation operations required to manage replicas.

Replica Location These entries contain all the information required for mapping

a logical collection to a particular physical instance of that collection. One

location entry corresponds to exactly one physical storage system location.

G 124

Logical Files Users may also want to characterize individual files. For this purpose,

the Replica Catalog includes optional entries of this type.

The � Globus team implemented an API for low-level Replica Catalog manipulation

as a C library called globus replica catalog.c. There is also a command-line

tool that provides similar functionality.

Possible operations on Replica Catalog entries fall into three general categories:

� create and delete entire entries

� add, list or delete attributes of an entry

� list or search for specified entries

The Globus Replica Management Service provides higher-level functionality on top

of the low-level Replica Catalog. In addition to making low-level Replica Catalog

API calls, the functions in the Replica Management API can manipulate storage

systems directly, including copying files and checking file status, such as last modi-

fication time. These are some of the functions of the Replica Management Service:

Catalog Creation These functions create and populate one or more entries in a

Replica Catalog. There are basic functions to create empty logical collection

and location objects, to register and publish filenames. A client registers a file

that already exists on a storage system by adding the filename to collection

and location entries in the catalog. Alternatively, the client publishes a file into

logical collection and location entries by first copying the file onto the corre-

sponding storage system and then updating the catalog entries.

File Maintenance These functions include copy, update and delete operations on

physical files with corresponding Replica Catalog updates.

Access Control These functions control who is allowed to access and make replicas

of individual files and logical collections.

One of the key features of this architecture is that the Replica Management Service

is orthogonal to other services such as replica selection and meta-data management.

Figure 4.27 shows a scenario where an application accesses several of these orthog-

onal services to identify the best location for a desired data transfer.

G 125

Figure 4.27: Globus Replication Management Architecture: Data Selection Scenario

1. For retrieving the desired data the application specifies the characteristics of the

desired data and passes this attribute description to a Metadata Catalog.

2. The Metadata Catalog queries its attribute-based indices and returns a list of

logical files that contain data with the specified characteristics to the applica-

tion.

3. The application passes these logical file names to the Replica Management Ser-

vice.

4. The Replica Management Service returns to the application a list of physical

locations for all registered copies of the desired logical files.

5. Next, the application passes this list of replica locations to a Replica Selection

Service, which identifies the source and destination storage system locations

for all candidate data transfer operations.

6. The Replica Selection Service sends the candidate source and destination loca-

tions to one ore more information services.

7. These services provide estimates of candidate transfer performance based on

Grid measurements and/or predictions.

8. The Replica Selection Service chooses the best location and returns location

information for the selected replica to the application.

Following this selection process, the application performs the data transfer opera-

tions.

G 126

GPFS (General Parallel File System)

type:
File System

contact:
Frank Schmuck, schmuck@almaden.ibm.com

url:
http://www.almaden.ibm.com/StorageSystems/file systems/GPFS/

description:
GPFS is IBM’s parallel, shared-disk file system for cluster computers, available on

the RS/6000 SP parallel supercomputer and on Linux clusters.

motivation:
One fundamental drawback of clusters is that programs must be partitioned to run

on multiple machines, and it is difficult for these partitioned programs to share re-

sources. Perhaps the most important resource is the file system. In the absence of a

cluster file system, individual components of a partitioned program must share clus-

ter storage in an ad-hoc manner. This typically complicates programming and limits

performance. GPFS was developed to overcome these problems.

features:� provides, as closely as possible, the behaviour of a general-purpose POSIX file

system running on a single machine

� supports file systems with up to 4096 disks of up to 1 Terabyte each for a total

of 4 Petabytes per file system

� supports fully parallel access both to file data and meta-data

� performs administrative functions in parallel and while the file system is online

related work:� CXFS, � Frangipani, � GFS

citation:
[308]

details:
Rather than relying on a separate volume manager layer, GPFS implements striping

in the file system. Large files are divided into equal size blocks, and consecutive

blocks are placed on different disks in a round-robin fashion.

G 127

GPFS prefetches data into its buffer pool, issuing requests in parallel. Similarly, dirty

data buffers that are not longer being accessed are written to disk in parallel. GPFS

recognizes sequential, reverse sequential, as well as various forms of strided access

patterns. For applications that do not fit into one of these patterns, GPFS provides an

interface that allows passing prefetch hints to the file system.

Each cluster node has a separate log for each file system it mounts, stored in that

file system. Because this log can be read by all other nodes, any node can perform

recovery on behalf of a failed node – it is not necessary to wait for the failed node

come back to life.

GPFS uses a centralized Global Lock Manager in conjunction with local lock man-

agers in each file system. The Global Lock Manager coordinates locks between

local lock managers by handing out Lock Tokens, which convey the right to grant

distributed locks without the need for a separate message exchange each time a lock

is acquired or released.

GPFS uses Byte-Range-Locking to synchronize reads and writes to file data, thus

allowing parallel applications to write concurrently to different parts of the same

file, while maintaining POSIX read/write atomicity semantics. If POSIX semantics

is not required, GPFS allows disabling Byte-Range-Locking by switching to Data

Shipping mode. In this mode, file blocks are assigned to nodes in a round-robin fash-

ion so that each block will be read or written only by one particular node. GPFS

forwards read and write operations originating from other nodes to the node respon-

sible for a particular data block. In this mode there is never any data shared between

nodes so there is no need for distributed locking.

greedyWriting

type:
Device Level Method

contact:
David A. Hutchinson, hutchins@cs.duke.edu

description:
greedyWriting is an optimal online algorithm for output scheduling. It uses a FIFO

queue for each disk. It is fed the blocks bi of a write request sequence σ one at a

time. Block bi, labeled with an associated disk identifier, is put in to the buffer pool

G 128

Figure 4.28: Greedy Writing: Duality between Prefetching Priority and Output Step

and queued behind the other requests buffered for the same disk. One output step,

consisting of leading blocks of each of the disk queues, is scheduled each time the

pool gets completely full.

In [180] the authors show the duality between the Online Output Scheduling Prob-

lem and the Offline � Prefetching scheduling problem as depicted in Figure 4.28.

For read sequences consisting of distinct blocks greedyWriting mutates into Lazy� Prefetching via this duality which also implies its optimality as a prefetching algo-

rithm.

Algorithm Lazy � Prefetching is equivalent to the Reverse Aggressive algorithm [195]

for the case of read-once sequences.

An optimal writing/ � Prefetching algorithm on its own may be of little practical use

if all requests happen to go to the same disk. The concept of duality is applied to

transfer results on writing [303] to � Prefetching. For this case prudentPrefetching

was developed.

For random allocation the algorithm gives performance guarantees.

related work:
The asynchronous variant of the algorithms can be found in [110].

Reverse Aggressive Algorithm [195], � Prefetching

G 129

citation:
[180]

Grid Datafarm see Gfarm

GridExpand

type:
Mass Storage System

contact:
José M. Pérez, jmperez@arcos.inf.uc3m.es

url:
http://www.arcos.inf.uc3m.es

description:
GridExpand integrates existing servers using protocols like NFS [302], CIFS [93] or

WebDAV [397], facilitating the development of applications by integrating hetero-

geneous Grid resources under homogeneous and well known interfaces like POSIX

and � MPI-IO. GridExpand applies the Parallel I/O techniques used in most parallel

file systems to Grid environments.

motivation:
To provide a Parallel I/O middleware that allows to integrate the existing heteroge-

neous resources.

related work:� Expand

citation:
[271]

details:
The GridExpand architecture is presented in Figure 4.29. The architecture allows

the usage of several heterogeneous clusters to define parallel distributed partitions.

GridExpand uses the available protocols to communicate with storage servers, like

NFS, CIFS or WebDav, without needing specialized servers. GridExpand combines

several servers to provide a generic striped partition which allows to create several

types of file systems.

G 130

Figure 4.29: GridExpand: Architecture

GridExpand provides an Abstract File Interface (AFI) that allows the implementation

of the typical interfaces (POSIX, Win32, � MPI-IO) above it, and supports other

advanced features as cache policy, � Prefetching, parallelism degree configuration

and fault tolerance. The access to the servers and storage resources is provided by an

Abstract I/O Adapter similar to � ADIO.

GridFTP

type:
Data Transfer Protocol

contact:
Steve Tuecke, tuecke@mcs.anl.gov

url:
http://www.globus.org/datagrid/gridftp.html

description:
GridFTP is a common data transfer and access protocol, that provides secure and

efficient data movement in Grid environments. This protocol, which extends the

standard FTP protocol, provides a superset of the features offered by the various

Grid storage systems currently in use.

G 131

features:� GSI and Kerberos [192] support
� third party control of data transfer

� parallel and striped data transfer
� partial file transfer
� automatic negotiation of TCP buffers / window sizes

� support for reliable and restartable data transfer

related work:� DPSS, � FTP-Lite, � RFT

citation:
[5], [7], [9]

details:
There are a number of storage systems in use by the Grid community. Unfortunately,

most of these storage systems utilize incompatible, and often unpublished protocols

for accessing data, and therefore require the use of their own client libraries to access

data. This effectively partitions the datasets available on the Grid.

To overcome these incompatible protocols, GridFTP can be used as a common pro-

tocol. It extends the standard FTP protocol and provides a superset of the features

offered by the various Grid storage systems. FTP was chosen as the protocol to ex-

tend because it is the most commonly used protocol for data transfer on the Internet,

is widely implemented and is a well-understood IETF standard protocol.

The implementation of the GridFTP protocol takes the form of two APIs and cor-

responding libraries: globus ftp control and globus ftp client. The libraries

use high-performance I/O and security services provided by the � Globus Toolkit.

In addition to the libraries, there also exists an API/library (globus gass copy) and

a command-line tool (globus-url-copy) that integrates GridFTP, HTTP, and local

file I/O to enable secure transfers using any combination of these protocols.

The globus ftp control library implements the control channel API. This API

provides routines for managing a GridFTP connection, including authentication, cre-

ation of control and data channels, and reading and writing data over data channels.

Having separate control and data channels, as defined in the FTP protocol standard,

greatly facilitates the support of such features as parallel data transfer, striped trans-

fers and third-party data transfers. For parallel and striped transfers, the control

G 132

channel is used to specify a put or get operation. Multiple parallel TCP data chan-

nels provide concurrent transfers. In third-party transfers, the initiator monitors or

aborts transfers via the control channel, while data is transferred over on or more

data channels between source and destination sites.

The globus ftp client library implements the GridFTP client API. This API

provides higher-level client features on top of the globus ftp control library,

including complete file get and put operations, calls to set the level of parallelism

for parallel data transfers, partial file transfer operations, third-party transfers, and

eventually, functions to set TCP buffer sizes.

GSH (Grid Service Handle) see OGSI

GSI-SFS (Grid Security Infrastructure – Self-certifying File System)

type:
File System

contact:
Shingo Takeda, stakeda@ais.cmc.osaka-u.ac.jp

url:
http://www.biogrid.jp/e/research work/gro1/gsi sfs/index.html

description:
GSI-SFS is a user-oriented and secure file system seamlessly integrated in the Grid

environment.

motivation:
Few existing Grid file transfer services find a good the trade-off between convenience

and security, which leads to difficulties when dealing with confidential data on the

Grid. To satisfy such users demand, GSI-SFS was developed.

features:� Single Disk Image (SDI): Users can access remote data without being aware of

the location of the data.

� Exclusiveness: Each user has his/her own SDI.

� Data confidentiality: Strong encryption is used when transferring data over in-

secure networks.

G 133

application:
GUIDE Grid Portal [168]

related work:
GSI [68, 166], SFS [317]

citation:
[167]

details:
GSI-SFS has been developed based on the two key technologies. The first is the Grid

Security Infrastructure (GSI) [68, 166], the second is Self-Certifying File System

(SFS) [317].

GSI is a Grid service and is part of the � Globus Toolkit. One of the features of GSI

is single sign-on which allows users to access computational resources on the Grid

in a transparent manner by typing the passphrase once.

SFS is a secure, global network file system with completely decentralized control.

SFS lets users access their files from anywhere and share them with anyone. Anyone

can set up an SFS server, and any user can access any server from any client. SFS

lets users share files across administrative realms without involving administrators

or certification authorities.

GSI-SFS consists of three layers:

NFS Layer Because the lowest layer of GSI-SFS is NFS [302], it works on many

systems supporting NFS.

SFS Extension Layer SFS authenticates a user and a host with their public keys.

After successful authentication, SFS forwards local NFS accesses to remote

locations encrypting all data transferred over network.

GSI-SFS Layer SFS’s public key authentication method works well in small envi-

ronments, but doesn’t scale well to a large number of users and hosts. To use

SFS in a Grid environment a GSI-SFS Key Server and Client was implemented

which automate the key registration securely with GSI.

GSR (Grid Service Reference) see OGSI

GT2 (Globus Toolkit version 2) see � Globus

GT3 (Globus Toolkit version 3) see � Globus

H 134

H

HDF5 (Hierarchical Data Format 5)

type:
Data Format

contact:
HDF Helpdesk, hdfhelp@ncsa.uiuc.edu

url:
http://hdf.ncsa.uiuc.edu/HDF5/

description:
HDF5 is a format and software for scientific data capable of I/O. It is efficiently

storing images, multidimensional arrays, tables etc.

motivation:
The aim of HDF5 is to develop, promote, deploy, and support open and free technolo-

gies that facilitate scientific data storage, exchange, access, analysis and discovery.

features:� support for high-performance applications

– ability to create complex data structures

– complex subsetting

– efficient storage

– flexible I/O (parallel, remote, etc.)

� support for key language models

– OO compatible

– C, Fortran, Java, C++

� mounting files

� Virtual File Layer (VFL): a public API for writing I/O drivers

� remote data access

related work:� DPSS, � HPSS

citation:
[248], [295]

H 135

details:
HDF5 can store large numbers of large data objects, such as multidimensional ar-

rays, tables, and computational meshes, and these can be mixed together in any way

that suits a particular application. HDF5 supports cross platform portability of the

interface and corresponding file format. The main conceptual building blocks of

HDF5 are the HDF5 Dataset and the HDF5 Group. An HDF5 Dataset is a multi-

dimensional array of elements of a specified datatype. When reading or writing an

HDF5 Dataset, an application describes two datasets: a source dataset and a destina-

tion dataset. These can have different sizes and shapes and, in some instances, can

involve different datatypes. HDF5 Groups are directory-like structures containing

HDF5 Datasets, HDF5 Groups, and other objects.

The HDF5 library contains a VFL, a public API for doing low level I/O, so that

drivers can be written for different storage resources. When performing I/O in a

multilayered configuration such as the one discussed here, it is useful to have a mech-

anism for passing information from one layer to another. To this end, the HDF5 API

provides a Property List, which is a list of specifications, guidelines, or hints to be

used by the library itself or to be passed on by the VFL to lower layers.

HPSS (High-Performance Storage System)

type:
Mass Storage System

contact:
Dick Watson, dwatson@llnl.gov

url:
http://www4.clearlake.ibm.com/hpss/index.jsp

description:
HPSS is a Hierarchical Storage System (HSS) with a scalable, modular design result-

ing in many distributed servers, each maintaining meta-data germane to its function.

motivation:
The overall objective of HPSS is to provide a scalable, high-performance, high func-

tionality HSS for environments consisting of a combination of massively parallel

machines, traditional supercomputers as well as clusters of workstations.

features:� network-centered architecture

H 136

� third party data transfer

� high data transfer rate

� parallel operation built in

� design based on standard components

� multiple hierarchies and classes of services

� data integrity through transaction management

application:
National Climatic Data Center (NCDC) [247], Visible Embryo NGI Project [379]

related work:� Enstore

citation:
[97], [157], [179], [396]

details:
The components used to define the structure of the HPSS name space are Filesets and

Junctions. A Fileset is a logical collection of files that can be managed as a single

administrative unit, or more simply, a disjoint directory tree. A Junction is an object,

managed by the HPSS Name Server, that links a path name to a fileset.

The components containing user data include Bitfiles, Physical and Virtual Volumes,

and Storage Segments. Files in HPSS, called Bitfiles, are logical strings of bytes, even

though a particular Bitfile may have a structure imposed by its owner. A Physical

Volume is a unit of storage media on which HPSS stores data, whereas a Virtual

Volume is used by the Storage Server to provide a logical abstraction or mapping of

Physical Volumes. A Storage Segment is an abstract storage object which is mapped

onto a Virtual Volume.

Components containing meta-data, describing the attributes and characteristics of

Bitfiles, Volumes, and Storage Segments, include Storage Maps, Classes of Service

(COS), Storage Classes, and Hierarchies. A Storage Map is a data structure used

by the Storage Server to manage the allocation of storage space on Virtual Volumes.

Each Bitfile has an important attribute called COS. The COS defines a set of pa-

rameters associated with operational and performance characteristics of a Bitfile. A

Storage Class defines a set of characteristics and usage parameters to be associated

with a particular grouping of HPSS Virtual Volumes. A Hierarchy defines the storage

classes on which files in that hierarchy are to be stored.

H 137

Figure 4.30: HPSS: System Overview

HPSS Servers include the Name Server, Bitfile Server, Migration/Purge Server, Stor-

age Server, Location Server, Data Management Application (DMAP) Gateway, Phys-

ical Volume Library, Physical Volume Repository, Mover, Storage System Manager,

and Non-DCE Client Gateway. Figure 4.30 provides a simplified view of the HPSS

system. Each major server component is shown, along with the basic control com-

munications paths (thin arrowed lines). The thick line reveals actual data movement.

Infrastructure items (those components that glue together the distributed servers) are

shown at the top of the cube in gray scale.

The Name Server (NS) translates a human-oriented name to an HPSS object iden-

tifier. Objects managed by the NS are files, filesets, directories, symbolic links,

junctions and hard links. The NS also provides access verification to objects. The

Bitfile Server (BFS) provides the abstraction of logical bitfiles to its clients. The

Migration/Purge Server (MPS) helps the local site implement its storage manage-

ment policies by managing the placement of data on HPSS storage media using

site-defined policy mechanisms. The Storage Servers (SSs) provide a hierarchy of

storage objects: Storage Segments, Virtual Volumes, and Physical Volumes. The Lo-

cation Server (LS) acts as an information clearinghouse to its clients to enable them

to locate servers and gather information from both local and remote HPSS systems.

The DMAP Gateway (DMG) acts as a conduit and translator between the distributed

H 138

file system and the HPSS Servers. The Physical Volume Library (PVL) manages all

HPSS Physical Volumes. The Physical Volume Repository (PVR) manages all HPSS

cartridges. The purpose of the Mover (MVR) is to transfer data from a source de-

vice to a sink device. Storage System Management (SSM) roles cover a wide range,

including aspects of configuration, initialization, and termination tasks.

I 139

I

InterMezzo

type:
File System

contact:
Peter J. Braam, braam@clusterfilesystem.com

url:
http://www.inter-mezzo.org/

description:
InterMezzo is a distributed file system with a focus on high availability.

motivation:
InterMezzo will be suitable for replication of servers, mobile computing, managing

system software on large clusters, and for maintenance of high-availability clusters.

related work:� Lustre

citation:
[383]

details:
On both clients and servers, InterMezzo uses an existing file system to store its data,

and tracks file system changes in hidden directories in those file systems.

InterMezzo basically consists of kernel components and a server process known as

InterSync that synchronizes files on InterMezzo client and server systems.

An instance of InterSync runs on each InterMezzo client, keeping cached files on the

client system synchronized with the contents of the InterMezzo server’s exported file

system. The InterMezzo server maintains a record of changes made to any files in

its exported file system(s) in a file known as a Kernel Modification Log that is stored

in the exported InterMezzo file system. Each client’s InterSync process periodically

polls the server, retrieves this file, and scans it for records related to cached files.

In order to do active synchronization an InterSync server can run on the InterMezzo

server. Active synchronization guarantees that changes to files on the server are prop-

agated to clients, but also guarantees that changes to cached files on client systems

I 140

are propagated back to the server. Changes to files on the server are then propagated

out to all other clients in the standard fashion.

Communication is done using the HTTP protocol.

I/O Bounds

type:
Definition

description:
The I/O performance of many algorithms and data structures can be expressed in

terms of the bounds for fundamental operations:

� scanning (a.k.a. streaming or touching) a file of N data items, which involves

the sequential reading or writing of the items in the file

� sorting a file of N data items, which puts the items into sorted order

� searching online through N sorted data items

� outputting the Z answers to a query in a blocked output-sensitive fashion

related work:� PDM

citation:
[380]

I/O Communities

type:
Definition

contact:
condor-admin@cs.wisc.edu

description:
A system that allows jobs and data to meet by binding execution and storage sites

together into I/O Communities which then participate in the wide-area system.

motivation:
Improving the performance of a key HEP’s simulation on an international distributed

system.

I 141

application:
CMS [95]

related work:
ClassAds [94], � Condor

citation:
[346]

details:
An I/O Community consists of several CPUs that gather around a storage device. Pro-

grams executing at such CPUs are encouraged to use the community I/O device for

storing and retrieving data. By sharing the device, similar applications may reduce

their consumption of wide-area resources.

The architecture is built around Storage Appliances and Interposition Agents as de-

picted in Figure 4.31. A Storage Appliance serves as the meeting place for an I/O

Community. It is frequently conceived as a specialized hardware device. The appli-

ance is most useful when it speaks a number of protocols. An Interposition Agent is

a small piece of software that inserts itself between an application and the native OS,

since standard applications rarely speak protocols.

In a Computational Grid, community resources come, go, and change without warn-

ing. Figure 4.31 shows how CPU Discovery, Device Discovery, and Replica Dis-

covery fits into the system for finding community resources. Before execution, CPU

discovery must be performed to find a CPU with the proper architecture, OS, and so

on. During execution, Device Discovery must be performed to find ones member-

ship in a community. Also during execution, Replica Discovery may be performed

to locate items outside of a job immediate community.

The ClassAds [94] mechanism is used to represent all of the properties, requirements,

and preferences involved in an I/O Community.

I 142

Figure 4.31: I/O Communities: Model

J 143

J

Java I/O Extensions

type:
Data Format

contact:
Phillip M. Dickens, dickens@iit.edu

url:
http://www.cs.berkeley.edu/˜bonachea/java/

description:
Java I/O Extensions address the deficiencies in the Java I/O API and improve perfor-

mance dramatically.

motivation:
To be successful in the HPC domain, Java must not only be able to provide high

computational performance, but also high-performance I/O.

related work:� Parallel Unix Commands

citation:
[62], [112]

details:
The following approaches for performing parallel file I/O remove much of the over-

head currently associated with array I/O in Java and/or are ways of working around

the problem that Java does not directly support the reading or writing of arrays of

any data type other than bytes:

Using Raw Byte Arrays Multiple threads of a parallel program can write to dif-

ferent parts of a byte array. Each thread in the parallel program creates a

RandomAccessFile object, calculates its offset in the shared file, and seeks to

that position. It then uses the write method defined by the RandomAccessFile

to write its portion of the byte array in a single operation.

Converting to/from an Array of Bytes I/O involving byte arrays is simple, but Java

provides no methods for performing I/O operations on other data types, such

J 144

as integers, floats and doubles. Simple casts are not allowed either. Other array

types have to be converted by right-shifting one byte at a time into a byte array

by first reading into a byte array and then converting the bytes into the desired

array type. Sign bits have to be taken care of.

Using Data Streams It is possible to read/write a single integer at a time by using

the methods defined in DataInput and DataOutput. The RandomAccessFile

class makes it relatively easy to perform Parallel I/O operations using data

streams.

Using Buffered Data Streams The RandomAccessFile class does not implement

buffering, and the FilterInput and FilterOutput streams only work with

objects of type InputStream and OutputStream. There is a way to use sys-

tem buffering for a RandomAccessFile object: a RandomAccessFile can be

chained to a FileInputStream or FileOutputStream object through its file

descriptor. FileInputStream or FileOutputStream objects can be chained

to a BufferedInputStream or BufferedOutputStream object, which can be

chained to a DataInputStream or DataOutputStream object.

Using Buffering with Byte Array Streams Another approach to buffering a data

input or output stream is to chain it to an underlying byte array stream. Then

the read and write methods involved on the data stream will be directed to the

underlying byte array stream rather than directly to disk.

Bulk I/O Three new subclasses (BulkDatInputStram, BulkDataOutputStream

and BulkRandomAccessFile) added to the java.io hierarchy are shown in

Figure 4.32. These new classes implement the methods from two new inter-

faces, BulkDataInput and BulkDataOutput, which are subinterfaces of the

DataInput and DataOutput interfaces that currently provide single-primitive

I/O. BulkDataInput and BulkDataOutput are both very simple. Each class

adds two new methods for performing array-based I/O: one method for per-

forming I/O on an entire array and a second for performing I/O on a contigu-

ous subset of the elements in an array. The BulkDataInputStream class im-

plements the methods from BulkDataInput, BulkDataOutputStream imple-

ments the methods from BulkDataOutput and BulkRandomAccessFile im-

plements both interfaces.

J 145

Figure 4.32: Java I/O Extensions: New Subclasses

K 146

K

Kangaroo

type:
Data Transfer Protocol

contact:
Douglas Thain, thain@cs.wisc.edu

url:
http://www.cs.wisc.edu/condor/kangaroo/

description:
Kangaroo is a wide-area data-movement system.

motivation:
Distributed systems are prone to performance variations, failed connections, and ex-

hausted resources. Traditional OSs deal with the vagaries of disks by making a

background process responsible for scheduling, coalescing, and retrying operations.

Kangaroo applies the same principle to Grid Computing.

related work:� Condor, � GASS, � Legion

citation:
[345]

details:
The Kangaroo architecture is centered around a chainable series of servers that im-

plement a simple interface:

int kangaroo get (host,path,offset,length,data)

void kangaroo put (host,path,offset,length,data)

int kangaroo commit ()

int kangaroo push (host,path)

To perform a hop (Figure 4.33) Kangaroo places a server at the execution site. It

satisfies put requests by immediately spooling them to disk. A background process,

the Mover, is responsible for reading these requests and forwarding them to the des-

tination as the network permits. Read operations may be satisfied from cached data

without contacting the destination server. Multiple hops allow transfers over many

K 147

Figure 4.33: Kangaroo: Two Hop Kangaroo

network segments to be performed incrementally, avoiding the need to co-allocate

network resources along all hops.

Applications that need consistency guarantees have to synchronize with the primi-

tives commit and push. commit is used to make data safe from crashes while push

is used to make changes visible to others. commit causes the caller to block until

all outstanding changes have been written to some stable storage. The changes are

not necessarily visible to all other callers. push causes the caller to block until all

outstanding changes have been delivered to their respective destinations. push is

recursively called until the target host is reached. A success message is sent after

committing all outstanding data into the local file system. In case of failures the

top-level caller needs to retry.

The adaptation layer converts POSIX operations into the appropriate Kangaroo con-

sistency operations. Upon program termination the adaptation layer forces a commit

to the local Kangaroo server. If a job needs to wait until all data arrives, a manual

push should be issued. During execution, a POSIX fsync is also converted into a

push.

KelpIO

type:
I/O Library

contact:
Bradley Broom, broom@rice.edu

url:
http://www.cs.rice.edu/˜dsystem/kelpio/

K 148

description:
KelpIO is a domain-specific I/O library for irregular block-structured applications. It

is designed to be used for application I/O, checkpointing, snapshooting, and out-of-

core (� EM (External Memory) Algorithms and Data Structures) execution for pro-

grams written in the KeLP [130] programming system.

KelpIO provides high-level KeLP-like primitives for communicating array data be-

tween KeLP data elements and external arrays. KelpIO is layered above one or more

underlying (Parallel) I/O systems. It transforms I/O from the geometric application

domain of KeLP data elements into the implementation domain of the underlying I/O

system. KelpIO is designed to be mostly independent of the underlying (Parallel) I/O

library, without unnecessary duplication of functionality and only provides facilities

for I/O. Three general classes of optimizations appropriate to KelpIO programs are

considered: File Layout Optimization, File Access Optimization, and Out-Of-Core

(� EM (External Memory) Algorithms and Data Structures) Optimization.

related work:
KeLP [130], � LEDA-SM, � TPIE

citation:
[66]

L 149

L
lazyPrefetching see greedyWriting

LEDA-SM

type:
Intelligent I/O System

contact:
Andreas Crauser, crauser@mpi-sb.mpg.de

url:
http://www.mpi-sb.mpg.de/˜crauser/leda-sm.html?74,45

description:
LEDA-SM is an extension package of the LEDA-library [226] towards secondary

memory computation. It consists of a collection of secondary memory data structures

and algorithms and a development platform for new applications. LEDA-SM is no

longer maintained.

motivation:
Enabling I/O efficiency for � EM Algorithms and Data Structures.

features:
The following data structures and algorithms available in LEDA-SM:

� stacks and queues

� priority queues

� arrays

� B-Trees

� suffix arrays and strings

� matrix operations

� graphs and graph algorithms

related work:� MPI-IO, � TPIE, ��� ST XXL �
citation:

[98], [99]

L 150

Layer Major Classes

algorithms sorting, graph algorithms, . . .
data structures ext stack, ext array, . . .
abstract kernel block

�
E � , B ID, U ID

concrete kernel ext memory manager,
ext disk, ext free list,
name server

Table 4.1: LEDA-SM: Layers

details:
LEDA-SM is designed in a modular way and consists of 4 layers (see Table 4.1).

The Kernel Layer of LEDA-SM manages secondary memory and the movement of

data. It is divided into the Abstract and the Concrete Kernel. The Abstract Kernel

consists of 3 C++ classes that give an abstract view of secondary memory. The Con-

crete Level is responsible for performing I/Os and managing disk space in secondary

memory and consists of 4 C++ classes. The user can choose between several real-

izations of the concrete level at run-time. The Concrete Kernel defines functions for

performing I/Os and managing disk blocks. These functions are used by the Abstract

Kernel or directly by Data Structures and Algorithms. The Application Level consists

of Data Structures and Algorithms. LEDA is used to implement the in-core part of

the applications and the kernel of LEDA-SM is used to perform the I/Os. The phys-

ical I/O calls are hidden in the Concrete Kernel, the applications use the container

class of the Abstract Kernel to transport data to and from secondary memory.

LegionFS

type:
File System

contact:
Andrew Grimshaw, grimshaw@cs.virginia.edu

url:
http://legion.virginia.edu

description:
LegionFS is a fully integrated serverless file system infrastructure which is used in� Legion

L 151

motivation:
In order to fulfill the evolving requirements in wide-area collaborations a more fully-

integrated architecture is needed which is built upon the fundamental tenets of nam-

ing, security, scalability, extensibility and adaptability.

features:
Location-Independent Naming LegionFS utilizes a three-level naming scheme that

shields users from low-level resource discovery.

Security Each component of the file system is represented as an object. Each object

is its own security domain, controlled by ACLs.

Scalability Files can be distributed to any host participating in the system. This

yields superior performance to monolithic solutions.

Extensibility Every object publishes an interface, which may be extended and spe-

cialized.

Adaptability LegionFS maintains a rich set of system-wide meta-data that is useful

in tailoring an object’s behaviour to environmental changes.

related work:� Legion, � SRB

citation:
[400]

details:
Object Model � Legion is an object based system comprised of independent, logi-

cally address space-disjoint, active objects, which store their internal state on

disk. Objects may be migrated simply by transferring this internal state to an-

other host.

The � Legion file abstraction is a BasicFileObject, whose methods closely

resemble Unix system calls. ContextObjects manage the � Legion name

space.

Naming Context Names, user-defined text strings identify � Legion objects. A di-

rectory service called Context Space maps Context Names to unique, location-

independent binary names, called Legion Object Identifiers (LOIDs). For direct

object-to-object communication, LOIDs must be bound (via a Binding Process)

to low-level Object Addresses.

L 152

Security Each object is responsible for legislating and enforcing its own security

policy. Authorization is determined by an ACL associated with each object.

Public keys, which are embedded in an object’s name enable secure communi-

cation with other objects.

Scalability LegionFS distributes files and contexts across the available resources in

the system. This allows applications to access files without encountering cen-

tralized servers and ensures that they can enjoy a larger percentage of the avail-

able network bandwidth without contending with other application accesses.

Scheduler Objects provide placement decisions upon object creation.

Extensibility LegionFS differentiates between objects according to their exported

interfaces, not their implementation. If functionality warrants an additional

method, it may be implemented, exported by the object, and incorporated into

an newly generated library.

LH � RS (Linear Hashing using Reed Solomon Codes)

type:
Data Format

contact:
Witold Litwin, Witold.Litwin@dauphine.fr

url:
http://ceria.dauphine.fr/witold.html

description:
LH � RS is a new high-availability � SDDS. The data storage scheme and the search

performance of LH � RS are basically these of LH* [216].

motivation:
LH � RS is a data structure, that allows files to span over multiple servers.

features:
error recovery

related work:
LH* [216], � SDDS

citation:
[217]

L 153

Figure 4.34: LH � RS: (a) Bucket Group (b) Data and Parity Records

details:
A LH � RS file consists of an LH*-file called data file with the data records generated

by the application in data buckets 0,1,...,M-1. The LH* data file is augmented for the

high-availability with parity buckets to store the parity records at separate servers.

A data record is identified by its key c and has also some non-key part. As for the

generic LH*, the correct bucket a for data record c in an LH � RS file is given by the

linear hashing function j 	 n, a
 h j 	 n � c � . The parameters (j,n) called file state evolve

dynamically. The client image consists also from h, but perhaps with outdated state.

Data buckets are grouped in bucket groups. Every bucket group is provided with

k1 parity buckets where the parity records for the group are stored. Figure 4.34 (a)

shows a bucket group with four data buckets and their data records (�) and two parity

buckets and their parity records (x). Each data record has a rank 1,2 ... that reflects

the position of the record in its data bucket. A record group contains all the data

records with the same rank r in the same bucket group. The record group with r

= 3 is enclosed for example in Figure 4.34 (a). The k parity buckets contain parity

records for each record group. A parity record consists first of the rank r of the record

group, then of the primary keys c1, c2, . . . cl of all the (non-dummy) data records in

the record group, and finally of the (generalized) parity data calculated from the

data records and the number of the parity bucket. The parity data, denoted by B in

Figure 4.34 (b), differ among the parity records. The ensemble of the data records

in a record group and its parity records is called a record segment and likewise, the

bucket group with its parity buckets a bucket segment.

Figure 4.35 illustrates the expansion of an LH � RS file. Parity buckets are represented

shaded and above the data file, right to the last, actual or dummy, bucket of the

group they serve. The file is created with data bucket 0 and one parity bucket (Fig-

ure 4.35 a). The first insert creates the first parity record, calculated from the data

record and from m-1 dummy records. The data record and the parity record receive

rank 1. The file is 1-available.

L 154

Figure 4.35: LH � RS: Scalable availability of LH � RS file

When new records are inserted into data bucket 0, new parity records are generated.

Each new data and parity record gets the next rank. When data bucket 0 reaches its

capacity of b records, b
 1, it splits. Usually half of its records move into data

bucket 1. During the split, both the remaining and the relocated records receive new

consecutive ranks starting with r
 1. Since there are now (non-dummy) records with

the same rank in both buckets, the parity records are recalculated, (Figure 4.35 b).

LH � RS parity calculus uses the linear Reed Solomon (RS) [221] codes. These are

originally error correcting codes, among most efficient, since they are Maximal Dis-

tance Separating (MDS) codes. They are used as erasure correcting codes recovering

unknown data values.

List I/O

type:
Device Level Method

contact:
Avery Ching, aching@ece.northwestern.edu

description:
List I/O reduces the number of I/O requests in a � Noncontiguous Data Access by

L 155

Figure 4.36: List I/O: Dataflow for Noncontiguous I/O

describing multiple file regions in a single List I/O request. Except for the case when

noncontiguous regions are close enough to favour � Data Sieving, List I/O performs

better than � Data Sieving. Support was added to the I/O server code of � PVFS1

to receive the trailing data and complete the I/O accesses. In this approach up to 64

contiguous file regions can be described in trailing data before another I/O request

must be issued. Therefore, I/O requests that contain more file regions than the trailing

data limit are broken up into several List I/O requests. Figure 4.36 illustrates the List

I/O execution flow. Noncontiguous data regions are described in a single I/O request.

related work:� Data Sieving, � Noncontiguous Data Access, � PVFS1

citation:
[91]

Load-Managed Active Storage

type:
Storage System

contact:
Rajiv Wickremesinghe, rajiv@cs.duke.edu

L 156

description:
Load-Managed Active Storage is an extension of � TPIE to support a flexible map-

ping of computations to storage-based processors exposing parallelism, ordering

constraints, and primitive computation units to the system.

motivation:
The goal of Load-Managed Active Storage is to enable automatic dynamic placement

of data and computation according to resource availability in the system.

application:
DSM-Sort [401, page 6], Spatial Indices [401, page 6], Terrain Analysis with Ter-

raFlow [367]

related work:� Active Disk, � Active Storage, � TPIE

citation:
[401]

details:
Computation is decomposed into primitive processing steps called Functors, which

apply specific functions to streams of records passing through them. Functors may

have multiple inputs and outputs, and are composed to build complete programs that

process data as it moves from stored input to output, possibly in multiple passes.

A subset of the functors are capable of executing directly on Active Storage Units

(ASUs). These functors are stacked on stored data collections to process data as a

side-effect of I/O operations.

To benefit from parallelism, the � TPIE stream paradigm is extended with additional

data aggregation primitives and container types for stored data collections. Data

containers can be Sets, Streams, and Arrays, illustrated in Figure 4.37. Sets and

Streams are always accessed and processed in their entirety: records contained in a

set or Stream are marked as pending or completed for each scan of the Container.

Sets have no specific order, streams are ordered, and arrays are random-access. The

model also includes a mechanism to group related records within a data collection

into units called Packets that are always processed as a whole.

LOID (Legion Object Identifier) see � Legion

LRC (Local Replica Catalog) see Giggle

L 157

Figure 4.37: Load-Managed Active Storage: Basic Data Containers

Lustre

type:
Storage System

contact:
Peter J. Braam, braam@clusterfilesystem.com

url:
http://www.lustre.org/

description:
Lustre is a novel storage and file system architecture and implementation suitable for

very large clusters.

motivation:
Lustre aims to support scalable cluster file systems for small to very large clusters.

features:� Direct I/O

related work:� Intermezzo

citation:
[64], [338]

details:
In Lustre clusters, a Meta-Data Server (MDS) manages name space operations, while

Object Storage Targets (Osts) manage the actual storage of file data onto underlying

Object-Based Disks (OBDs). Lustre uses Inodes to represent files, which simply

contain a reference to the OST location where the file data is actually stored.

L 158

The Lustre file supports � Direct I/O, which is file system I/O directly to OBDs that

bypass the operating system’s file system buffer cache.

Lustre uses an open networking protocol known as Portals to provide flexible support

for a wide variety of networks. At the highest level, both Lustre’s high-performance

request processing layer and the Portals stack rest on top of a Network Abstraction

Layer (NAL) that uses a simple network description to support multiple types of

networks. Lustre uses a distributed Lock Manager to manage access to files and

directories and to synchronize updates. Lustre’s Lock Manager uses intent-based

locking, where file and directory lock requests also provide information about the

reason the lock is being requested.

All Lustre configuration information is stored in XML files that are human-readable

and can easily be integrated with existing administrative procedures and applications.

Lustre is integrated with open network data management resources and mechanisms

such as the LDAP and the SNMP.

M 159

M

Machine-Learning Approach to Automatic Performance Modeling

type:
General Method

contact:
Shengke Yu, syu3@cs.uiuc.edu

description:
The Machine-Learning Approach to Automatic Performance Modeling is based on

the use of a platform-independent performance meta-model, which is a Radial Basis

Function (RBF) neural network.

motivation:
A performance model for a Parallel I/O system is essential for detailed performance

analysis, automatic performance optimization of I/O request handling, potential per-

formance bottlenecks identification, and accurate application performance predic-

tion. Also, without standard benchmarks, predictions and performance models, cross-

library, cross-version, cross-platform, and even cross-installation predictions and

comparisons of Parallel I/O performance are extremely difficult.

related work:� Panda

citation:
[410]

details:
The meta-model is a RBF neural network [149], platform-independent and therefore

portable. The input consists of twelve parameters of interest for performance mod-

eling of the � Panda system. The output of the RBF neural network is the � Panda

response time that the RBF network predicts for the I/O request described in the in-

put. Each instance of training data for the meta-model consists of values for each of

the twelve parameters above, plus � Panda’s response time for carrying out that I/O

request. This approach does not use any knowledge of the underlying I/O library or

platform, beyond values for � Panda’s internal tuning parameters.

M 160

MAPFS (Multi-Agent Parallel File System)

type:
File System

contact:
Jésus Carretero Pérez, jcarrete@arcos.inf.uc3m.es

description:
MAPFS is a flexible multi-agent architecture for data-intensive Grid applications.

motivation:
MAPFS’s goal is to allow applications to access data repositories in an efficient and

flexible fashion, providing formalisms for modifying the topology of the storage sys-

tem, specifying different data access patterns and selecting additional functionalities.

features:� system topology configuration through the usage of Storage Groups

� access pattern specification

� some functionalities (such as caching and � Prefetching) can run in parallel on

different nodes and even in the data servers

related work:� SRB

citation:
[272]

details:
MAPFS is based on a client-server architecture using NFS [302] servers. MAPFS

clients provide a Parallel I/O interface to the servers. The configuration of the system

topology is achieved through the usage of Storage Groups. A Storage Group is

defined as a set of servers clustered as groups taking the role of data repositories.

Several policies can be used to try to optimize the accesses to all Storage Groups

(eg.: grouping by server proximity or server similarity). MAPFS can be configured

in order to adjust to different I/O access patterns. Hints are used in order to decrease

cache faults and to prefetch the data which most probably will be used in subsequent

executions. Hints can either be user-defined or built by a multi-agent subsystem.

M 161

MEMS (MicroElectroMechanical Systems)-Based Storage

type:
Storage System

contact:
Greg Ganger, ganger@ece.cmu.edu

url:
http://www.lcs.ece.cmu.edu/research/MEMS/

description:
Based on MEMS [230], this non-volatile storage technology merges magnetic record-

ing material and thousands of recording heads to provide storage capacity of 1-10 GB

of data with access times of under a millisecond and streaming bandwidths of over

50 MB per second. Another interesting aspect of MEMS-Based Storage is its ability

to incorporate both storage and processing into the same chip.

motivation:
MEMS-Based Storage has the ability to significantly reduce application I/O stall

times for file system and database workloads by incorporating both storage and pro-

cessing into the same chip.

related work:� Active Disks, � ADFS, Millipede [234]

citation:
[162], [286], [307]

details:
Figure 4.38 illustrates the new system architecture that includes the MEMS device

in the storage hierarchy. The MEMS storage module can consist of multiple MEMS

devices to provide greater storage capacity and throughput. The MEMS device is

accessed through the I/O bus. It can be envisioned as part of the disk drive or as

an independent device. In either case, I/Os can be scheduled on the MEMS device

as well as on the disk drive independently. Similar to disk caches found on current-

day disk drives, it can be assumed that MEMS storage devices would also include

on-device caches.

M 162

Figure 4.38: MEMS: Architecture

MercutIO

type:
I/O Library

contact:
Kumaran Rajaram, kums@hpcl.cs.msstate.edu

url:
http://library.msstate.edu/etd/show.asp?etd=etd-04052002-105711

description:
MercutIO is a portable, high-performance � MPI-IO implementation.

related work:� MPI-IO

citation:
[281]

details:
The architecture of MercutIO is depicted in Figure 4.39 for the case of non-collective

Bulldog Abstract File System (BAFS). Parallelism and portability are achieved ef-

ficiently by demarcating these two functionalities into two components: � MPI-

IO and BAFS. BAFS, a relatively thin abstract I/O interface, is layered between

the � MPI-IO layer and an underlying parallel file system. It provides a Non-� Collective I/O interface that functions independently for each MPI [243] process

created. � MPI-IO, on the other hand, operates on the communicator level for a

M 163

Figure 4.39: MercutIO: Non-Collective BAFS

group of processes defined by the parallel environment. The � MPI-IO layer man-

ages � Collective I/O and shared file pointer operations. This layer maintains data

consistency across different processes and delivers file atomicity semantics.

BAFS provides a portable high-performance point-to-point Parallel I/O interface.

The BAFS data access routines are implemented based on non-blocking semantics in

order to overlap I/O and computation. Smaller I/O requests are combined to larger

chunks before the actual disk access is performed.

The current implementation of BAFS has two provisions for non-blocking I/O. The

first approach makes use of the non-blocking APIs supported by the underlying file

system. The second approach is based on the producer-consumer model. Threads

are used to transfer data between the user thread and the BAFS system thread using

the work queue model as depicted in Figure 4.40. In this approach, the user thread

asynchronously posts I/O requests to the work queue. The system thread operates in

a FIFO strategy and upon completion of an I/O request asynchronously notifies the

user thread.

MFS (MOSIX File System) see MOSIX

M 164

Figure 4.40: MercutIO: BAFS Model for Non-Blocking I/O

M 165

Minerva

type:
Toolkit

contact:
Alistair Veitch, aveitch@hpl.hp.com

description:
Minerva is an automated provisioning tool for large-scale storage systems.

motivation:
Storage systems are traditionally designed by hand, which is tedious, slow, error-

prone, and frequently results in solutions that perform poorly or are over-provisioned.

Minerva helps in the automated design of large-scale computer storage systems.

citation:
[16]

details:
The problem of system design is divided into three stages:

1. choosing the right set of storage devices for a particular application workload

2. choosing values for configuration parameters in the devices

3. mapping the user data onto the devices

The major inputs to Minerva are Workload Descriptions and Device Descriptions. A

Workload Description contains information about the data to be stored on the system

and its access patterns. Workload Descriptions contain two types if objects: Stores

and Streams. Stores are logically contiguous chunks of data such as a database ta-

ble or a file system, with a stated capacity. Each Store is accessed by zero or more

Streams. Each Stream is a sequence of accesses performed on the same store. Log-

ical UNits (LUNs) are sets of disks bound together using a layout such as RAID1/0

(Mirrored/Non-Redundant) or RAID5 (Block-Interleaved Distributed-Parity) [83],

and addressed as a single entity by client applications. Their relationships are de-

picted in Figure 4.41. Hosts generate workloads, which are characterized as a set of

dynamic Streams accessing static Stores. One or more Stores are mapped to each

LUN.

Figure 4.42 shows the flow between each of the high-level components making up

the Minerva system. The storage design problem is divided into three main subprob-

lems: Array Allocation, Array Configuration, and Store Assignment. The goal of the

M 166

Figure 4.41: Minerva: Objects

M 167

Figure 4.42: Minerva: Control Flow

Array Allocation step is to select a set of configured arrays that satisfy the resource

requirements of the workload. This step is further divided into two components,

the Tagger, which assigns a preferred RAID level to a part of the workload, and

the Allocator, which determines how many arrays are needed. Array Configuration

is handled by the Array Designer, which configures a single array at a time. The

Store Assignment problem is handled by the Solver, which assigns Stores to LUNs

generated by the Array Designer. The Optimizer prunes out unused resources and

performs a reassignment that attempts to balance the load across the remaining de-

vices. The Evaluator is a separate tool. It can be used to verify the correctness of the

final Minerva solution, by applying the analytical device models.

MOCHA (Middleware Based On a Code SHipping Architecture)

type:
Filter

contact:
Manuel Rodrı́guez-Martı́nez, manuel@cs.umd.edu

M 168

url:
http://www.cs.umd.edu/projects/mocha/

description:
MOCHA is a self-extensible database middleware system that provides client appli-

cations with a uniform view and access mechanism to the data collections available

in each source.

motivation:
The main purpose of MOCHA is to integrate collections of data sources distributed

over wide-area computer networks such as the Internet.

features:� platform independent database middleware solution built using Java and XML

� extensible execution engine allows customized data types and methods

� automatic deployment of user-defined code

� query optimization based on data movement reduction over Internet and in-

tranets

� XML-based meta-data for system catalogs, datasets and data sources

� light-weight data access layer for easy installation and customization

� supports web-based thin clients

� JDBC-compliant client access interface

� on-site data filtering

related work:� DataCutter, � dQUOB

citation:
[293], [299]

details:
MOCHA is built around the notion that the middleware for a large-scale distributed

environment should be self-extensible. A self-extensible middleware system is one

in which new application-specific data types and query operators needed for query

processing are deployed to remote sites in automatic fashion by the middleware sys-

tem itself. In MOCHA, this is realized by shipping Java classes containing the new

capabilities to the remote sites, where they can be used to manipulate the data of

interest. All these Java classes are stored into one or more Code Repositories from

M 169

Figure 4.43: MOCHA: Architecture

which MOCHA later retrieves and deploys them on a need-to-do basis. By shipping

code for query operators, such as generalized projections or predicates, MOCHA can

generate efficient plans that place the execution of powerful data-reducing opera-

tors (filters) on the data sources. Figure 4.43 depicts the major components in the

MOCHA Architecture. These are:

� Client Application

� Query Processing Coordinator (QPC)

� Data Access Provider (DAP)

� Data Server

MOCHA supports three kinds of Client Applications: 1) applets, 2) servlets, and 3)

stand-alone Java applications. The QPC is the middle-tier component that controls

the execution of all queries received from the client applications. The QPC has a

catalog which holds all the meta-data about the user-defined types, methods, and

data sites available for use by the users. The QPC also has a Code Repository which

stores the compiled Java classes that implement the various user-defined data types

and operators that are available to the user. The role of the DAP is to provide the

QPC with an uniform access mechanism to a remote data source. The Data Server

is the server application that stores the datasets for a particular data site.

M 170

MOPI (MOSIX Scalable Parallel Input/Output)

type:
Intelligent I/O System

contact:
Amnon Barak, amnon@cs.huji.ac.il

url:
http://www.mosix.org/

description:
MOPI enables parallel access to segments of data that are scattered among different

nodes using the process migration capability of � MOSIX.

motivation:
The goal of MOPI is to provide Parallel I/O capabilities for large volumes of data for� MOSIX clusters.

features:� supports partitioning of large files to independent data segments that are placed

on different nodes

� support for MPI [243]

related work:� MOSIX

citation:
[17]

details:
A MOPI file consists of 2 parts: a Meta Unit (MU) and Data Segments (DS), as

shown in Figure 4.44. The MU stores the file attributes, including the number and

ID of the nodes to which the file is partitioned, the size of the partition unit and the

locations of the segments. Data is divided into DS. A DS is the smallest unit of data

for I/O optimization.

The prototype MOPI implementation consists of three parts: a User-Level Library

that is linked with the user application, a set of Daemons for managing meta-data

and an optional set of Utilities to manage basic operations on MOPI files from the

shell.

M 171

Figure 4.44: MOPI: File Structure

MOSIX

type:
Toolkit

contact:
Amnon Barak, amnon@cs.huji.ac.il

url:
http://www.mosix.org/

description:
MOSIX is a management package that can make a cluster of x86 based Linux servers

and workstations (nodes) run almost like an SMP.

features:
Preemptive process migration for:

Parallel Processing automatic work distribution and redistribution

Process Migration from slower to faster nodes

Load-Balancing for even work distribution

High I/O Performance migrating intensive I/O processes to file servers

Parallel I/O migrating Parallel I/O processes from a client node to file servers

M 172

related work:� MOPI

citation:
[18], [43], [44]

details:
The MOSIX technology consists of two parts, both implemented at the kernel level: a

Preemptive Process Migration (PPM) mechanism and a set of Algorithms for Adap-

tive Resource Sharing. The PPM can migrate any process, at any time, to any avail-

able node. Each process has a Unique Home-Node (UHN) where it was created.

All the processes of a user’s session share the execution environment of the UHN.

Processes that migrate to remote nodes use local resources whenever possible, but

interact with the user’s environment through the UHN. When the requirements for

resources exceed some threshold levels, some processes may be migrated to other

nodes. Mosix has no central control or master-slave relationship between nodes.

The main Resource Sharing Algorithms of MOSIX are the Load-Balancing and the

Memory Ushering [42]. The dynamic Load-Balancing algorithm continuously at-

tempts to reduce the load differences between pairs of nodes, by migrating processes

from higher loaded to less loaded nodes. The Memory Ushering (depletion preven-

tion) algorithm is geared to place the maximal number of processes in the cluster-

wide RAM, to avoid as much as possible thrashing or the swapping out of processes.

The algorithm is triggered when a node starts excessive paging due to shortage of

free memory. In this case the algorithm overrides the load-balancing algorithm and

attempts to migrate a process to a node which has sufficient free memory.

The Direct File System Access (DFSA) mechanism is a re-routing switch that was

designed to reduce the extra overhead of running I/O oriented system-calls of a mi-

grated process by allowing most system-calls to run directly on the node where the

process currently runs. In addition to DFSA, MOSIX monitors the I/O operations

of each process in order to encourage a process that performs moderate to high vol-

ume of I/O to migrate to the node in which it does most of its I/O. DFSA requires

a single-node file and directory consistency between processes that run on different

nodes because even the same process can appear to operate from different nodes.

MOSIX File System (MFS) provides a unified view of all files on all mounted file

systems in all the nodes of a MOSIX cluster, as if they where all within a single file

system. In MFS, each node in a MOSIX cluster can simultaneously be a file server

M 173

and run processes as clients and each process can work with any mounted file system

of any type.

MPI-IO (Message Passing Interface – Input/Output)

type:
Application Level Method

url:
http://www.mpi-forum.org

description:
MPI-IO is the I/O chapter in MPI-2.

motivation:
The goal of MPI-IO is to provide a standard for describing Parallel I/O operations

within an MPI-2 [243] message passing application.

features:� allows the programmer to specify high-level information about I/O

� favors common usage patterns over obscure ones

related work:
MPI-2 [243], � ROMIO

citation:
[243], [333]

details:
MPI is the de facto standard for message passing. MPI does not include one existing

message passing system, but makes use of the most attractive features of them. The

main advantage of the message passing standard is said to be portability and ease-of-

use. MPI is intended for writing message passing programs in C and Fortran77.

MPI-2 is the product of corrections and extensions to the original MPI Standard doc-

ument. Although some corrections were already made in Version 1.1 of MPI, MPI-2

includes many other additional features and substantial new types of functionality.

One of the improvements is a new capability in form of Parallel I/O (MPI-IO).

MPI-IO should be as MPI friendly as possible. Like in MPI, a file access can be inde-

pendent (no coordination between processes takes place) or collective (each process

M 174

of a group associated with the communicator must participate in the collective ac-

cess). What is more, MPI derived data types are used for the data layout in files and

for accessing shared files. The usage of derived data types can leave holes in the file,

and a process can only access data that falls under these holes. Thus, files can be

distributed among parallel processes in disjoint chunks.

Since MPI-IO is intended as an interface that maps between data stored in mem-

ory and a file, it basically specifies how the data should be laid out in a virtual file

structure rather than how the file structure is stored on disk. Another feature is that

MPI-IO is supposed to be interrupt and thread safe.

Multi-Storage Resource Architecture

type:
Data Access System

contact:
Alok Choudhary, choudhar@ece.nwu.edu

description:
In the Multi-Storage Resource Architecture, an application can be associated with

multiple storage resources that could be heterogeneously distributed over networks.

These storage resources could include local disks, local databases, remote disks,

remote tape systems, remote databases and so on.

motivation:
In traditional storage resource architectures an application has only one storage me-

dia available for storing the user’s data. A major problem of these applications is that

users have to sacrifice performance requirements in order to satisfy storage capacity

requirements. Further performance improvement is impeded by the physical nature

of this single storage media even if state-of-the-art I/O optimizations are employed.

The Multi-Storage Resource Architecture was developed to solve this problem.

features:� API for transparent management and access to various storage resources

� run-time library for each type of storage resource

� I/O performance prediction mechanism for evaluation of the application

� PTool to help the user automatically establish the I/O performance database that

is used by the performance predictor

M 175

application:
Astro3D [356]

related work:� MAPFS, � SRB

citation:
[322]

details:
The architecture can be logically layered into five levels:

Physical Storage Resources At the bottom of the architecture are various storage

resources including local disks, local databases, remote disks, remote databases,

remote tape systems and other storage systems. They are the actual holder of

data.

Native Storage Interfaces Each storage resource has its own access interface pro-

vided by the vendors of these storage systems. These interfaces to various

storage systems are well established and developed by vendors. The major

concerns of these native interfaces are portability, ease-of-use and reliability

etc. Few of them have fully considered performance issues in a parallel and

Distributed Computing environment. In addition, it is impossible for the appli-

cation level users to change these interfaces directly to take care of performance

issues.

Run-time Library One methodology to address the performance problem of the

native storage interface is to build a run-time library that resides above it. The

only concern of these libraries is performance. It captures the characteristics of

user’s data access pattern and performs an optimized data access method to the

native storage interface.

User API This API is used in user applications to provide transparent access to var-

ious storage resources and selection of appropriate I/O optimization strategies

and storage types. The API transparently consults the I/O performance database

and decides the storage type and the I/O optimization approach internally ac-

cording to the user’s hints and meta-data information kept in database.

User Application The top layer in the logical architecture is the user application.

The user writes his program by using the API and passes high-level hints. The

hints are high-level since they are not concerned with low level details of stor-

age resources and I/O optimization approaches. They only describe how the

M 176

Figure 4.45: Multiple I/O: Dataflow for Noncontiguous I/O

user’s dataset will be partitioned and accessed by parallel processors, how the

dataset will be used in the future, what kind of storage systems the user expects

to put the datasets on etc.

Multiple I/O

type:
Application Level Method

contact:
Avery Ching, aching@ece.northwestern.edu

description:
The interface to most parallel file systems allows for access only to a contiguous

file region in a single I/O operation. Making Multiple I/O operations performs the

required � Noncontiguous Data Access, but does so with a large cost of transmitting

and processing I/O requests as well as many potential disk accesses because each

noncontiguous data region requires a separate I/O request that the I/O servers must

process (see Figure 4.45).

related work:� Data Sieving, � List I/O, � Noncontiguous Data Access, � PVFS1

citation:
[91]

N 177

N

NeST (Network Storage)

type:
Mass Storage System

contact:
support@nestproject.org

url:
http://www.cs.wisc.edu/condor/nest/

description:
NeST is a flexible software-only storage appliance designed to meet the storage needs

of the Grid.

motivation:
The primary goal is to break the false dependence between hardware and software

and create software-only storage solutions that can create storage appliances out of

commodity hardware. The secondary goal is to create software modules with flexible

mechanisms.

features:
NeST has three key features that make it well-suited for deployment in a Grid envi-

ronment:

� provides a generic data transfer architecture that supports multiple data transfer

protocols (including � GridFTP and � Chirp), and allows for the easy addition

of new protocols.

� dynamic, adapting itself on-the-fly so that it runs effectively on a wide range of

hardware and software platforms.

� Grid-aware, implying that features that are necessary for integration into the

Grid, such as storage space guarantees, mechanisms for resource and data dis-

covery, user authentication, and quality of service, are a part of the NeST in-

frastructure.

related work:
Filers of Network Appliance [174], Enterprise Storage Platforms of EMC [121]

N 178

Figure 4.46: NeST: Software Design

citation:
[55], [56]

details:
As a Grid storage appliance, NeST provides mechanisms both for file and direc-

tory operations as well as for resource management. The implementation to provide

these mechanisms is heavily dependent upon NeST’s modular design, shown in Fig-

ure 4.46. The four major components of NeST are its Protocol Layer, Dispatcher,

Storage Manager and Transfer Manager.

The Protocol Layer in NeST provides connectivity to the network and all client in-

teractions are mediated through it. The Dispatcher is the main scheduler and macro-

request router in the system and is responsible for controlling the flow of information

between the other components. The Storage Manager has four main responsibilities:

virtualizing and controlling the physical storage of the machine, directly executing

non-transfer requests, implementing and enforcing access control, and managing

guaranteed storage space in the form of lots (interfaces to guarantee storage space).

The Transfer Manager controls data flow within NeST.

netCDF (Network Common Data Form)

type:
Data Format

contact:
support@unidata.ucar.edu

url:
http://www.unidata.ucar.edu/packages/netcdf/

N 179

description:
Unidata’s [370] netCDF is a data model for array-oriented scientific data access, a

package of freely available software that implements the data model, and a machine-

independent data format.

features:� sharing common data files among different applications, written in different

languages, running on different computer architectures

� reduction of programming effort spent interpreting application, or machine-

specific formats

� incorporation of meta-data with the data, reducing possibilities for misinter-

preting the data

� accessing small subsets of large data efficiently

� making programs immune to changes caused by the addition of new variables

or other additions to the data schema

� raising the level of data issues to structure and content rather than format

application:� DODS

related work:
FAN [107]

citation:
[212], [287]

details:
A netCDF data set consists of variables which have a name, a shape determined by its

dimensions, a type, some attributes and values. Variable attributes represent ancillary

information, such as units and special values used for missing data. Operations on

netCDF components include creation, renaming, inquiring, writing, and reading.

The netCDF format provides a platform-independent binary representation for self-

describing data in a form that permits efficient access to a small subset of a large

dataset, without first reading through all the preceding data. The format also allows

appending data along one dimension without copying the dataset or redefining its

structure.

Parallel netCDF [212] is a parallel interface for writing and reading NetCDF datasets.

The underlying Parallel I/O is achieved through � MPI-IO, allowing for dramatic

N 180

Figure 4.47: netCDF: Design of Parallel netCDF on a Parallel I/O Architecture

performance gains through the use of � Collective I/O optimizations. Parallel netCDF

runs as a library between user space and file system space. It processes Parallel

netCDF requests from user compute nodes and, after optimization, passes the Par-

allel I/O requests down to � MPI-IO library, and then the I/O servers receive the� MPI-IO requests and perform I/O over the end storage on behalf of the user (see

Figure 4.47).

NetSolve

type:
Filter

contact:
Jack Dongarra, dongarra@cs.utk.edu

url:
http://icl.cs.utk.edu/netsolve/

description:
NetSolve is a software system based on the concepts of RPC that allows for the easy

access to computational resources distributed in both geography and ownership.

motivation:
Some goals of the NetSolve project are:

N 181

� ease-of-use for the user

� efficient use of resources

� the ability to integrate any arbitrary software component as a resource into the

NetSolve system

features:� uniform access to the software

� configurability

� preinstallation

application:
http://icl.cs.utk.edu/netsolve/overview/

related work:� Globus, NEOS [103], Ninf [253]

citation:
[30], [73], [74], [75]

details:
Figure 4.48 shows the infrastructure of the NetSolve system and its relation to the

applications that use it. At the top tier, the NetSolve Client Library is linked into the

user’s application. The application then makes calls to NetSolve’s API for specific

services. Through the API, NetSolve client users gain access to aggregate resources

without the necessity of user knowledge of computer networking or Distributed

Computing. The NetSolve Agent represents the gateway to the NetSolve system.

It serves as an information service maintaining data regarding NetSolve Servers and

their capabilities and dynamic usage statistics. The Agent uses its resource alloca-

tion mechanism to attempt to find the server that will service the request the quickest,

balance the load amongst its servers and keep track of failed servers. The Agent also

implements fault-tolerant features. The NetSolve Server is the computational back-

bone of the system. It is a daemon process that awaits client requests. The Server

can run on single workstations, clusters of workstations, symmetric multi-processors

or machines with massively parallel processors. A key component of the NetSolve

server is a source code generator which parses a NetSolve Problem Description File

(PDF). This PDF contains information that allows the NetSolve system to create new

modules and incorporate new functionalities. In essence, the PDF defines a wrapper

that NetSolve uses to call the function or program being incorporated.

N 182

Figure 4.48: Netsolve: Architecture

Noncontiguous Data Access

type:
Application Level Method

description:
Noncontiguous Data Access is an access that works on data that is not adjacent within

file, memory, or both. The various types of Noncontiguous Data Access are shown

in Figure 4.49. One example of contiguous data in memory and noncontiguous data

in file is an application that stores a two-dimensional array in a file, and then later

desires to read one element from each column into a contiguous memory buffer. The

more interesting of the Noncontiguous Data Access patterns are the ones where the

file data is noncontiguous. In order to optimize access when the file data is contigu-

ous, a memory operation can buffer the access so that data movement is executed in

memory and only one file read/write request is necessary. When the file is noncon-

tiguous, buffering alone is not adequate. Other methods must be used to perform a

Noncontiguous Data Access when the file data is noncontiguous.

related work:� PVFS1 and � ROMIO use � Data Sieving to optimize Noncontiguous Data Ac-

cesses.

citation:
[91], [355]

N 183

Figure 4.49: Noncontiguous Data Access: Possible Noncontiguous Data Accesses

O 184

O

Oasis+

type:
Storage System

contact:
David Watson, dwatson@cs.ucr.edu

url:
www.cs.ucr.edu/˜brett

description:
The Oasis+ distributed storage system is a reliable memory store for a small scale

computing cluster. It is implemented entirely in-memory using DSM. Reliability is

achieved by replication and corrective cleanup recovery actions once a failure arises.

motivation:
Oasis+ was built to operate as a backbone service for a computing cluster that sup-

ports mobile workstations or remote clients needing fast access to storage. The sys-

tem acts as a storage system that can store data quickly in-memory and can do so in

a dependable manner.

features:� provides the illusion of a large virtual address space using physical memory of

each of the machines on the network

� simple commodity computer network

� commodity interconnect technology

� high-availability support with configurable replication

� support for transparent failover

� high-performance distributed locking that is failure resilient

� efficient and atomic update diffs to replicas

� nodes maintain shared state so that each owner of a replica could operate in a

peer-to-peer fashion

related work:
Arias [336]

O 185

citation:
[394], [395]

details:
A Storage Region is the basic unit of memory in Oasis+ and is conceptually equiv-

alent to a segment in SysV shared memory. The interface for managing Regions is

modeled after standard SysV shared memory calls. The interface selected potentially

simplifies the process of porting applications to Oasis+. An extremely general Ad-

dress Range Locking Facility provides exclusive access to storage. Storage Regions

consist of pages which are replicated for high-availability.

The protocol that Oasis+ uses for data reliability and managing replicated copies is

the Boundary-Restricted [358]. It guarantees robust functionality despite multiple

site failures that could occur. By integrating address range locking and Eager Re-

lease Consistency (ERC) [209], Oasis+ provides a flexible and efficient platform for

the development of distributed services. Reliability is achieved by replication and

corrective cleanup recovery actions once failures arise.

The Address Range Lock Facility included with Oasis+ provides an extremely gen-

eral view of the shared storage. It serves two primary purposes in the system by

providing an application level primitive for mutual exclusion and, in conjunction

with ERC, a high-performance method for updating shared storage.

Coupled with the need for storage system protocols is the need for base primitives

that can perform updates efficiently and can manage group membership and asso-

ciated topology changes in the computing cluster. For this aspect the system uses

the Spread toolkit [20]. Spread provides Atomic Multicast (ABCAST) and group

communications support to applications across local and wide-area networks. AB-

CAST ensures that message ordering is preserved across multi-site failures. These

semantics underpin the protocols used to implement global data access and failure

recovery.

OCGSA (Open Collaborative Grid Service Architecture)

type:
Standardization Effort

contact:
Kaizar Amin, amin@mcs.anl.gov

O 186

description:
OCGSA is a framework that builds on top of the � OGSA infrastructure, providing a

set of services that can be used by any collaborative application.

motivation:
OCGSA extends the notion of Grid services into the collaborative domain.

related work:
Gateway [33] � Globus, � OGSA

citation:
[19]

details:
The OCGSA architecture composes a set of common components that can be easily

customized for individual applications. The OCGSA framework enables users to

form ad-hoc collaborative groups by interacting over a set of predefined notification

topics. It provides appropriate lifetime management for individual groups, offers an

advanced discovery mechanism for service instances, and establishes sophisticated

security mechanisms at different levels of the application.

The OCGSA framework consists of the following common components for collabo-

rative applications:

Collaborative Grid Service a Grid service with a set of predefined behaviours and

meta-data elements regarding the creator of the group, name of the group, de-

scription of the group, current members of the group and level of event archiv-

ing desired

Registration Service a Grid service capable of supporting XPath/XQuery queries

[408, 409]

Discovery Service Services can be discovered not only by service names but by a

variety of other meta-data information.

Event Archiving Service a service that logs the messages or events communicated

between online users of a group instance into a persistent database

Security Service Two levels of authorization are specified. In the Application Level

the application service provider dictates the security policies. In the Group

Level the group creator specifies who can join the group and the privileges of

individual users within that group.

O 187

Visual Environment an interface environment that can be conveniently modified

based on user preferences

OGSA (Open Grid Services Architecture)

type:
Standardization Effort

contact:
Ian Foster, foster@mcs.anl.gov

url:
http://www-fp.globus.org/ogsa/

description:
OGSA defines how a Grid functions and how Grid technologies can be implemented

and applied. It enables the integration of services and resources across distributed,

heterogeneous, dynamic Virtual Organizations (VOs) [137].

motivation:
OGSA aims to define a new common and standard architecture for Grid-based appli-

cations.

related work:� GGF, � Globus, � OCGSA, � OGSA-DAI, � OGSI

citation:
[132], [135], [136]

details:
OGSA focuses on Services: computational resources, storage resources, networks,

programs, databases, and the like are all represented as Services. A service-oriented

view allows to address the need for standard interface definition mechanisms, lo-

cal/remote transparency, adaptation to local OS services, and uniform service seman-

tics. A service-oriented view also simplifies virtualization, that is the encapsulation

behind a common interface of diverse implementations. Virtualization allows for

consistent resource access across multiple heterogeneous platforms with local or re-

mote location transparency. To express service functions in a standard form, so that

any implementation of a Service is invoked in the same manner, the Web Services

Description Language (WSDL) [92] is used.

O 188

For service interaction standard semantics are required, so that for example different

Services follow the same conventions for error notification. Therefore OGSA defines

a Grid Service. It is a Web Service [158] that provides a set of well-defined interfaces

following specific conventions. The interfaces address:

Discovery Applications require mechanisms for discovering available Services and

for determining the characteristics of those Services.

Dynamic service creation New service instances can be dynamically created and

managed.

Lifetime management The managing of a services life-time is defined Furthermore

Services can be reclaimed and their state associated with failed operations.

Notification Collections of dynamic, distributed Services are able to notify each

other asynchronously of significant changes to their state.

Manageability Operations are defined to monitor and manage potentially large sets

of Grid Service Instances.

OGSA does not address issues of implementation programming model, programming

language, implementation tools, or execution environment and specifies interactions

between Services in a manner independent of any hosting environment.

O 189

OGSA-DAI (OGSA - Database Access and Integration)

type:
Standardization Effort

contact:
Norman Paton, norm@cs.man.ac.uk

url:
http://www.ogsadai.org.uk/

description:
OGSA-DAI is an extension to the � OGSA architecture to support data access and

integration services.

motivation:
The aim of the OGSA-DAI architecture is to define � OGSA generic data access

and integration services, while requiring services deployed in the context of partic-

ular database or data store systems to distinguish themselves through their service

data elements. OGSA-DAI strives to present uniform access to a wide range of data

sources.

related work:� OGSA

citation:
[34], [35], [176], [268]

details:
The � OGSA-DAI project assumes an architecture that matches � OGSA and pro-

vides a simple set of composable components. The principle components and their

use are illustrated in Figure 4.50. The client uses a Data Registry first to locate a

Grid Data Service Factory (GDSF) service that is capable of generating the required

access and integration facilities. Each Data Registry is an extension of the standard� OGSA registries that also uses meta-data about the contents, organization and op-

erations of the data resources that may be reached. The information returned allows

the client to choose an appropriate GDSF and activate it using its Grid Service Han-

dle (GSH). The client then asks that GDSF to produce a set (here one) of Grid Data

Services (GDS) that provide the required access to data resources. They may be the

data resources themselves or proxies for those data resources, as illustrated here. The

client then uses the GDS to obtain a sequence of required services.

O 190

Figure 4.50: OGSA-DAI: Creating a Grid Data Service

In addition to basic database operations, such as update, query, bulk load, and

schema edit, the GDS must also support a Data Transport specification. To en-

able an open-ended range of data models, operations and transport mechanisms,

the required operations are requested using a Request Document, which specifies

a sequence of activities such as database operations defined using standard query

languages and data delivery. Additional categories of components required for data

translation and data transport, Grid Data Translation Services (GDTS) and Grid Data

Transport Depots (GDTD) are included in the OGSA-DAI architecture.

OGSI (Open Grid Services Infrastructure)

type:
Standardization Effort

contact:
David Snelling, d.snelling@fle.fujitsu.com

url:
http://www.gridforum.org/ogsi-wg/

description:
OGSI refers to the base infrastructure on which � OGSA is built. OGSI is a formal

and technical specification of the concepts described in � OGSA.

motivation:
OGSI provides a full specification of the behaviours and Web Services Description

Language (WSDL) [92] interfaces that define a Grid service.

O 191

related work:� GGF, � Globus, � OCGSA

citation:
[132], [135], [136], [369]

details:
The OGSA Service Model OGSA represents everything as a Grid Service: a Web

Service [158] that conforms to a set of conventions and supports standard inter-

faces for such purposes as lifetime management. Grid Services are character-

ized by the capabilities that they offer. A Grid Service implements one or more

interfaces, where each interface defines a set of operations that are invoked by

exchanging a defined sequence of messages. The term Grid Service Instance is

used to refer to a particular instantiation of a Grid Service. Every Grid Service

Instance is assigned a globally unique name, the Grid Service Handle (GSH),

that distinguishes a specific Grid Service Instance from all other Grid Service

Instances that have existed, exist now, or will exist in the future. Protocol- or

instance-specific information such as network address and supported protocol

bindings are encapsulated into a single abstraction called a Grid Service Refer-

ence (GSR). Unlike a GSH, which is invariant, the GSR(s) for a Grid Service

Instance can change over that service’s lifetime.

Creating Transient Services – Factories OGSA defines a class of Grid Services that

implements an interface that creates new Grid Service Instances. This is called

the Factory Interface and a service that implements this interface a Factory.

The Factory Interface’s CreateService operation creates a requested Grid Ser-

vice and returns the GSH and initial GSR for the new Service Instance.

Service Lifetime Management Grid Services Instances are created with a specified

lifetime. Soft State Lifetime Management is implemented using the operation

SetTerminationTime within the required GridService Interface, which de-

fines operations for negotiating an initial lifetime for a new Service Instance,

for requesting a lifetime extension, and for harvesting a Service Instance when

its lifetime has expired.

Managing Handles and References The approach taken in � OGSA is to define a

handle-to-reference mapper interface (HandleMap). The operations provided

by this interface take a GSH and return a valid GSR. Service Data and Service

Discovery associated with each Grid Service Instance is a collection of XML

O 192

elements encapsulated as Service Data elements.

Notification The � OGSA notification framework allows clients to register interest

in being notified of particular messages (the NotificationSource Interface) and

supports asynchronous, one-way delivery of such notifications (Notification-

Sink).

Change Management In order to support Discovery and Change Management of

Grid Services, Grid Service Interfaces must be globally and uniquely named.

Out-of-Core see EM Algorithms and Data Structures

P 193

P

Pablo

type:
Other / Project

contact:
Daniel A. Reed, reed@cs.uiuc.edu

url:
http://www-pablo.cs.uiuc.edu/index.htm

description:
The Pablo project conducts research on performance analysis and visualization tech-

niques for HPC systems, including experimental performance measurement and adap-

tive control, characterization of I/O patterns, flexible parallel file systems, collabo-

rative virtual environments for performance analysis and software history analysis,

and WWW server performance.

Key research foci concerning I/O are:

Performance Analysis techniques and scalable parallel file systems for:

� use in Grid environments to optimize application and run-time behaviour

during program execution using real-time adaptive systems for resource

policy control
� use in conventional HPC environments using tools that capture and com-

municate performance metrics

I/O system design, analysis, and optimization tools & techniques for large-scale

commodity and workstation clusters, peta-scale systems, and distributed Com-

putational Grids. This work includes extending, documenting, archiving, and

disseminating tools, sample applications, and experimental data through the

group’s I/O tool and data repository, the national CADRE [70] facility.

Among the many projects of Pablo the ones which deal mainly with I/O are:

PPFS II � PPFS II is a next generation parallel file system with real-time control

and adaptive policy control capabilities.

P 194

I/O Characterization Rapid increases in computing and communication perfor-

mance are exacerbating the long-standing problem of performance-limiting I/O.

Currently, work is underway to measure the impact on performance of I/O op-

erations in areas like Unix I/O Characterization, HDF Analysis, and � MPI-I/O

Instrumentation. For measuring the I/O performance on different platforms the

group also developed an I/O Benchmark Software Distribution.

National Facility for I/O Characterization and Optimization (CADRE) [70] It is

extending, documenting, archiving, and disseminating tools, sample applica-

tions, and experimental data to stimulate education and research on I/O system

design, analysis, and optimization for large-scale commodity and workstation

clusters, peta-scale systems, and distributed computational Grids.

Panda

type:
I/O Library

contact:
Marianne Winslett, winslett@uiuc.edu

url:
http://dais.cs.uiuc.edu/panda/

description:
Panda is a library for input and output of multidimensional arrays on parallel and

sequential platforms.

motivation:
Panda aims to provide simpler, more abstract interfaces to application program-

mers, to produce more advanced I/O libraries supporting efficient layout alterna-

tives for multidimensional arrays on disk and in main memory, and to support high-

performance array I/O operations.

features:� Collective I/O, � Server-Directed I/O

application:
Center for the Simulation of Advanced Rockets [101]

related work:� LEDA-SM, � TPIE

P 195

citation:
[65], [84], [85], [86], [87], [312], [313], [314]

details:
The system architecture of Panda is shown in Figure 4.51, which shows how Panda

is distributed across compute nodes (Panda Clients) and I/O nodes (Panda Servers).

Under � Server-Directed I/O, the application program running on the compute nodes

communicates with the client via Panda’s high-level � Collective I/O interface for

multidimensional arrays. When an application makes a � Collective I/O request to

Panda, a selected client (the Master Client) sends to a selected server (the Master

Server) a short high-level description of the two schemas for the arrays, in memory

and on disk. After the initial request to the servers for a � Collective I/O operation,

Panda’s Servers then make data requests for the clients. The Master Server then

informs all the other servers of the schema information, and each server plans how

it will request or send its chunks of the array data to or from the relevant clients.

Upon completion of a � Collective I/O request, the servers inform the master server

who informs the Master Client that the � Collective I/O operation is completed. The

Master Client in turn informs the other clients.

Parallel Data Compression

type:
Data Access System

contact:
Jonghyun Lee, jlee17@uiuc.edu

description:
Three approaches for parallel compression of scientific data for migration are pro-

posed.

motivation:
The goal is to incorporate compression into migration in a way that reliably reduces

application turnaround time on parallel platforms.

related work:� Active Buffering, � GASS, � GridFTP, � RIO

citation:
[207], [208]

P 196

Figure 4.51: Panda: System Architecture

P 197

Figure 4.52: Parallel Data Compression: Data Flow with Simulation/Migration

details:
I/O servers are used to stage the output to the local file system before migration.

Figure 4.52 shows the data flow in a simulation run with I/O and migration, along

with three possible spots for performing compression. This local staging prevents

compute processors from stalling while data is migrated.

Client-side Compression during an I/O Phase (CC) Each client compresses each

of its output chunks and sends them to a server, along with meta-data such as

the compressed chunk size and the compression method. I/O servers receive

compressed chunks from clients and stage them to disks.

Server-side Compression during an I/O Phase (SC) With SC, servers receive out-

put data from clients during an I/O phase, compress them, and stage them to

disk. SC allows the array to be reorganized.

Server-side Compression on Already-Staged Outputs (SC2) Before being trans-

ferred to a remote machine, a staged output needs to be read into memory from

the local file system. SC2 reads and compresses the staged output, and then

migrates it.

Parallel NetCDF see NetCDF

Parallel Unix Commands

type:
Toolkit

contact:
William D. Gropp, gropp@mcs.anl.gov

P 198

Table 4.2: Parallel Unix Commands: Commands

description:
The Parallel Unix Commands are a family of MPI [243] applications and are natural

parallel versions of common Unix user commands.

features:� familiar to Unix users

� interact well with other Unix tools

� run at interactive speeds like traditional Unix commands

related work:� Java I/O

citation:
[265]

details:
The Parallel Unix Commands are shown in Table 4.2. They are of three types:

1. straightforward parallel versions of traditional commands with little or no out-

put

2. parallel versions of traditional commands with specifically formatted output

3. new commands in the spirit of the traditional commands

All of the commands have a host argument as an (optional) first argument.

Each command parses its hostlist arguments and then starts an MPI program (with

mpirun or mpiexec) on the appropriate set of hosts.

P 199

Parrot

type:
File System

contact:
Douglas Thain, thain@cs.wisc.edu

url:
http://www.cs.wisc.edu/˜thain/research/parrot/

description:
Parrot is the successor of the Plugable File System (PFS). It is an Interposition Agent,

which is able to perform POSIX-like I/O on remote data services. An Interposition

Agent is a middleware that adapts standard interfaces to new distributed systems.

Interposition Techniques are summarized in [347, page 3].

motivation:
Applications require middleware that can integrate new distributed systems.

related work:� Chirp, � Condor, � NeST

citation:
[347]

details:
An application may be written or modified to invoke the library directly, or it may

be attached via various Interposition Techniques [347, page 3]. Like an OS, a series

of device drivers give access to remote I/O systems, but Parrot does not know the

structure of remote devices at higher levels.

I/O operations can be classified into two categories: operations on file pointers (eg.:

read, write) and operations on file names (eg.: rename, stat). The former check

the validity of the arguments, and then descend the various data structures. The latter

commands first pass through the name resolver, which may transform the program

supplied names according to a variety of name(s) and systems.

In the simplest case of name resolution, Parrot operates on the name unchanged. A

mount list driver makes use of a simple file that maps logical names and directories

to remote files names. Alternatively, the � Chirp I/O driver can be used.

Most POSIX applications access files through explicit operations such as read and

write. However, files may also be memory-mapped [347, page 7]. Memory-mapped

P 200

files are supported in two ways, depending on the Interposition Method in use. If

Parrot is attached via an internal technique, then memory-mapped files may be sup-

ported by simply allocating memory with malloc and loading the necessary data

into memory by invoking the device driver. If Parrot is attached via an external

technique, then the entire file is loaded into the I/O channel, and the application is

redirected to mmap that portion of the channel.

The default buffering discipline performs fine-grained partial file operations on re-

mote services to access the minimal amount of data to satisfy an application’s imme-

diate reads and writes. Parrot may also perform whole-file staging and caching upon

first open.

PASSION (Parallel And Scalable Software for Input-Output)

type:
I/O Library

contact:
Rajeev Thakur, thakur@mcs.anl.gov

description:
PASSION is a compiler and run-time support system which provides support for

compiling out-of-core data parallel programs (� EM Algorithms and Data Struc-

tures), Parallel I/O of data, communication of out-of-core data, redistribution of data

stored on disks, many optimizations including � Prefetching, � Data Sieving, as

well as support at the OS level.

motivation:
The goal of the project is to provide software support for high-performance Parallel

I/O at the compiler, run-time and file system levels.

features:� support at the compiler, run-time and OS level

� I/O optimizations transparent to users

� various optimization techniques like � Collective I/O, � Prefetching and � Data

Sieving for reducing I/O costs

related work:� TPIE

P 201

citation:
[349], [351]

details:
PASSION has a layered approach. The compiler translates out-of-core HPF programs

to message passing node programs with explicit Parallel I/O. It extracts information

from user directives about the data distribution, which is required by the run-time

system. It restructures loops having out-of-core arrays and also decides the transfor-

mations on out-of-core data to map the distribution on disks with the usage in the

loops. It also embeds calls to appropriate PASSION run-time routines which carry

out I/O efficiently. The Compiler and Run-time Layers pass data distribution and

access pattern information to the Two-Phase Access Manager and the Prefetch Man-

ager. They optimize I/O using buffering, redistribution and � Prefetching strategies.

The PASSION run-time support system makes I/O optimizations transparent to users.

The run-time procedures can either be used together with a compiler to translate out-

of-core data parallel programs, or used directly by application programmers. Among

other optimizations it hides disk data distribution from the user, reorders I/O requests

to minimize seek time and prefetches disk data to hide I/O latency and performs� Collective I/O.

The run-time library routines can be divided into four main categories based on their

functionality:

Array Management/Access Routines handle the movement of data between in-

core and out-of-core arrays

Communication Routines perform collective communication of data in the out-of-

core array

Mapping Routines perform data and processor/disk mappings

Generic Routines perform computations on out-of-core arrays

For optimizing I/O PASSION uses � Two-Phase I/O, � Prefetching and � Data

Sieving.

PC-OPT see Prefetching

P 202

PDM (Parallel Disk Model)

type:
Definition

contact:
Jeffrey Scott Vitter, jsv@purdue.edu

description:
PDM provides an elegant and reasonably accurate model for analyzing the perfor-

mance of � EM (External Memory) Algorithms and Data Structures. It is a model for

developing optimal algorithms for two-level storage systems. The main properties of

magnetic disks and multiple disk systems are:

N = problem size (in units of data items),

M = internal memory size (in units of data items),

B = block transfer size (in units of data items),

D = number of independent disk drives,

P = number of CPUs,

Q = number of input queries (for a batched problem), and

Z = query output size (in units of data items),

where M � N, and 1 � DB � M � 2.

n
 N � B, m
 M � B, q
 Q � B, z
 Z � B to be the problem input size, internal memory

size, query specification size, and query output size, respectively, in units of disk

blocks.

Figure 4.53 (a) shows the model for P
 1, in which the D disks are connected to

a common CPU and (b) for P
 D, in which each of the D disks is connected to a

separate processor.

The primary measures of performance in PDM are:

� the number of I/O operations performed

� the amount of disk space used
� the internal (sequential or parallel) computation time

The PDM model can be generalized to the Hierarchical Memory Model that ranges

from registers at the small end to tertiary storage at the large end.

related work:� EM Algorithms and Data Structures

P 203

Figure 4.53: PDM: Two Configurations

citation:
[380], [381]

Persistent Archives

type:
Mass Storage System

contact:
Reagan Moore, moore@sdsc.edu

url:
http://www.sdsc.edu/NARA

description:
The Persistent Archive Research Group of the � GGF promotes the development of

an architecture for the construction of Persistent Archives. The term persistent is

applied to the concept of an archive to represent the management of the evolution of

the software and hardware infrastructure over time.

motivation:
The project is a multi-year effort aimed at demonstrating the viability of the use of

Data Grid technology to automate all of the archival processes. The ultimate goal of

the prototype Persistent Archive is to identify the key technologies that facilitate the

creation of a Persistent Archive of archival objects.

P 204

related work:� GGF, � SRB, � VDG

citation:
[235], [236], [237], [238], [258], [282]

details:
A Persistent Archive provides the mechanisms needed to manage technology evolu-

tion while preserving Digital Entities and their context. During the lifetime of the

Persistent Archive, each software and hardware component may be upgraded multi-

ple times. The challenge is creating an architecture that maintains the authenticity

of the archived documents while minimizing the effort needed to incorporate new

technology. Persistent Archives can be based on � VDGs and therefore the Persis-

tent Archive research group is examining how Persistent Archives can be built from� VDGs.

Data Grids provide a Logical Name Space into which Digital Entities can be regis-

tered. The Logical Name Space is used to support global, persistent identifiers for

each Digital Entity within the context of each Archival Collection. The Digital En-

tities are represented by their Logical Name, a Physical File Name, and, if desired,

an Object Identifier that is unique across Archival Collections. Data Grids map dis-

tributed state information onto the Logical Name Space for each Grid service.

A Persistent Archive manages Archival Collections of Digital Entities. The Archival

Collection itself can be thought of as a derived data product that results from the

application of Archival Processes to a group of constituent documents. The Archival

Processes generate the descriptive, provenance, and authenticity meta-data. The

Archival Collection is used to provide a context for the Digital Entities that are stored

in the archive. Discovery of an individual Digital Entity within an Archival Collec-

tion is accomplished by querying the descriptive meta-data.

Four basic categories of extended transport operations are collectively required by

Data Grids, digital libraries, and Persistent Archives.

� Byte-Level Access

� Latency Management Mechanisms

� Object-Oriented Access

� Heterogeneous System Access

P 205

Byte-Level Access transport operations correspond to the standard operations sup-

ported by Unix file systems. Latency Management transport operations are typically

operations that facilitate bulk data and bulk meta-data access and update. Object-

oriented Transport operations provide the ability to process the data directly at the

remote storage system. Transport operations related to access of heterogeneous sys-

tems typically involve protocol conversion and data repackaging.

To discover relevant documents, transport them from storage to the user, and interact

with storage systems for document retrieval, � VDGs provide the following methods:

Derived Data Product Access � VDGs provide direct access to the derived data

product when it exists. This implies the ability to store information about the

derived data products within a Collection that can be queried. A similar capa-

bility, implemented as a finding aid, is used to characterize the multiple data

Collections and contained data entities that are stored in a Persistent Archive.

The finding aid can be used to decide which archived Collection to instantiate

if the Collection is not already on-line.

Data Transport Data Grids provide transport mechanisms for accessing data in

a distributed environment that spans multiple administration domains. Data

Grids also provide multiple roles for characterizing the allowed operations on

the stored data, independently of the underlying storage systems.

Storage Repository Abstraction Data Grids provide the mechanisms needed to sup-

port distributed data access across heterogeneous data resources. Data Grids

implement servers that map from the protocols expected by each proprietary

storage repository to the storage repository abstraction. This makes it possible

to access Digital Entities through a standard interface, no matter where it is

stored.

The architecture of the Persistent Archive at SDSC is based on commercially avail-

able software systems and application-level software developed at SDSC. The com-

ponents include an archival storage system (IBM’s � HPSS), a data handling sys-

tem (SDSC’s � SRB), an object relational database (Oracle), collection management

software (SDSC’s Meta Information Catalog (MCAT) [225], collection instantiation

software (SDSC scripts), collection ingestion software (SDSC scripts), hierarchical

data model XML DTD, relational data model ANSI SQL Data Definition Language,

and DTD manipulation software (UCSD XML Matching and Structuring Language

(XMAS)).

P 206

Figure 4.54: Persistent Archive: Persistent Collection Process

Each Collection is implemented as a separate Data Grid, controlling and managing

the Digital Entities housed within that site. Digital Entities will be cross-registered

between the Collections, and replicated onto resources at other sites to ensure preser-

vation of both descriptive meta-data and the Digital Entities. The infrastructure will

contain mechanisms for data ingestion, persistent storage, and meta-data manage-

ment. The data ingestion tools will manage anomaly processing of digital objects

and their associated XML meta-data.

Petal

type:
Mass Storage System

contact:
Chandramohan A. Thekkath, thekkath@acm.org

url:
http://research.compaq.com/SRC/articles/199811/petal/

description:
Petal is a distributed block-level storage system that tolerates and recovers from any

single component failure, dynamically balances load between servers, and transpar-

ently expands in performance and capacity.

motivation:
The principal goal has been to design a storage system for heterogeneous environ-

ments that is easy to manage and that can scale gracefully in capacity and perfor-

mance without significantly increasing the cost of managing the system.

P 207

features:� tolerates and recovers from any single component failure, such as disk, server

or network

� can be geographically distributed to tolerate site failures such as power outages

and natural disasters

� transparently reconfigures to expand in performance and capacity as new servers

and disks are added

� uniformly balances load and capacity throughout the servers in the system

� provides fast, efficient support for backup and recovery in environments with

multiple types of clients, such as file servers and databases

� I/O rates of up to 3150 requests/sec and bandwidth up to 43,1 MB/sec

related work:� Frangipani

citation:
[206]

details:
As shown in Figure 4.55, Petal consists of a pool of distributed storage servers that

cooperatively implement a single, block-level storage system. Clients view the stor-

age system as a collection of virtual disks and access Petal services via a RPC in-

terface. A basic principle in the design of the Petal RPC Interface was to maintain

all state needed for ensuring the integrity of the storage system in the servers, and

maintain only hints in the clients. Clients maintain only a small amount of high-level

mapping information that is used to route read and write requests to the most appro-

priate server. If a request is sent to an inappropriate server, the server returns an error

code, causing the client to update its hints and retry the request.

The server software consists of the following modules:

Liveness Module This module ensures that all servers in the system will agree on

the operational status, whether running or crashed, of each other. This service

is used by the other modules, notably the Global State Manager, to guarantee

continuous, consistent operation of the system as a whole in the face of server

and communication failures.

P 208

Figure 4.55: Petal: Physical View

Global State Manager Petal maintains information that describes the current mem-

bers of the storage system and the currently supported virtual disks. This in-

formation is replicated across all Petal servers in the system. The Global State

Manager is responsible for consistently maintaining this information.

Data Access and Recovery Modules These modules control how client data is dis-

tributed and stored in the Petal storage system. A different set of data access

and recovery modules exists for each type of redundancy scheme supported by

the system.

Virtual to Physical Translation Module This module contains common routines

used by the various data access and recovery modules. These routines trans-

late the virtual disk offsets to physical disk addresses.

PFS see Parrot

PHASE-LRU see Prefetching

Pipelined SRB see SRB

PPFS II (Portable Parallel File System)

type:
Intelligent I/O System

contact:
Daniel A. Reed, reed@cs.uiuc.edu

url:
http://www-pablo.cs.uiuc.edu/Project/PPFS/History/NEWPPFSOverview.htm

P 209

Figure 4.56: PPFS II: Real-Time Control Component Architecture

description:
PPFS II is a portable parallel file system with real-time control and adaptive policy

control capabilities.

motivation:
PPFS II evolved from a desire to explore the design space for scalable I/O systems.

features:
adaptive performance optimization

related work:� Pablo

citation:
[119], [120], [178]

details:
PPFS II utilizes the Autopilot [38] Real-Time Adaptive Resource Control Library

and the Nexus [250] distributed computing infrastructure. Autopilot provides a flex-

ible set of performance sensors, decision procedures, and policy actuators to realize

adaptive control of applications and resource management policies on both parallel

and wide-area distributed systems. Figure 4.56 illustrates the real-time control com-

ponent architecture of PPFS II. Qualitative application behaviour is captured by user

hints and access pattern classification. Adaptive policy selection is achieved with a

set of fuzzy logic rules.

P 210

Prefetching

type:
Access Anticipation Method

contact:
Rajeev Thakur, thakur@mcs.anl.gov

description:
The time taken by a program can be reduced if it is possible to overlap computation

with I/O in some fashion. A simple way of achieving this is to issue an asynchronous

I/O request for the next data immediately after the current data has been read. This

is called Data Prefetching. Since the read request is asynchronous, the reading of

the next data can be overlapped with the computation being performed on the cur-

rent data. If the computation time is comparable to the I/O time, this can result in

significant performance improvements.

In [223] the authors concentrate on the patterns of file access and how Prefetching

policies can be tuned to optimize.

Applying the techniques of Prefetching and caching to Parallel I/O systems is fun-

damentally different from that in systems with a single disk. Intuitively appealing

greedy prefetching policies that are suitable for single-disk systems can have poor

worst-case and average-case performance for multiple disks. Similarly, traditional

caching strategies do not account for parallelism in the I/O accesses and, conse-

quently, may not perform well in a multiple-disk system. PC-OPT [191] was devel-

oped to optimize Prefetching and caching in the parallel disk model (� PDM).

PHASE-LRU [190] is another simple Prefetching and caching algorithm based on� PDM using bounded look-ahead.

related work:
Lazy Prefetching see � Greedy Writing, PC-OPT [191], PHASE-LRU [190]

citation:
[349]

prudentPrefetching see greedyWriting

P 211

PVFS1 (Parallel Virtual File System)

type:
File System

contact:
Rob Ross, rross@mcs.anl.gov

url:
http://www.pvfs.org

description:
PVFS1 is a scalable parallel file system for PC clusters. Its priority is placed on

providing high performance for parallel scientific applications.

motivation:
The goal of the PVFS1 project is to explore the design, implementation and uses of

Parallel I/O.

features:� compatibility with existing binaries

� ease of installation

� user-controlled striping of files across nodes

� multiple interfaces, including a � MPI-IO interface via � ROMIO

� utilizes commodity network and storage hardware

related work:� PVFS2

citation:
[71], [72]

details:
There are four major components to the PVFS1 system:

� Metadata Server (mgr)

� I/O Server (iod)

� PVFS1 Native API (libpvfs)

� PVFS1 Linux Kernel Support

P 212

The first two components are daemons which run on nodes in the cluster. The Meta-

data Server, named mgr, manages all file meta-data for PVFS1 files. The second

daemon is the I/O Server, or iod. The I/O Server handles storing and retrieving of

file data stored on local disks connected to the node. the PVFS1 Native API provides

user-space access to the PVFS1 servers. This library handles the scatter/gather op-

erations necessary to move data between user buffers and PVFS1 servers, keeping

these operations transparent to the user. Finally the PVFS1 Linux Kernel Support

provides the functionality necessary to mount PVFS1 file systems on Linux nodes.

This allows existing programs to access PVFS1 files without any modification.

PVFS2 (Parallel Virtual File System)

type:
File System

contact:
Rob Ross, rross@mcs.anl.gov

url:
http://www.pvfs.org

description:
PVFS2 is a parallel file system for Linux clusters.

motivation:
PVFS2 is being implemented to overcome the shortcomings of PVFS1, which is too

socket-centric, too obviously single-threaded, won’t support heterogeneous systems

with different endian-ness, and relies too thoroughly on OS buffering and file system

characteristics.

features:� modular networking and storage subsystems

� powerful request format for structured � Noncontiguous Data Accesses

� flexible and extensible data distribution modules

� distributed meta-data

� stateless servers and clients (no locking subsystem)

� explicit concurrency support

� tunable semantics

P 213

� flexible mapping from file references to servers

� tight � MPI-IO integration

� support for data and meta-data redundancy

related work:� PVFS1

citation:
[294]

details:
A PVFS2 file system may consist of the following pieces (some are optional): the

pvfs2-Server, System Interface, Management Interface, Linux Kernel Driver, pvfs2-

Client, and ROMIO PVFS2 Device.

Unlike � PVFS1,which has two server processes (mgrs, iods), in PVFS 2 there is

exactly one type of server process, the pvfs2-Server. A configuration file tells each

pvfs2-Server what its role will be as part of the parallel file system. There are two

possible roles, I/O Server and Metadata Server, and any given pvfs2-Server can fill

one or both of these roles. I/O servers store the actual data associated with each file,

typically striped across multiple servers in round-robin fashion. Metadata Servers

store meta information about files, such as permissions, time stamps, and distribution

parameters. Metadata Servers also store the directory hierarchy.

The System Interface is the lowest level user space API that provides access to the

PVFS2 file system. It is implemented as a single library, called libpvfs2. The System

Interface API does not map directly to POSIX functions. In particular, it is a stateless

API that has no concept of open(), close(), or file descriptors. This API does,

however, abstracts the task of communicating with many servers concurrently.

The Management Interface is a supplemental API that adds functionality that is nor-

mally not exposed to any file system users.

The Linux Kernel Driver is a module that can be loaded into an unmodified Linux

kernel in order to provide Virtual File System (VFS) support for PVFS2.

The ROMIO PVFS2 Device is a component of the � ROMIO � MPI-IO implemen-

tation that provides � MPI-IO support for PVFS2.

An arbitrary number of different network types can be supported through an abstrac-

tion known as the Buffered Messaging Interface (BMI).

R 214

R

RAID-x

type:
Storage System

contact:
Kai Hwang, kaihwang@usc.edu

description:
RAID-x is a new orthogonal architecture for building distributed disk arrays in mul-

ticomputer clusters.

motivation:
The purpose of RAID-x is to achieve high I/O performance in scalable cluster com-

puting.

features:� single address space

� high-availability support

� performance and size scalability

� high-compatibility with cluster applications

related work:� Petal, RAID [83]

citation:
[181]

details:
In Figure 4.57 the orthogonal mapping of data blocks and their images in RAID-x is

illustrated. The data blocks are denoted as Bi in the white boxes.

The mirrored images are marked with Mi in shaded boxes. The data blocks are

striped across the disks horizontally on the top half of the disk array. Their images are

clustered together and copied in a single disk vertically. All image blocks occupy the

lower half of the disk array. This horizontal striping and vertical mirroring constitute

the orthogonality property. Four data stripes and their images are illustrated by four

R 215

Figure 4.57: RAID-x: Orthogonal Striping and Mirroring

Figure 4.58: RAID-x: 4 x 3 Architecture with Orthogonal Striping and Mirroring

different shading patterns. On a RAID-x, the images can be copied and updated at

the background, thus reducing the access latency. The top data stripe consists of the

blocks B0, B1, and B2 and the images of these blocks, M0, M1 and M2, are stored in

Disk 3. Similarly, the images of the second stripe B3, B4, and B5 are mapped to disk

2, etc. The rule of the thumb is that no data block and its image should be mapped

to the same disk. Reading or writing can also achieve full bandwidth across all disks

per each row. For example, all 4 blocks (B0, B1, B2, B3) in each row of Figure 4.57

forms a data stripe. Their images (M0, M1, M2, M3) are written into disk 2 and disk

3 in a delayed background time.

Figure 4.58 shows the orthogonal RAID-x architecture with 3 disks attached to each

node. All disks within the same horizontal stripe, (B0, B1, B2, B3) are accessed in

parallel. Consecutive stripe groups, such as (B0, B1, B2, B3) and (B4, B5, B6, B7),

R 216

etc are accessed in a pipelined fashion, because multiple disks are attached on each

SCSI bus.

To reduce the latency of remote disk access cooperative disk drivers (CDDs) are

used. There is no need to use a central server. Each CDD maintains a peer-to-peer

relationship with other CDDs. The idea is to redirect all I/O requests to remote disks.

The results of the requests, including the requested data, are transferred back to the

originating nodes. This mechanism gives the illusion to the OSs that the remote disks

are attached locally.

Reactive Scheduling

type:
Application Level Method

contact:
Robert Ross, rross@mcs.anl.gov

description:
Reactive Scheduling is a decentralized, server-side approach to optimization in Par-

allel I/O. The focus is on utilizing system state and workload characteristic data

available locally to servers, to make decisions on how to schedule the service of

application requests.

motivation:
The emergence of new and different platforms has created a situation where the tra-

ditional Parallel I/O optimizations, while useful in some contexts, are not flexible

enough to be applied in all cases. What is needed is a more general approach to

optimization in Parallel I/O. Such an approach should recognize the components of

the system and the parameters of workloads that determine performance: disks, net-

work, and cache. It should provide a mechanism for determining what resources are

currently limiting the performance of the system as a whole based on both system

parameters and workload characteristics. Finally, using this information, it should

schedule I/O operations and apply an I/O technique to best utilize the available re-

sources.

features:� implementation on top of � PVFS1

� 4 selection algorithms

R 217

� extendable model

� tested with contiguous, strided and multiple random block access

related work:
CHARISMA [80] was a project designed to characterize the behaviour of production

parallel workloads at the level of individual reads and writes.

The implementation of � PPFS II includes many advances in adaptive cache policy

selection and adaptive disk striping.

citation:
[296]

details:
The Reactive Scheduling approach consists of three components:

� a set of Scheduling Algorithms

� a System Model

� a Selection Mechanism

The Scheduling Algorithms give options in terms of how the collection of requests

that the system is presented at any given time is serviced, allowing to tailor service

to optimize more for disk access, network access, or cache utilization. The Sys-

tem Model uses system-specific known values such as network and disk bandwidth,

system state such as cache availability, and information describing the workload in

progress to predict how the available optimizations would perform if utilized. The

Selection Mechanism maps available system and workload information into the pa-

rameters used by the model. It then uses the model to predict performance using

each of the available optimizations and chooses the one that it predicts will perform

best. Together these three components provide a means for increasing performance

in Parallel I/O systems by adapting the scheduling of service to best fit the workload

presented to the system.

Reverse Aggressive Algorithm see greedyWriting

R 218

RFT (Reliable File Transfer)

type:
Data Transfer Protocol

contact:
Ravi K. Madduri, madduri@mcs.anl.gov

url:
http://www-unix.globus.org/ogsa/docs/alpha3/services/reliable transfer.html

description:
The RFT service is an � OGSA based service that provides interfaces for controlling

and monitoring third-party file transfers using � GridFTP servers.

At the application level the file transfer client program performs the transfer. At

the network level information is received from TCP. RFT monitors the state of the

transfer and recovers from a variety of failures.

related work:� Globus, � GridFTP

citation:
[222]

RIO (Remote I/O)

type:
I/O Library

contact:
Ian Foster, foster@mcs.anl.gov

url:
http://www-fp.globus.org/details/rio.html

description:
RIO implements the � ADIO abstract I/O device interface specification. With the

RIO library remote data, potentially in parallel file systems, can be located.

The RIO implementation comprises two components, as shown in Figure 4.59. The

RIO Client defines a remote I/O device for � ADIO. This component translates� ADIO requests that name a remote file into appropriate communications to a RIO

R 219

Figure 4.59: RIO: Mechanism

Server. The Server provides an interface to a particular file system, and serves re-

quests from remote RIO Clients that need to access that file system. The RIO Server

component itself calls � ADIO routines to access different file systems.

related work:� GASS, � Globus

citation:
[138], [292]

RLI (Replica Location Index) see Giggle

RLS (Replica Location Service) see Giggle

ROMIO

type:
I/O Library

contact:
romio-maint@mcs.anl.gov

url:
http://www.mcs.anl.gov/romio/

description:
ROMIO is a high-performance, portable implementation of � MPI-IO, the I/O chap-

ter in MPI-2 [243]. ROMIO is optimized for � Noncontiguous Data Access patterns,

which are common in Parallel applications. It has an optimized implementation

of � Collective I/O, an important optimization in Parallel I/O. A key component of

ROMIO that enables a portable � MPI-IO implementation is an internal abstract I/O

device layer called � ADIO. ROMIO 1.2.5.1 includes everything defined in � MPI-

I/O except support for file interoperability and user-defined error handlers for files.

R 220

related work:� ADIO, � MPI-IO

citation:
[352], [353], [354], [355], [357]

S 221

S

SAM (Sequential Data Access via Meta-Data)

type:
Data Access System

contact:
Lee Lueking, lueking@fnal.gov

url:
http://d0db.fnal.gov/sam/

description:
SAM is a file based data management and access layer between the storage manage-

ment system and the data processing layers.

motivation:
The SAM system was developed at Fermilab to accommodate the high volume data

management requirements for Run II [298] physics, and to enable streamlined access

and mining of these large datasets. The SAM data management system is used for

all Dzero [117] data cataloging, storage, and access. It is largely devoted to transpar-

ently delivering and managing caches of data.

features:� clustering the data onto tertiary storage in a manner corresponding to access

patterns

� caching frequently accessed data on disk or tape

� organizing data requests to minimize tape mounts

� estimating the resources required for file requests before they are submitted

application:
Run II [298]

related work:� Enstore

citation:
[45], [46], [47]

S 222

Figure 4.60: SAM: Station Components

details:
The architecture of the system is illustrated in Figures 4.60 and 4.61. The server

elements which comprise each station are illustrated in Figure 4.60. Cache disks

over which SAM is given exclusive control are managed by the Station and Cache

Manager. This element is also responsible for starting and communicating with the

Project Masters, which are in turn responsible for presenting data files to the user

jobs that consume them. If the files already exist in the local cache, their locations

are passed to the consumer and the files are locked in place while being used. If

the files are not present in the local cache, they are brought in by Stagers from other

stations or MSSs, replacing files which are no longer needed in the local cache. The

File Storage Server (FSS) manages the storage of files. When a request to store a file

to the MSS is made, the description of the file is added to the SAM meta-data, and

the job is placed in a queue for copy to the designated MSS.

SAM Stations are network-distributed (Figure 4.61), and can receive data from, or

route data through, other stations. Stations can also store data to local (relative to

site) Hierarchical Storage Systems (HSSs) or forward data through other stations for

storage in remote HSSs. In the current architecture there are several services shared

among all stations, these include the:

� CORBA Name Service

� Central Oracle Database

� Global Resource Manager

S 223

Figure 4.61: SAM: Overview of Distributed Components

� Log Server

The Name Service is the switchboard to register and receive addresses for the en-

tire distributed system. The Central Database contains all meta-data for each file

registered with the system, as well as station configuration, cache, and operational

information. The Global Resource Manager reviews all requests for all stations and

optimizes file deliveries. The Log Server receives logging information from all sta-

tions and records them in a central log file.

Sandboxing see � Entropia

SDDS (Scalable Distributed Data Structures)

type:
Data Format

contact:
Witold Litwin, Witold.Litwin@dauphine.fr

url:
http://ceria.dauphine.fr/SDDS-bibliograhie.html

description:
SDDSs allow for files whose records reside in Buckets at different server sites. The

files support key-based searches and parallel/distributed scans with function (query)

shipping.

S 224

An SDDS file is manipulated by the SDDS client sites. Each client has its own

addressing schema called Image that it uses to access the correct server where the

record should be. As the existing Buckets fill up, the SDDS splits them into new

Buckets. The clients are not made aware synchronously of the splits. A client may

have an outdated image and address an incorrect server. An SDDS server has the

built-in capability to forward incorrect queries. The correct server sends finally the

Image Adjustment Message (IAM) to the client. The information in an IAM avoids at

least repeating the same error twice. It does not necessarily make the image totally

accurate.

related work:� DDS, � LH � RS

citation:
[217]

SDM (Scientific Data Manager)

type:
Mass Storage System

contact:
Alok Choudhary, choudhar@ece.nwu.edu

description:
SDM is a software system for storing and retrieving data that aims to combine the

good features of both file I/O and databases.

motivation:
There were three major goals in developing SDM:

High-Performance I/O To achieve high-performance I/O a parallel file I/O system

is used to store the data and � MPI-IO is used to access this data.

High-Level API SDM provides an API that does not require the user to know either� MPI-IO or databases. The user can specify the data with a high-level descrip-

tion language. SDM translates the user’s requests into appropriate � MPI-IO

calls.

Convenient Data-Retrieval Capability SDM allows the user to specify names and

other attributes to be associated with a dataset. The user can retrieve a dataset

by specifying a unique set of attributes for the desired data.

S 225

Figure 4.62: SDM: Architecture

features:� combines the good features of high-performance file I/O and databases

� provides a high-level API to the user

� takes advantage of various I/O optimizations in a manner transparent to the user

� optimization for irregular applications

application:
Scientific Data Management System for Irregular Applications [255]

related work:� ADR, � SRB

citation:
[254], [256]

details:
SDM provides a high-level, user-friendly interface. Internally, SDM interacts with a

database to store application-related meta-data and uses � MPI-IO to store real data

on a high-performance parallel file system. As a result, users can access data with

the performance of parallel file I/O, without having to bother with the details of file

I/O. Figure 4.62 illustrates the basic idea.

For regular applications SDM uses three database tables for storing meta-data: a Run

Table, an Access Pattern Table and an Execution Table. These tables are made for

S 226

each application. Each time an application writes datasets, SDM enters the problem

size, dimension, current date, and a unique identification number to the Run Table.

The Access Pattern Table includes the properties of each dataset, such as data type,

storage order, data access pattern, and global size. SDM uses this information to

make appropriate � MPI-IO calls to access the real data. The Execution Table stores

a globally determined file offset denoting the starting offset in the file of each dataset.

For irregular applications additional tables for partitioning the index and the data

arrays are used.

SDM supports three different ways of organizing data in files:

Level 1 Each dataset generated at each time step is written to a separate file.

Level 2 Each dataset (within a group) is written to a separate file, but different iter-

ations of the same dataset are appended to the same file.

Level 3 All iterations of all datasets belonging to a group are stored in a single file.

Server-Directed I/O

type:
Device Level Method

contact:
Marianne Winslett, winslett@uiuc.edu

description:
Server-Directed I/O is a � Collective I/O technique proposed by the � Panda re-

search group at the University of Illinois, which is a derivative of � Disk-Directed

I/O. Like � Disk-Directed I/O, in Server-Directed I/O, I/O servers actively optimize

the disk accesses by utilizing the data distribution in memory and on disk. However,

instead of using physical disk block locations to reorder disk accesses as � Disk-

Directed I/O does, Server-Directed I/O uses logical file offsets and performs sequen-

tial file I/O, relying on the underlying local file system which is often optimized

for such access patterns. This technique was implemented in the � Panda Parallel

I/O library, and tested with different platforms, array sizes, data distributions, and

processor configurations. Experimental results show that without actual disk block

layout information, almost the full capacity of the disk subsystem can be utilized

with Server-Directed I/O.

S 227

related work:� Disk-Directed I/O, � Panda, � Two-Phase I/O

citation:
[312], [313]

SFIO (Striped File I/O)

type:
I/O Library

contact:
Emin Gabrielyan, Emin.Gabrielyan@epfl.ch

description:
SFIO is a Striped File I/O library for Parallel I/O within an MPI [241] environment.

motivation:
SFIO aims at offering scalable I/O throughput by using small striping units.

related work:� MPI-IO

citation:
[145], [146]

details:
The SFIO library is implemented using MPI-1.2 [241] message passing calls. The

local disk access calls are non-portable, however they are separately integrated into

the source for the Unix and the Windows NT versions. The SFIO parallel file striping

library offers a simple Unix like interface. To route calls to the SFIO interface the� ADIO layer of MPICH [242] was modified.

SFIO is not a block-oriented library. The amount of data accessed on the disk and

transferred over the network is the size specified at the application level. The func-

tional architecture of the SFIO library is shown in Figure 4.63. On top of the graph

is the application’s interface to data access operations and at the bottom are the I/O

node operations. mread and mwrite are non-optimized single block access func-

tions and the mreadc and mwritec operations are their optimized counterparts. The

mreadb and mwriteb operations are multi-block access functions. All the interface

access functions are routed to the mrw cyclical distribution module. This module is

responsible for data striping. The network communication and disk access optimiza-

tion is demonstrated by the remaining part of the graph.

S 228

Figure 4.63: SFIO: Functional Architecture

S 229

Slice

type:
Storage System

contact:
Jeff S. Chase, chase@cs.duke.edu

url:
http://www.cs.duke.edu/ari/slice/

description:
Slice is a scalable network I/O service based on � Trapeze.

motivation:
The goal of the Slice architecture is to provide a network file service with scalable

bandwidth and capacity while preserving compatibility with off-the-shelf clients and

file server appliances.

features:� storage at network speed

� Internet/LAN as a scalable storage backplane

� decentralized file service structure

� intelligent block placement and movement

related work:� TPIE, � Trapeze

citation:
[22]

details:
The Slice file service is implemented as a set of loadable kernel modules in the

FreeBSD [143] OS. A Slice is configured as a combination of server modules that

handle specific file system functions: directory management, raw block storage, effi-

cient storage of small files, and network caching. Servers may be added as needed to

scale different components of the request stream independently, to handle a range of

data-intensive and meta-data-intensive workloads. Slice is designed to be compatible

with standard NFS [302] clients, using an interposed network-level packet transla-

tor to mediate between each client and an array of servers presenting a unified file

system view.

S 230

Spitfire

type:
Mass Storage System

contact:
Diana Bosio, Diana.Bosio@cern.ch

url:
http://spitfire.web.cern.ch/Spitfire/

description:
Spitfire provides a uniform way to access many RDBMSs through standard Grid

protocols and well-published Grid interfaces. Spitfire is a project of Work Package

WP2 within the � EDG project.

motivation:
Short lived, small amounts of data and meta-data that needs to be highly accessible

to many users and applications. Throughout the Grid there is a need for an abstract

high-level Grid database interface.

application:
LHC [211]

related work:� EDG

citation:
[52]

details:
The Spitfire middleware is placed between client and RDBMS. The JDBC API [41]

defines a uniform vendor independent way to communicate with a wide range of

RDBMSs. The Spitfire server is implemented as a Java servlet running within a

container of a virtual hosting environment such as the Apache Tomcat servlet con-

tainer [26] or a commercial servlet container. The architecture can be summarized

as follows:

SOAP/HTTP(S) JDBC

Client ��������� Spitfire ��������� RDBMS

Database services are implemented as a Java servlet through AXIS [25]. SOAP [328]

is used for remote messaging to ensure interoperability. Three SOAP services are

S 231

defined: a Base service for standard operations, an Admin service for administrative

access and an Info service for information on the database and its tables.

SRB (Storage Resource Broker)

type:
Data Access System

contact:
Arcot Rajasekar, sekar@sdsc.edu

url:
http://www.npaci.edu/dice/srb

description:
The SDSC SRB is a client-server middleware that provides a uniform interface for

connecting to heterogeneous data resources over a network and accessing replicated

datasets. SRB, in conjunction with the Meta Information Catalog (MCAT) [225],

provides a way to access datasets and resources based on their attributes rather than

their names or physical locations.

motivation:
SRB provides seamless access to data stored on a variety of storage resources includ-

ing file systems, database systems and archival storage systems.

features:� uniform storage interface

� Meta Information Catalog (MCAT)

� the Collection Hierarchy

� hierarchical access control

� Tickets: a flexible mechanism for controlling read access to data

� Physical Storage Resources (PSRs):

– with file system interfaces

– database system interfaces

� Logical Storage Resources (LSRs): combination of one or more PSRs into a

single LSR

� proxy operations: data handling operations without involving the client

S 232

� federated operations: Access to distributed storage resources

� authentication and encryption

� activity logs

� types of applications

� peer-to-peer federation of logical name spaces (meta data catalogs)

application:
Projects using SRB can be found at the following website:

http://www.npaci.edu/dice/srb/Projects/main.html

related work:� DPSS, � GASS, � GridFTP, � HPSS

citation:
[48], [51], [204], [245], [283], [284]

details:
As shown in Figure 4.64, applications use the SRB middleware to access heteroge-

neous storage resources using a client-server network model, which consists of three

parts: SRB Clients, SRB Servers, and MCAT.

The SRB Server consists of one or more SRB Master Daemon processes with SRB

Agent processes that are associated with each Master, which controls a distinct set of

storage resources. Each time a client opens a connection to a master a SRB Agent is

spawned.

Two types of API are provided on the client side:

� high-level API: functions like query, update meta-data, connecting to a server

and creation of data items

� low-level API: direct storage operations like open, read & delete

MCAT is used to record location information for PSRs as well as for data items. The

catalog also contains meta-data that is used for implementing hierarchical access

control, the collection / subcollection hierarchy, and the ticket mechanism.

Pipelined SRB: Two new funcions srbFileChunkWrite and srbFileChunkRead

have been added to the original � SRB to enable pipelining which improves the

performance for remote read/writes larger than 1MB up to 50% [245]. The function

srbFileChunkRead sends a request to the server with information on the file size,

S 233

Figure 4.64: SRB: Process Model

and the number of portions, or chunks, that it should be split into for the pipelining.

The server queues the appropriate number of asynchronous reads on its local disk.

After sending the initial read request, the client application waits for the chunks of

data. Figure 4.65 (a) shows the sequence of requests between the client and the

server. In calling the srbFileChunkWrite function the user specifies the name of

the file, the size of the file, and can choose the number of chunks or pieces that

should be used to split the total data. Figure 4.65 (b) shows the sequence of requests

between the client and the server.

SRM (Storage Resource Manager)

type:
Data Access System

contact:
Arie Shoshani, shoshani@lbl.gov

url:
http://sdm.lbl.gov/projectindividual.php?ProjectID=SRM

description:
SRMs dynamically optimize the use of storage resources of distributed large datasets.

S 234

Figure 4.65: SRB: Pipelined SRB Sequence

motivation:
The access to data is becoming the main bottleneck in data-intensive applications

because the data cannot be replicated in all sites. SRMs are designed to dynamically

optimize the use of storage resources to help unclog this bottleneck.

related work:� STACS

citation:
[324]

details:
SRMs are middleware software modules whose purpose is to manage in a dynamic

fashion what resides on the storage resource at any one time. SRMs do not perform

file movement operations, but rather interact with OSs and MSSs to perform file

archiving and file staging, and invoke middleware components (such as � GridFTP)

to perform file transfer operations. There are several types of SRMs:

Disk Resource Manager (DRM) dynamically manages a single shared disk cache

(a single disk, a collection of disks, or a RAID [83] system)

Tape Resource Manager (TRM) middleware layer that interfaces to MSSs such as� HPSS, � Enstore

Hierarchical Resource Manager (HRM) TRM that has a staging disk cache for its

use. It can be viewed as a combination of a DRM and a TRM. It can use the

disk cache for prestaging files for clients, and for sharing files between clients.

S 235

STACS (Storage Access Coordination System)

type:
Data Access System

contact:
Arie Shoshani, shoshani@lbl.gov

url:
http://sdm.lbl.gov/projectindividual.php?ProjectID=STACS

description:
STACS is part of the HEP STAR [332] experiment. It has to determine which files

contain the experiment’s reconstructed data (or the raw data if they are requested),

and to schedule their caching from tape for processing.

motivation:
The need for smart cache management systems, that coordinate both the retrieval of

data from tapes and the use of the restricted disk cache.

application:
PHOENIX [274], STAR [332]

related work:� SRM

citation:
[57]

details:
The STACS architecture consists of four modules that can run in a distributed envi-

ronment:

� Query Estimator (QE)

� Query Monitor (QM)

� File Catalog (FC)

� Cache Manager (CM)

The physicists interact with STACS by issuing a query that is passed to the QE. If

the user finds the time estimate reasonable than a request to execute the query is

issued and the relevant information about files and events is passed to the QM. The

QM handles such requests for file caching for all the users that are using the system

S 236

Figure 4.66: STACS: Architecture

concurrently. After the QM determines which files to cache, it passes the file requests

to the CM one at a time. The CM is the module that interfaces with the MSS, which

in the case of STAR [332] is � HPSS. To be able to transfer the file from � HPSS to

local disk the CM needs to convert the logical name into a real physical name. This

mapping can be obtained by consulting the FC, which provides a mapping of an file

identifier into both a � HPSS file name and a local disk file name (see Figure 4.66).

Stream-Based I/O

type:
General Method

contact:
Robert B. Ross, rross@mcs.anl.gov

description:
Stream-Based I/O attempts to address network bottlenecks in Parallel I/O systems.

It is the concept of combining small accesses into more efficient, large ones applied

to data transfer over the network. Data being moved between clients and servers is

considered to be a stream of bytes regardless of the location of data bytes within a

file. This is similar to a technique known as message coalescing in interprocessor

communication. These streams are packetized by underlying network protocols (e.g.

S 237

TCP) for movement across the network. Control messages are placed only at the

beginning and end of the data stream in order to minimize their effects on packeti-

zation. This is accomplished by calculating the stream data ordering on both client

and server. This is strictly a technique for optimizing network traffic. When cou-

pled with a server that focuses on the network (almost network directed I/O), peak

performance can be maintained for a variety of workloads, particularly when net-

work performance lags behind disk performance or when most data on I/O servers is

cached.

related work:� Data Sieving, � Disk-Directed I/O, � PVFS1, � Server-Directed I/O, � Two-

Phase I/O

citation:
[297]

�
ST XXL �

type:
I/O Library

contact:
Roman Dementiev, dementiev@mpi-sb.mpg.de

url:
http://www.mpi-sb.mpg.de/˜rdementi/stxxl.html

description:� STXXL � implements algorithms and data structures from the standard template li-

brary STL for massive datasets. It consists of an Asynchronous I/O Primitives Layer

(files, I/O requests, disk queues, completion handlers), a Block Management Layer

(typed block, block manager, buffered streams, block prefetcher, buffered block

writer), a STL-User Layer (containers, algorithms) and a Streaming Layer (pipelined

sorting, zero-I/O scanning).

The Asynchronous I/O Primitives Layer, the lowest layer of � ST XXL � , supports ef-

ficient asynchronous I/O that is currently implemented using multi-threading and

unbuffered blocking file system I/O. From the higher layers, (pipelined) sorting,

(pipelined) scanning and some containers (vectors, stacks, priority queues) are sup-

ported.
� STXXL � has the following performance features:

S 238

� transparent support of multiple disks

� variable block lengths

� overlapping of I/O and computation

� prevention of OS file buffering overhead

� algorithm pipelining

related work:� LEDA-SM

citation:
[110]

Sub-Filing

type:
Application Level Method

contact:
Gokhan Memik, memik@ece.nwu.edu

description:
Sub-Filing is an optimization technique invisible to the user used in � April, helping

to efficiently manage the storage hierarchy which can consist of a tape sub-system,

a disk sub-system and a main-memory. Each global tape-resident array is divided

into Chunks, each of which is stored in a separate sub-file on tape. The Chunks

are of equal sizes in most cases. Figure 4.67 shows a two-dimensional global array

divided into 64 Chunks. Each Chunk is assigned a unique chunk coordinate (x1, x2),

the first Chunk having (0,0) as its coordinate. A typical access pattern is shown in

Figure 4.68. In this access a small two-dimensional portion of the global array is

requested. In receiving such a request, the library performs three important tasks:

1. determining the sub-files that collectively contain the requested portion (called

cover)

2. transferring the sub-files that are not already on disk from tape to disk

3. extracting the required data items (array elements) from the relevant sub-files

from disk and copying the requested portion to a buffer in memory provided by

the user call

S 239

Figure 4.67: Sub-Filing: A Global Tape-Resident Array Divided into 64 Chunks

Figure 4.68: Sub-Filing: An Access Pattern and its Cover

S 240

related work:� April

citation:
[229]

Sun HPC PFS(Parallel File System)

type:
File System

description:
Sun HPC PFSs are based on three abstract entities: PFS I/O Servers, Storage Ob-

jects, and the PFS themselves. A PFS I/O Server is simply a Sun Ultra HPC node

that has been configured in the RTE with additional attributes that enable it to par-

ticipate with other PFS I/O Servers in the distributed storage and retrieval of PFS.

A PFS I/O Server also differs from other nodes in that it runs a PFS I/O Daemon,

which manages the storage and retrieval of data to and from its portion of the parallel

file systems. Certain other attributes are also defined for the file system, such as the

amount of memory on each PFS I/O Server that is reserved for I/O buffering and the

network interface assigned to each PFS I/O Server.

A Storage Object is an RTE abstraction that represents one portion of a parallel file

system–that is, the portion of a file system that resides on a particular storage device

and is managed by the PFS I/O Daemon associated with that device. To create a

specific parallel file system, the RTE is given a name and a set of storage objects

to be associated with that file system. File system naming, Storage Object associa-

tions, and the other configuration tasks involved in creating and defining parallel file

systems are all done using tmadmin commands within the PFS context.

related work:� PVFS2

citation:
[335]

T 241

T

TIP (Transparent Informed Prefetching and Caching)

type:
Access Anticipation Method

contact:
R. Hugo Patterson, rhp@acm.org

url:
http://www.pdl.cmu.edu/TIP/index.html

description:
TIP evolved out of a desire to reduce read latency. It uses a system performance

model to estimate the benefit of using a buffer for � Prefetching and the cost of

taking a buffer from the cache. The estimates are computed dynamically and buffer

is reallocated from the cache for � Prefetching when the benefit is greater than the

cost.

Figure 4.69: TIP: Estimation

As shown in Figure 4.69, the TIP system architecture includes three key components:

� Independent Estimators dynamically estimate either (1) the benefit (reduction

in I/O service time) of allocating a buffer for � Prefetching or a demand ac-

cess, or (2) the cost (increase in I/O service time) of taking a buffer from the

Least-Recently-Used (LRU) queue or the cache of hinted blocks. Because the

estimators are independent, they are relatively simple. Estimator independence

T 242

also makes the system extensible because the addition of a new estimator does

not require changes in the existing ones.

� A Common Currency for the expression of the cost and benefit estimates allows

the comparison of the independent estimates at a global level.

� An efficient Allocation Algorithm finds the globally least valuable buffer and

reallocates it for the greatest benefit when the estimated benefit exceeds the

anticipated cost.

related work:� Prefetching

citation:
[270]

TPIE (Transparent Parallel I/O Environment)

type:
Intelligent I/O System

contact:
Lars Age, large@cs.duke.edu

url:
http://www.cs.duke.edu/TPIE/

description:
TPIE is designed to allow programmers to write high-performance I/O-efficient pro-

grams for a variety of platforms [333, page 149]. The first development phase fo-

cused on supporting algorithms with a sequential I/O pattern and the second on sup-

porting online I/O-efficient data structures.

motivation:
The goal TPIE is to provide a portable, extensible, flexible, and easy to use C++ pro-

gramming environment for efficiently implementing I/O algorithms and data struc-

tures for the � PDM.

related work:� geo*, � LEDA-SM, � PDM

citation:
[28], [376]

T 243

Figure 4.70: TPIE: Structure of the Kernel

details:
TPIE is a templated C++ library consisting of a kernel and a set of I/O-efficient

algorithms and data structures implemented on top of it. The kernel is responsible

for abstracting away the details of the transfers between disk and memory, managing

data on disk and in main memory, and providing a unified programming interface

simulating the � PDM. Each of these tasks are performed by a separate module

inside the kernel, resulting in a highly extensible and portable system.

The TPIE library has been built in two phases. The first phase was initially developed

for algorithms based on sequential scanning, like sorting, permuting, merging and

distributing. In thisStream-Based View of I/O, the computation can be viewed as a

continuous process in which data is fed in streams from an outside source and streams

of results are written behind. The TPIE kernel designed in this phase consists of three

modules: the Stream-Based Block Transfer Engine (BTE), responsible for packaging

data into blocks and performing I/O transfers, the Memory Manager (MM), respon-

sible for managing main memory resources, and the Application Method Interface

(AMI), which provides the high-level interface to the stream functionality provided

by the BTE and various productivity tools for scanning, permutation routing, merg-

ing, sorting, distribution, and batch filtering.

I/O-efficient data structures typically exhibit random I/O patterns. The second phase

of TPIE provides support for implementing these structures by using the full power

of the disk model. Maintaining the design framework presented above, the new

functionality is implemented using a new module, the Random-Access BTE, as well

as a new set of AMI tools.

Figure 4.70 depicts the interactions between the various components of the TPIE

kernel.

The AMI The AMI provides the high-level interface to the programmer. This is the

T 244

only component with which most programmers will need to directly interact.

The AMI tools needed to provide the random access I/O functionality consist

of a front-end to the BTE block collection and a typed view of a disk block.

The Memory Manager (MM) The MM is responsible for managing main memory

resources. All memory allocated by application programs or other components

of TPIE is handled by the MM.

The Stream-Based BTE The BTE is responsible for moving blocks of data to and

from the disk. It is also responsible for scheduling asynchronous read-ahead

and write-behind when necessary to allow computation and I/O to overlap.

The Random-Access BTE The Random-Access BTE implements the functionality

of a Block Collection. A Block Collection is a set of fixed size blocks. A Block

is the unit amount of data transfered between disk and main memory, as defined

by the � PDM. A Block can be viewed as being in one of two states: on disk or

in memory. The collection must support four main operations: read, write,

create and delete.

Trapeze

type:
Data Access System

contact:
Jeff S. Chase, chase@cs.duke.edu

url:
http://www.cs.duke.edu/ari/trapeze/index.html

description:
The Trapeze project is an effort to harness the power of Gigabit networks to cheat the

disk I/O bottleneck for I/O-intensive applications. The network is used as the sole

access path to external storage, pushing all disk storage out into the network.

motivation:
The goal of the Trapeze project is to develop new techniques for high-speed com-

munication and fast access to stored data in workstation clusters, and to demonstrate

their use in prototypes of enhanced Unix systems.

T 245

Figure 4.71: Trapeze: Prototype

features:
The Trapeze messaging system has several features useful for high-speed network

storage access:

� separation of header and payload

� large Maximum Transmission Units (MTUs) with scatter/gather Direct Memory

Access (DMA)

� adaptive message pipelining

related work:� Slice, � TPIE

citation:
[81]

details:
The Trapeze messaging system consists of two components: a Messaging Library

that is linked into the kernel or user programs, and a Firmware Program that runs on

the Myrinet [244] NIC.

Trapeze was designed primarily to support fast kernel-to-kernel messaging alongside

conventional TCP/IP networking. Figure 4.71 depicts the structure of the current pro-

totype client based on FreeBSD 4.0 [143]. The Trapeze Library is linked into the ker-

nel along with a network device driver that interfaces to the TCP/IP protocol stack.

Network storage access bypasses the TCP/IP stack, instead using NetRPC [249], a

lightweight communication layer that supports an extended RPC model optimized

for block I/O traffic.

T 246

TSS (Temperature Sensitive Storage)

type:
Storage System

contact:
K. Gopinath, gopi@csa.iisc.ernet.in

description:
The prototype system TSS is a host-based driver (a volume manager) for a RAID [83]

storage system with 3 tiers: a small RAID1 (Mirrored) tier and larger RAID5 (Block-

Interleaved Distributed-Parity) and compressed RAID5 (cRAID5) tiers. Based on

access patterns (temperature), the driver automatically migrates frequently accessed

(hot) data to RAID1 while demoting not so frequently accessed (cold) data to RAID5/

cRAID5.

motivation:
Disk access patterns display good locality of reference, especially in non-scientific

environments. For achieving cost-effective storage systems with Terabytes of data,

such locality can be exploited by using a multi-tiered storage system with different

price-performance tiers that adapts to the access patterns by automatically migrating

the data between the tiers.

features:� uses only commodity hardware

� no storage media dependencies such as use of only SCSI or only IDE disks

� supports reliable persistance semantics

related work:
HP AutoRAID is a firmware implementation of the same idea [402].

citation:
[156]

details:
The TSS storage system is implemented as a layered device driver, which uses the

host processor for performing operations like I/O processing and parity computation.

The device driver is layered on top of block storage media (generally disks). A given

I/O request is divided into separate I/O requests each of which is issued to the device

drivers of the underlying storage media it is configured to use. To guarantee reliable

T 247

Figure 4.72: TSS: Storage Organization

persistence semantics, changes to the state of a Stripe are made using both ordered

updates and a separate logging device.

The Physical Storage is organized in RAID5 fashion as shown in Figure 4.72. The

storage consists of a set of Columns. The term column is used to distinguish them

from disks. A Column is divided into contiguous regions called Stripe Units. A

Stripe is a formed by grouping one Stripe Unit from each Column.

The Logical Storage can be viewed as a collection of Logical Stripes. The logical to

physical translation is done by the driver, so that the user s view of the data does not

change even as the Stripes undergo change of state. A Logical Stripe can be in any

of the following states:

Invalid No backing store is allocated for this type of Logical Stripe. Initially all the

Logical Stripes belong to this type.

RAID1 Two Physical Stripes provide backing store for a declustered RAID1 Logi-

cal Stripe.

RAID5 Because the Physical Storage is organized in RAID5 fashion, a single Phys-

ical Stripe provides backing store for a RAID5 Logical Stripe.

cRAID5 The data of this Stripe is compressed and stored in a Physical Stripe.

T 248

Migrations result when a Logical Stripe changes type. A Logical Stripe changes

from invalid to RAID5 on a write to it. After the migration is completed, the I/O is

retried (this time in RAID5 fashion). If the request is a partial stripe write, another

migration is triggered to make it RAID1. Thus a partial write to an invalid type Stripe

ultimately results in its migration to RAID1. A full stripe write to an invalid Stripe

only makes it a RAID5 Stripe.

RAID1 to RAID5 migration usually happens when a RAID1 Stripe is victimized to

give one of its Physical Stripes to a currently invalid Logical Stripe to make it RAID5

or to a RAID5 Stripe to make it RAID1. The strategy for migrations to/from cRAID5

is similar. First migrate the needed Stripe to RAID5 (leaving the other Stripes in

cRAID5 with certain parts invalid) and migrate to RAID1 as needed. RAID5 to

cRAID5 migrations typically take place through policy mechanisms when the data

becomes cold. To maintain access frequencies of Stripes a LRU policy is used.

Two-Phase I/O

type:
Application Level Method

contact:
Alok Choudhary, choudhar@ece.nwu.edu

description:
Two-Phase I/O is one approach to � Collective I/O. It is a method for reading/writing

in-core arrays from/to disks. The basic principle behind the method is based on the

fact that I/O performance is better when processors make a small number of large

(respective data size) and contiguous requests instead of a large number of small

ones. Two-Phase I/O splits the reading of an in-core array into main memory in two

phases:

1. Processors always read data assuming a Conforming Distribution, which is de-

fined as as a distribution of an array among processors such that each proces-

sor’s local array is stored contiguously in the file, resulting in each processor

reading a single large chunk of data. For an array stored in column-major order,

a column-block distribution is the Conforming Distribution.

2. Data is redistributed among processors to the desired distribution. Since I/O

cost is orders of magnitude more than communication cost, the cost incurred

by the this phase is negligible.

T 249

This results in high granularity data transfers and the use of a higher bandwidth of

the interconnection network (for interprocess communication).

Two-Phase I/O which is suitable for in-core arrays was extended to access arbitrary

sections of out-of-core arrays (� EM (External Memory) Algorithms and Data Struc-

tures). The Extended Two-Phase I/O performs I/O for out-of-core arrays by:

� dynamically partitioning the I/O workload among processors, depending on the

access requests

� combining several I/O requests into fewer larger granularity requests

� reordering requests so that the file is accessed in proper sequence

� eliminating simultaneous I/O requests for the same data

related work:� Collective I/O

citation:
[109], [350]

V 250

V
VDC (Virtual Data Catalog) see � VDG

ViPFS

type:
File System

contact:
Erich Schikuta, erich.schikuta@univie.ac.at

description:
ViPFS is a file system on top of ViPIOS [305]. ViPFS aims at:

� providing tools to manage files on ViPIOS

� delivering a C-interface for application development

� viewing files as continuous data

� taking advantage of parallelism due to the underlying physical distribution

ViPFS implements a command-line interface and a C language interface providing

basic functionality.

related work:
ViPIOS [305]

citation:
[128], [144]

ViPIOS Islands

type:
Intelligent I/O System

contact:
Erich Schikuta, erich.schikuta@univie.ac.at

description:
ViPIOS Islands aim to utilize I/O resources on distributed clusters. A ViPIOS Island

is defined to be a closed system with its own name space consisting of a number

V 251

of ViPIOS [305] servers and a connection controller, which assigns application pro-

cesses to their buddy servers on request. The idea is to segment the Distributed I/O

services into domains (Islands). To reach such an Island the client needs to know

the hostname of the connection controller responsible for that Island. Each ViPIOS

Island has its own name space. All parts of a single file are stored on one dedicated

Island. To distinguish between files on different Islands with the same name, the

buddy handle must be specified when opening a file. Each file is assigned a specific

ViPIOS server process which is called the Synch Controller of that file. Each file has

exactly one Sync Controller but a Sync Controller can serve multiple files.

related work:
ViPIOS [305]

citation:
[144], [304]

W 252

W

WiND (Wisconsin Network Disks)

type:
Mass Storage System

contact:
Andrea Arpaci-Dusseau, dusseau@cs.wisc.edu

description:
WiND is a MSS developed to understand the key adaptive techniques required to

build a truly manageable NAS system.

motivation:
Manageability is more challenging in storage clusters due to their additional com-

plexity. This complexity is a result of both the networking hardware and protocols

between clients and disks, and the nature of modern disks drives. Thus the main

focus in WiND is to develop the key techniques necessary to build truly manage-

able NAS. To achieve this goal and to fully exploit the potential of the underlying

hardware, all of the software is distributed and scalable.

features:� run-time adaptive layout and access

� off-line monitoring and adaption

� adaptive caching

related work:� Petal

citation:
[31]

details:
WiND is comprised of five major software components, broken down into two groups.

The first three are the run-time and off-line adaptive elements of WiND: SToRM,

GALE, and Clouds. The other two are key pieces of supporting infrastructure: RAIN

and NeST. The overall system architecture is presented in Figure 4.73.

W 253

Figure 4.73: WiND: System Architecture

Short-Term Reactive Middleware (SToRM) is a distributed software layer that in-

terposes between clients and servers and performs run-time adaptation for data

access and layout. It adapts to short-term changes in workload characteristics

and disk performance by quickly adjusting how much each client reads from

or writes to each disk. SToRM is used by file systems to adapt to volatile disk

behaviour at run-time and deliver full bandwidth to clients without intervention.

Globally Adaptive Long-Term Engine (GALE) Short-term adaptation does not

solve all of the problems encountered in dynamic, heterogeneous environments;

it lacks global perspective. To provide a long-term view of system and work-

load activity and to optimize system performance in ways not possible at run-

time, there exists an additional software structure, the GALE. GALE provides

three basic services in WiND.

� GALE performs system monitoring, using both active and passive tech-

niques to gather workload access patterns and device performance charac-

teristics, and detecting anomalies in component behaviour.
� GALE decides when to perform a global optimization itself via action in-

stantiation, eg.: GALE may replicate an oft-read file for performance rea-

sons.
� GALE provides information to SToRM and Clouds via hint generation.

Clouds Both SToRM and GALE are designed to adapt data flows to and from disk.

W 254

However, many requests to a network-attached disk may be satisfied from in-

memory caches. Thus, Clouds provides flexible caching for NAS. Clouds pro-

vides mechanisms and policies for both client-side and server-side caches, tak-

ing variable costs into account. Clouds also can employ cooperative techniques

to conglomerate server-side cache resources, and potentially hide disk varia-

tions from clients.

Rapid Access to Information (RAIN) The first piece of software infrastructure en-

capsulates the acquisition and dispersal of information within SToRM, GALE,

and Clouds. RAIN provides Information Programming Interfaces (IPIs) to

each software subsystem, which hide details of information flows and greatly

simplify system structure and maintainability.

Network Storage (NeST) The second piece of software infrastructure, � NeST,

provides flexible and efficient single-site storage management.

X 255

X

XDGDL (eXtended Data Grid Definition Language)

type:
Data Format

contact:
Erich Schikuta, erich.schikuta@univie.ac.at

description:
XDGDL is an XML based language, which provides a homogeneous framework for

describing data on all interpretative levels, which are Data Representation, Struc-

tured File Information, Physical Data Layout, Problem Specific Data Partitioning,

and General Information Semantics.

motivation:
XDGDL makes it possible to add certain semantic information to a stored dataset.

related work:
[127]

citation:
[53], [54]

details:
XDGDL makes use of a novel file hierarchy with three independent layers in the

Parallel I/O architecture:

Problem Layer defines the problem specific data distribution among the cooperat-

ing parallel processes

File Layer provides a composed view of the persistently stored data in the system

Data Layer defines the physical data distribution among the available disks

These layers are separated conceptually from each other with mapping functions.

Logical Data Independence exists between the Problem and the File Layer, and

Physical Data Independence exists between the File and Data Layer analogous to

the notation in database systems.

XDGDL distinguishes between pure semantic information, which comprises the Prob-

lem and File Layer and distribution information describing the Data Layer. The

X 256

semantic information is made up of the following expressive modules, which are

defined by the respective DTD:

� The data is distributed onto the different processor grids. These processor grids

are described by an optional name, the number of dimensions of the grid, and

the extent of each dimension.

� The data types are stored in the Logical File. This section consists of the types

which are stored in the Logical File, and in the same order as they are stored in

the Logical File.

� Align information as in HPF describes a recommendation how data should be

distributed onto processors/nodes.

Distribution information is organized in a similar way as it is done in � MPI-IO.

Blocks specify regions in the Logical File. A Physical File is the same as the byte

order within a block. A Physical File is characterized by a sequence of such blocks.

The byte order in the Physical File is the same as the byte order within a block. After

the bytes of a block the bytes of the next block follow.

Chapter 5

Abbreviations

ACL Access Control List

ADFS Active Disk-Based File System

ADIO Abstract Device Interface for I/O

ADR Active Data Repository

AFI Abstract File Interface

AFS Andrew File System

AJO Abstract Job Object

API Application Program Interface

ASIC Application-Specific Integrated Circuit

ASP Application Service Provider

ASU Active Storage Unit

ATA Advanced Technology Attachment

BAFS Bulldog Abstract File System

BSD Berkeley Software Distribution

CASTOR CERN Advanced Storage Manager

CCTK Cactus Computational Toolkit

CIFS Common Internet File System

CMS Compact Muon Solenoid

CoG Globus Commodity Grid Toolkit

CORBA Common Object Resource Broker Architecture

CPU Central Processing Unit

DAFS Direct Access File System

DAP Data Access Protocol

DARC Distributed Active Resource Architecture

CHAPTER 5. ABBREVIATIONS 258

DCE Date Circuit-Terminating Equipment

DDS Distributed Data Structure

DFDL Data Format Description Language

DFS Distributed File System

DGRA Data Grid Reference Architecture

DICE NPACI Data-Intensive Computing Environments Infrastructure

DIOM Distributed I/O Management

DMA Direct Memory Access

DMAP Data Management Application

DODS Distributed Oceanographic Data System

DPFS Distributed Parallel File System

DPSS Distributed-Parallel Storage System

dQUOB dynamic QUery OBject

DRA Disk Resident Arrays

DRM Disk Resource Manager

DSM Distributed Shared Memory

DTD Document Type Definition

EDG European DataGrid

EEPROM Electrically Erasable Programmable Read-Only Memory

ERC Eager Release Consistency

ESG-II Earth System Grid

FIFO First IN First OUT

FTC File Transfer Component

FTP File Transfer Protocol

GASS Global Access to Secondary Storage

GAT Grid Application Toolkit

GC Grid Console

GCE Grid Computing Environment

GCS Grid Consistency Service

GDMP Grid Data Management Pilot

GDSF Grid Data Service Factory

GEM Globus Executable Management

Gfarm Grid Datafarm

GFS Global File System

GGF Global Grid Forum

Giggle Giga-Scale Global Location Engine

CHAPTER 5. ABBREVIATIONS 259

GIS Geographic Information System

GPFS General Parallel File System

GRAM Grid Resource Access and Management

GRIP Grid Interoperability Project

GriPhyN Grid Physics Network

GSH Grid Service Handle

GSI Grid Security Infrastructure

GSR Grid Service Reference

GT2 Globus Toolkit version 2

GT3 Globus Toolkit version 3

GUI Graphical User Interface

HDF Hierarchical Data Format

HDF5 Hierarchical Data Format 5

HENP High Energy and Nuclear Physics

HEP High Energy Physics

HPC High Performance Computing

HPF High Performance Fortran

HPSS High Performance Storage System

HSM Hierarchical Storage Management

HSS Hierarchical Storage System

HTC High Throughput Computing

HTTP Hypertext Transfer Protocol

IBM International Business Machines

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IOD I/O Daemon

IP Internet Protocol

IPI Information Programming Interface

JDBC Java Database Connectivity

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LFN Logical File Name

LHC Large Hadron Collider

LOID Legion Object Identifier

LRC Local Replica Catalog

LRU Least-Recently-Used

CHAPTER 5. ABBREVIATIONS 260

LUN Logical Unit

MAPFS Multi-Agent Parallel File System

MCAT Metadata Catalog

MDS Maximal Distance Separating

MDS Meta-Data Server

MDS Metacomputing Directory Service

MIPS Millions of Instructions per Second

MOCHA Middleware Based On a Code SHipping Architecture

MOPI MOSIX Scalable Parallel Input/Output

MPI Message Passing Interface

MPI-IO Message Passing Interface – Input/Output

MSS Mass Storage System

MTU Maximum Transmission Unit

NAL Network Abstraction Layer

NARA National Archives and Records Administration

NAS Network Attached Storage

NASD Network Attached Secure Disks

NCDC National Climatic Data Center

NCSA National Center for Supercomputing Applications

NeST Network Storage

netCDF Network Common Data Form

NetRPC NetRemote Procedure Call

NFS Network File System

NIC Network Interface Card

NOW Network of Workstations

OBD Object-Based Disk

ODBMS Object-Oriented Database Management System

OGSA Open Grid Services Architecture

OGSA-DAI OGSA - Database Access and Integration

OGSI Open Grid Services Infrastructure

OID Object Identifier

OO Object-Oriented

OOC Out-Of-Core

ORB Object Request Broker

OS Operating System

OST Object Storage Targets

CHAPTER 5. ABBREVIATIONS 261

PASSION Parallel And Scalable Software for Input-Output

PDF Problem Description File

PDM Parallel Disk Model

PET Position Emission Tomography

PFN Physical File Name

PFS Parallel File System

PKI Public Key Infrastructure

POSIX Portable Operating System Interface for UNIX

PPDG Particle Physics Data Grid

PPFS II Portable Parallel File System

PSE Problem Solving Environment

PVDG Petascale Virtual Data Grid

PVFS1 Parallel Virtual File System 1

PVFS2 Parallel Virtual File System 2

RAID Redundant Array of Independent Disks, Redundant Array of Inexpensive Disks

RBF Radial Basis Function

RDBMS Relational Database Management System

RFT Reliable File Transfer

RIO Remote I/O

RLI Replica Location Index

RLS Replica Location Service

RPC Remote Procedure Call

RTE Run-Time Environment

SAN Storage Area Network

SCI Scalable Coherent Interface

SCSI Small Computer System Interface

SDDS Scalable Distributed Data Structure

SDI Single Disk Image

SDK Software Developement Kit

SDM Scientific Data Manager

SDSC San Diego Supercomputer Center

SFIO Striped File I/O

SGI Silicion Graphics, Inc.

SMP Symmetric Multiprocessor

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

CHAPTER 5. ABBREVIATIONS 262

SP Service Provider

SQL Structured Query Language

SRB Storage Resource Broker

SRB Storage Request Broker

SRM Storage Resource Manager

SSL Secure Sockets Layer

STACS Storage Access Coordination System

SVR4 System V Release 4

Tcl Tool Command Language

TCP/IP Transmission Control Protocol / Internet Protocol

TIP Transparent Informed Prefetching and Caching

TPIE Transparent Parallel I/O Environment

TRM Tape Resource Manager

TSS Temperature Sensitive Storage

UCSD University of California, San Diego

UNC Universal Naming Convention

UNICORE Uniform Interface to Computing Resources

UPL UNICORE Protocol Layer

URL Uniform Resource Locator

VDG Virtual Data Grid

VDT Virtual Data Toolkit

VFL Virtual File Layer

VFS Virtual File System

VI Virtual Interface

VO Virtual Organization

WALDO Wide-Area Large Data Object Architecture

WAN Wide-Area Network

WebDAV Web-Based Distributed Authoring and Versioning

WiND Wisconsin Network Disks

WSDL Web Service Description Language

WSIF Web Services Invocation Framework

WWW World Wide Web

XMAS XML Matching and Structuring Language

XML eXtensible Markup Language

Bibliography

[1] ABACUS: Architecture of an Object-Based Distributed Filesystem Built for Abacus

. http://www.pdl.cmu.edu/Abacus/index.html.

[2] Michael Aderholz and et al. Models of Networked Analysis at Regional Centres for

LHC Experiments (MONARC), June 1999.

[3] Asmara Afework, Michael Beynon, Fabian Bustamante, Angelo Demarzo, Renato

Ferreira, Robert Miller, Mark Silberman, Joel Saltz, Alan Sussman, and Hubert

Tsang. Digital Dynamic Telepathology - the Virtual Microscope. In Proceedings

of the 1998 AMIA Annual Fall Symposium, Orlando, Florida, USA, 1–7 November

1998.

[4] Abdollah A. Afjeh, Patrick T. Homert, Henry Lewandowski, John A. Reed, and

Richard D. Schlichting. Development of an Intelligent Monitoring and Control Sys-

tem for Heterogeneous Numerical Propulsion System Simulation. In Proceedings of

the 28th Annual Simulation Symposium, pages 278–287, Santa Barbara, California,

USA, 25–28 April 1995.

[5] Bill Allcock, Joe Bester, John Bresnahan, Ann Chervenak, Ian Foster, Carl Kessel-

man, Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steve Tuecke. Secure,

Efficient Data Transport and Replica Management for High-Performance Data-

Intensive Computing. In IEEE Mass Storage Conference, 2001.

[6] Bill Allcock, Joe Bester, John Bresnahan, Ann Chervenak, Ian Foster, Carl Kessel-

man, Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steve Tuecke. Data

Management and Transfer in High-Performance Computational Grid Environments.

Parallel Computing, 28(5), 2002.

BIBLIOGRAPHY 264

[7] Bill Allcock, John Bresnahan, Lee Liming Ian Foster, Joe Link, and Pawel

Plaszczac. GridFTP Update January 2002. Technical report, http://www.globus.org,

2002.

[8] Bill Allcock, Ian Foster, Veronika Nefedova, Ann Chervenak, Ewa Deelman, Carl

Kesselman, Jason Lee, Alex Sim, Arie Shoshani, Bob Drach, and Dean Williams.

High-Performance Remote Access to Climate Simulation Data: A Challenge Prob-

lem for Data Grid Technologies. In Proceeding of the IEEE Supercomputing 2001

Conference, November 2001.

[9] Bill Allcock, Lee Liming, Steve Tuecke, and Ann Chervenak. GridFTP: A Data

Transfer Protocol for the Grid. Technical report, The Globus Project.

[10] Gabrielle Allen, Werner Benger, Thomas Dramlitsch, Tom Goodale, Hans-Christian

Hege, Gerd Lanfermann, André Merzky, Thomas Radke, and Edward Seidel. Cac-

tus Grid Computing: Review of Current Development. Parallel Processing: 7th

International Euro-Par Conference, UK August 28-31, 2150:817, January 2001.

[11] Gabrielle Allen, Werner Benger, Thomas Dramlitsch, Tom Goodale, Hans-Christian

Hege, Gerd Lanfermann, André Merzky, Thomas Radke, Edward Seidel, and John

Shalf. Cactus Tools for Grid Applications. Cluster Computing, 4(3):179–188, 2001.

[12] Gabrielle Allen, Werner Benger, Tom Goodale, Hans-Christian Hege, Gerd Lanfer-

mann, André Merzky, Thomas Radke, Edward Seidel, and John Shalf. The Cactus

Code: A Problem Solving Environment for the Grid. In HPDC, pages 253–260,

2000.

[13] Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkas, Nikolaos D. Doulamis,

Tom Goodale, Thilo Kielmann, André Merzky, Jarek Nabrzyski, Juliusz Pukacki,

Thomas Radke, Michael Russell, Ed Seidel, John Shalf, and Ian Taylor. Enabling

Applications on the Grid: A GridLab Overview . International Journal of High

Performance Computing Applications: Special issue on Grid Computing: Infras-

tructure and Applications, August 2003.

[14] Gabrielle Allen, Thomas Dramlitsch, Ian Foster, Tom Goodale, Nick Karonis, Matei

Ripeanu, Ed Seidel, and Brian Toonen. Cactus-G Toolkit: Supporting Efficient Exe-

cution in Heterogeneous Distributed Computing Environments. In Supercomputing

2000 Proceedings of 4th Globus Retreat, Pittsburgh, USA, July 30 - August 1 2000.

BIBLIOGRAPHY 265

[15] Gabrielle Allen, Tom Goodale, Joan Massó, and Edward Seidel. The Cactus Com-

putational Toolkit and Using Distributed Computing to Collide Neutron Stars. In

Proceedings of the Eighth IEEE International Symposium on High Performance Dis-

tributed Computing, pages 57–61, Redondo Beach, CA, USA, August 1999. IEEE

Computer Society Press.

[16] Guillermo A. Alvarez, Elizabeth Borowsky, Susie Go, Theodore H. Romer, Ralph

Becker-Szendy, Richard Golding, Arif Merchant, Mirjana Spasojevic, Alistair

Veitch, and John Wilkes. Minerva: An Automated Resource Provisioning Tool for

Large-Scale Storage Systems. ACM Transactions on Computer Systems, 19(4):483–

518, November 2001.

[17] Lior Amar, Amnon Barak, and Amnon Shiloh. The MOSIX Parallel I/O System for

Scalable I/O Performance. In Proceedings of the 14-th IASTED International Con-

ference on Parallel and Distributed Computing and Systems (PDCS 2002), pages

495–500, Cambridge, MA, USA, November 2002.

[18] Lior Amar, Amnon Barak, and Amnon Shiloh. The MOSIX Direct File System

Access Method for Supporting Scalable Cluster File Systems , March 2003.

[19] Kaizar Amin, Sandeep Nijsure, and Gregor von Laszewski. Open Collaborative

Grid Service Architecture (OCGSA). Technical Report Preprint ANL/MCS-P840-

0800, Mathematics and Computer Science Division, Argonne National Laboratory,

November 2002.

[20] Yair Amir and Jonathan Stanton. The Spread Wide Area Group Communication

System. Technical Report CNDS-98-4, Johns Hopkins University, Center for Net-

working and Distributed Systems, 1998.

[21] Khalil Amiri, David Petrou, Gregory R. Ganger, and Garth A. Gibson. Dynamic

Function Placement for Data-Intensive Cluster Computing. In Proceedings of the

USENIX Annual Technical Conference, pages 307–322, San Diego, CA, USA, June

2000.

[22] Darrell Anderson and Jeff Chase. Failure-Atomic File Access in the Slice Interposed

Network Storage System . Cluster Computing, 5(1), 2002.

[23] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.

SETI@home: an Experiment in Public-Resource Computing . CACM 45, 11:56–

61, 2002.

BIBLIOGRAPHY 266

[24] James Annis, Yong Zhao, Jens Vöckler, Michael Wilde, Steve Kent, and Ian Foster.

Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Sur-

vey. In Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages

1–14, 2002.

[25] Apache. AXIS: WebServices . http://xml.apache.org/axis/.

[26] Apache. Tomcat . http://jakarta.apache.org/tomcat/.

[27] Lars Arge. External Memory Data Structures. Lecture Notes in Computer Science,

2161:1–46, 2001.

[28] Lars Arge, Octavian Procopiuc, and Jeffrey Scott Vitter. Implementing I/O-Efficient

Data Structures Using TPIE . In Proceedings of the 10th European Symposium on

Algorithms (ESA ’02), Rom, Italy, September 2002.

[29] ARM . http://www.arm.com/.

[30] Dorian C. Arnold and Jack Dongarra. The NetSolve Environment: Progressing To-

wards the Seamless Grid. In 2000 International Conference on Parallel Processing

(ICPP-2000), Toronto, Canada, August 2000.

[31] Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, John Bent, Brian Forny, Sam-

bavi Muthukrishnan, Florentina Popovici, and Omer Zaki. Manageable Storage via

Adaptation in WiND. In Proceedings of the 1st International Symposium on Cluster

Computing and the Grid (CCGRID ’01), 15–18 May 2001.

[32] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E. Culler,

Joseph M. Hellerstein, David Patterson, and Kathy Yelick. Cluster I/O with River:

Making the Fast Case Common. In Proceedings of the Sixth Workshop on In-

put/Output in Parallel and Distributed Systems, pages 10–22, Atlanta, GA, May

1999. ACM Press.

[33] Bill Asbury, Geoffrey Fox, Tom Haupt, and Ken Flurchick. The Gateway Project:

An Interoperable Problem Solving Environments Framework For High Performance

Computing . In DoD HPC Users Group Conference, June 1999.

[34] Malcolm P. Atkinson, Rob Baxter, and Neil Chue Hong. Grid Data Access and

Integration in OGSA. Technical report, Documents Produced for GGF5.

BIBLIOGRAPHY 267

[35] Malcolm P. Atkinson, Vijay Dialani, Leanne Guy, Inderpal Narang, Norman W. Pa-

ton, Dave Pearson, Tony Storey, and Paul Watson. Grid Database Access and Inte-

gration: Requirements and Functionalities. Technical report, Documents Produced

for GGF7.

[36] ATLAS: the ATLAS Experiment for the Large Hadron Collider. http://pdg.lbl.

gov/atlas/atlas.html.

[37] Automatic GASS. http://www.cs.wisc.edu/condor/bypass/examples/

automatic-gass/.

[38] Autopilot: Real-Time Adaptive Resource Control . http://www-pablo.cs.uiuc.

edu/Project/Autopilot/AutopilotOverview.htm.

[39] AVO: Astrophysical Virtual Observatory . http://www.euro-vo.org/.

[40] Jon Bakken, Eileen Berman, Chih-Hao Huang, Alexander Moibenko, Don Petrav-

ick, Ron Rechenmacher, and Kurt Ruthmansdorfer. Enstore Technical Design Doc-

ument. Technical Report JP0026, Fermi National Accelerator Laboratory, 1999.

[41] Donald Bales. Java Programming with Oracle JDBC. O’Reilly, December 2001.

[42] Amnon Barak and Avner Braverman. Memory Ushering in a Scalable Computing

Cluster, 1997.

[43] Amnon Barak, Shai Guday, and Richard G. Wheeler. MOSIX Distributed Operat-

ing System, Load Balancing for UNIX , volume 672 of Lecture Notes in Computer

Science. Springer, 1996.

[44] Amnon Barak, Oren La’adan, and Amnon Shiloh. Scalable Cluster Computing with

MOSIX for LINUX, 1999.

[45] Andrew Baranovski, Diana Bonham, Gabriele Garzoglio, Chris Jozwiak,

Lauri Loebel Carpenter, Lee Lueking, Carmenita Moore, Ruth Pordes, Heidi Schell-

man, Igor Terekhov, Matthew Vranicar, Sinisa Veseli, Stephen White, and Victoria

White. SAM Managed Cache and Processing for Clusters in a Worldwide Grid-

Enabled System. Technical Report FERMILAB-TM-2175, Fermilab, July 2002.

[46] Andrew Baranovski, Gabriele Garzoglio, Hannu Koutaniemi, Lee Lueking, Sid-

dharth Patil, Ruth Pordes, Abhishek Rana, Igor Terekhov, Sinisa Veseli, Jae Yu,

BIBLIOGRAPHY 268

Rod Walker, and Vicky White. The SAM-GRID Project: Architecture and Plan. In

ACAT 02, Moscow, Russia, June 2003.

[47] Andrew Baranovski, Gabriele Garzoglio, Lee Lueking, Dane Skow, Igor Terekhov,

and Rodney Walker. SAM-GRID: A System Utilizing Grid Middleware and SAM

to Enable Full Function Grid Computing. In Beauty 02, Santiago de Compostela,

Spain, June 2002.

[48] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and Michael Wan. The SDSC

Storage Resource Broker . In CASCON’98 Conference, Toronto, Canada, 30

November–3 December 1998.

[49] Jean-Philippe Baud. Castor Architecture. Technical report, CERN, October 2002.

[50] Bay and Estuary Simulation . http://www.cs.umd.edu/projects/hpsl/chaos/

ResearchAreas/bay.html.

[51] Keith Bell, Andrew Chien, and Mario Lauria. A High-Performance Cluster Storage

Server . In The 11th International Symposium on High Performance Distributed

Computing (HPDC-11), Edinburgh, Scotland, 24–26 July 2002.

[52] William H. Bell, Diana Bosio, Wolfgang Hoschek, Peter Kunszt, Gavin McCance,

and Mika Silander. Project Spitfire - Towards Grid Web Service Databases . In

Global Grid Forum 5, Edinburgh, Scotland, July 2002.

[53] András Belokosztolszki. An XML based Language for Meta Information in Dis-

tributed File Systems. Master’s thesis, University of Vienna and Eotvos Lorand

University of Science, Budapest, June 2000.

[54] András Belokosztolszki and Erich Schikuta. An XML based Framework for Self-

Describing Parallel I/O Data. In Proceedings of the 11th Euromicro Workshop on

Parallel and Distributed Processing PDP 2003, Genova, Italy, February 2003. IEEE

Computer Society Press.

[55] John Bent, Venkateshwaran Venkataramani, Nick LeRoy, Alain Roy, Joseph Stan-

ley, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, and Miron Livny. NeST - A

Grid Enabled Storage Appliance. In Jan Weglarz, Jarek Nabrzyski, Jennifer Schopf,

and Macief Stroinkski, editors, Grid Resource Management. Kluwer Academic Pub-

lishers, 2003.

BIBLIOGRAPHY 269

[56] John Bent, Venkateshwaran Venkataramani, Nick LeRoy, Alain Roy, Joseph Stanley,

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Miron Livny. Flexibil-

ity, Manageability, and Performance in a Grid Storage Appliance. In Proceedings

of the 11th IEEE Symposium on High Performance Distributed Computing (HPDC-

11), Edinburgh, Scotland, July 2002.

[57] Luis M. Bernardo, Arie Shoshani, Alexander Sim, and Henrik Nordberg. Access

Coordination of Tertiary Storage For High Energy Physics Applications. In IEEE

Symposium on Mass Storage Systems, College park, MD, USA, March 2000.

[58] Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedesco, and Steve Tuecke. GASS:

A Data Movement and Access Service for Wide Area Computing Systems. In Pro-

ceedings of the Sixth Workshop on Input/Output in Parallel and Distributed Systems,

pages 78–88, Atlanta, GA, USA, May 1999. ACM Press.

[59] Michael Beynon, Renato Ferreira, Tahsin Kurc, Alan Sussman, and Joel Saltz. Data-

Cutter: Middleware for Filtering Very Large Scientific Datasets on Archival Storage

Systems. In Proceedings of the 8th Goddard Conference on Mass Storage Systems

and Technologies, College Park, MD, USA, 27–30 March 2000.

[60] Michael Beynon, Tahsin Kurc, Alan Sussman, and Joel Saltz. Design of a Frame-

work for Data-Intensive Wide-Area Applications. In Proceedings of the 9th Hetero-

geneous Computing Workshop (HCW2000), pages 116–130. IEEE Computer Soci-

ety Press, May 2000.

[61] Bio-GRID . http://www.eurogrid.org/wp1.html.

[62] Dan Bonachea, Phillip Dickens, and Rajeev Thakur. High-Performance File I/O in

Java: Existing Approaches and Bulk I/O Extensions. Technical Report ANL/MCS-

P840-0800, Mathematics and Computer Science Division, Argonne National Labo-

ratory, August 2000.

[63] Rajesh Bordawekar. Implementation of Collective I/O in the Intel Paragon Parallel

File System: Initial Experiences. In Proceedings of the 11th ACM International

Conference on Supercomputing, pages 20–27. ACM Press, July 1997.

[64] Peter J. Braam. The Lustre Storage Architecture. Technical report,

http://www.lustre.org, 2002.

BIBLIOGRAPHY 270

[65] Peter Brezany and Marianne Winslett. Parallel Access to Persistent Multidimen-

sional Arrays from HPF Applications Using Panda. In Proceedings of the Eighth

International Conference on High Performance Computing and Networking, Ams-

terdam, Netherlands, April 2000.

[66] Bradley Broom, Rob Fowler, and Ken Kennedy. KelpIO: A Telescope-Ready

Domain-Specific I/O Library for Irregular Block-Structured Applications. In Pro-

ceedings of the First IEEE/ACM International Symposium on Cluster Computing

and the Grid, pages 148–155, Brisbane, Australia, May 2001. IEEE Computer So-

ciety Press.

[67] Julian J. Bunn and Harvey B. Newman. Data-Intensive Grids for High-Energy

Physics. In Fran Berman, Geoffrey Fox, and Tony Hey, editors, Grid Computing:

Making the Global Infrastructure a Reality, chapter 39. John Wiley & Sons Inc.,

December 2002.

[68] Randy Butler, Von Welch, Douglas Engert, Ian Foster, Steve Tuecke, John Volmer,

and Carl Kesselman. A National-Scale Authentication Infrastructure. Computer,

33(12):60–66, December 2000.

[69] Bypass. http://www.cs.wisc.edu/condor/bypass/.

[70] CADRE: A National Facility for I/O Characterization and Optimization . http:

//www-pablo.cs.uiuc.edu/Project/CADRE/index.htm.

[71] Philip H. Carns and Walter B. Ligon III. Parallel Virtual File System Version 2.

Technical report, poster presentation from 2002 NPACI meeting, 2002.

[72] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:

A Parallel File System for Linux Clusters. In Proceedings of the 4th Annual Linux

Showcase and Conference, pages 317–327, Atlanta, GA, October 2000. USENIX

Association.

[73] Henri Casanova and Jack Dongarra. NetSolve: A Network Server for Solving Com-

putational Science Problems. The International Journal of Supercomputer Applica-

tions and High Performance Computing, 11(3):212–223, 1997.

[74] Henri Casanova and Jack Dongarra. NetSolve: A Network Enabled Server, Ex-

amples and Users . In Proceedings of the Heterogeneous Computing Workshop,

Orlando, Florida, 1998.

BIBLIOGRAPHY 271

[75] Henri Casanova, Jack Dongarra, and Keith Moore. Network-Enabled Solvers and

the NetSolve Project. SIAM News, 31(1), January 1998.

[76] Centurion: Legion Project Testbed. http://legion.virginia.edu/centurion/

Applications.html.

[77] CERN: Conseil Européen pour la Recherche Nucléaire. http://www.cern.ch.

[78] Chialin Chang, Renato Ferreira, Alan Sussman, and Joel Saltz. Infrastructure for

Building Parallel Database Systems for Multi-Dimensional Data. In Proceedings of

the Second Merged IPPS/SPDP Symposium. IEEE Computer Society Press, April

1999.

[79] Chaos Project. http://www.cs.umd.edu/projects/hpsl/chaos/.

[80] CHARISMA: CHARacterize I/O in Scientific Multiprocessor Applications . http:

//www.cs.dartmouth.edu/˜dfk/charisma/.

[81] Jeffrey S. Chase, Darrell C. Anderson, Andrew J. Gallatin, Alvin R. Lebeck, and

Kenneth G. Yocum. Network I/O with Trapeze. In Hot Interconnects Symposium,

August 1999.

[82] Jeffrey S. Chase, Richard Kisley, Andrew J. Gallatin, and Darrell C. Anderson.

DAFS Demo White Paper. In DAFS Collaborative Developer’s Conference, June

2001.

[83] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A.

Patterson. RAID: High-Performance, Reliable Secondary Storage. ACM Computing

Surveys, 26(2):145–185, 1994.

[84] Ying Chen and Marianne Winslett. Automated Tuning of Parallel I/O Systems: An

Approach to Portable I/O Performance for Scientific Applications. IEEE Transac-

tions on Software Engineering, 26(4):362–383, April 2000.

[85] Ying Chen, Marianne Winslett, Yong Cho, and Szu-Wen Kuo. Automatic Parallel

I/O Performance Optimization in Panda. In Proceedings of the Tenth Annual ACM

Symposium on Parallel Algorithms and Architectures, pages 108–118, June 1998.

[86] Ying Chen, Marianne Winslett, Szu-Wen Kuo, Yong Cho, Mahesh Subramaniam,

and Kent E. Seamons. Performance Modeling for the Panda Array I/O Library. In

BIBLIOGRAPHY 272

Proceedings of Supercomputing ’96. ACM Press and IEEE Computer Society Press,

November 1996.

[87] Ying Chen, Marianne Winslett, Kent E. Seamons, Szu-Wen Kuo, Yong Cho, and

Mahesh Subramaniam. Scalable Message Passing in Panda. In Proceedings of the

Fourth Workshop on Input/Output in Parallel and Distributed Systems, pages 109–

121, Philadelphia, Pennsylvania, USA, May 1996. ACM Press.

[88] Ann Chervenak, Ewa Deelmann, Ian Foster, Leanne Guy, Wolfgang Hoschek, Adri-

ana Iamnitchi, Carl Kesselmann, Peter Kunszt, Matei Ripeanu, Bob Schwartzkopf,

Heinz Stockinger, Kurt Stockinger, and Brian Tierney. Giggle: A Framework for

Constructing Scalable Replica Location Services. In In Porceedings of the IEEE

Supercomputing Conference 2002, November 2002.

[89] Andrew Chien, Brad Calder, Stephen Elbert, and Karan Bhatia. Entropia: Archi-

tecture and Performance of an Enterprise Desktop Grid System. Journal of Parallel

Distributed Computing, 2003.

[90] Chimera Virtual Data System. http://www.griphyn.org/chimera/.

[91] Avery Ching, Alok Choudhary, Wei-Keng Liao, Rob Ross, and William Gropp.

Noncontiguous I/O through PVFS. In William Gropp, Rob Pennington, Dan Reed,

Mark Baker, Maxine Brown, and Rajkumar Buyya, editors, Proceedings of the IEEE

International Conference on Cluster Computing (CLUSTER’02), pages 405–414.

IEEE Computer Society, 2002.

[92] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawanaa.

Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl,

2001.

[93] CIFS: Common Internet File System . http://www.microsoft.com/mind/1196/

cifs.asp.

[94] ClassAds: Classified Advertisements . http://www.cs.wisc.edu/condor/

classad/.

[95] CMS: Compact Muon Solenoid. http://cmsinfo.cern.ch/Welcome.html/.

[96] Toni Cortes and Jesus Labarta. Taking Advantage of Heterogeneity in Disk Arrays.

Journal of Parallel and Distributed Computing, 63(4):448–464, April 2003.

BIBLIOGRAPHY 273

[97] Robert A. Coyne, Harry Hulen, and Richard Watson. The High Performance Storage

System. In Proceedings of Supercomputing ’93, pages 83–92, Portland, OR, 1993.

IEEE Computer Society Press.

[98] Andreas Crauser. LEDA-SM: External Memory Algorithms and Data Structures in

Theory and Practice. PhD thesis, University of Saarland, 2001.

[99] Andreas Crauser and Kurt Mehlhorn. LEDA-SM: Extending LEDA to Secondary

Memory. Lecture Notes in Computer Science, 1668:228–242, 1999.

[100] CrossGrid. CrossGrid. Annex 1 - Description of Work. Technical Report 3.1,

www.crossgrid.org, 2002.

[101] CSAR: Center for Simulation of Advanced Rockets. http://www.csar.uiuc.edu.

[102] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren

Smith, and Steve Tuecke. A Resource Management Architecture for Metacomput-

ing Systems. In Proceedings of the IPPS/SPDP ’98 Workshop on Job Scheduling

Strategies for Parallel Processing, pages 62–82, 1998.

[103] Joseph Czyzyk, Michael Mesnier, and Jorge J. More. NEOS: The Network-Enabled

Optimization System. Technical Report Technical Report MCS-P615-1096, Mathe-

matics and Computer Science Division, Argonne National Laboratory, 1996.

[104] Michael Dahlin, Randolph Wang, Thomas E. Anderson, and David A. Patterson.

Cooperative Caching: Using Remote Client Memory to Improve File System Per-

formance. In Operating Systems Design and Implementation, pages 267–280, 1994.

[105] DAMIEN: Distributed Applications and Middleware for Industrial Use of European

Networks . http://www.hlrs.de/organization/pds/projects/damien/.

[106] DataTAG: Project Description. http://datatag.web.cern.ch/datatag/

project.html.

[107] Harvey L. Davies. FAN - An Array-Oriented Query Language. In Second Workshop

on Database Issues for Data Visualization (Visualization ’95), Atlanta, Georgia,

USA, 1995. IEEE.

[108] Matt DeBergalis, Peter Corbett, Steve Kleiman, Arthur Lent, Dave Noveck, Tom

Talpey, and Mark Wittle. The Direct Access File System. In USENIX File and

Storage Technology (FAST) Conference, San Francisco, CA, USA, April 2003.

BIBLIOGRAPHY 274

[109] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved Par-

allel I/O via a Two-Phase Run-Time Access Strategy. In Proceedings of the IPPS

’93 Workshop on Input/Output in Parallel Computer Systems, pages 56–70, 1993.

[110] Roman Dementiev and Peter Sanders. Asynchronous Parallel Disk Sorting. In 15th

ACM Symposium on Parallelism in Algorithms and Architectures, pages 138–148,

San Diego, 2003.

[111] DFDL: Data Format Description Language . https://forge.gridforum.org/

projects/dfdl-wg/.

[112] Phillip M. Dickens and Rajeev Thakur. An Evaluation of Java’s I/O Capabilities

for High-Performance Computing. In Proceedings of the ACM 2000 Java Grande

Conference, pages 26–35. ACM Press, June 2000.

[113] Chris H.Q. Ding and Yun He. Data Organization and I/O in a Parallel Ocean Circu-

lation Model. In Proceedings of SC99: High Performance Networking and Comput-

ing, Portland, OR, November 1999. ACM Press and IEEE Computer Society Press.

[114] Direct I/O. Oracle Internals Notes . http://www.ixora.com.au/notes/direct_

io.htm.

[115] DODS: Architecture . http://www.unidata.ucar.edu/packages/dods/home/

getStarted/architecture.html.

[116] Dirk Düllmann, Wolfgang Hoschek, Javier Jaen-Martinez, Ben Segal, Asad Samar,

Heinz Stockinger, and Kurt Stockinger. Models for Replica Synchronisation and

Consistency in a Data Grid. In 10th IEEE Symposium on High Performance and

Distributed Computing (HPDC-10), San Francisco, California, 7–9 August 2001.

[117] Dzero . http://www-d0.fnal.gov/.

[118] EDG Workpackages . http://web.datagrid.cnr.it/servlet/page?_pageid=

1429&_dad=portal30&_schema=P%ORTAL30&_mode=3.

[119] Chris Elford, Jay Huber, Chris Kuszmaul, and Tara Madhyastha. Portable Parallel

File System Detailed Design. Technical report, University of Illinois at Urbana-

Champaign, USA, November 1993.

BIBLIOGRAPHY 275

[120] Chris Elford, Jay Huber, Chris Kuszmaul, and Tara Madhyastha. PPFS High

Level Design Documentation. Technical report, University of Illinois at Urbana-

Champaign, USA, November 1993.

[121] EMC Corporation . http://www.emc.com.

[122] Dietmar Erwin. UNICORE Plus Final Report - Uniform Interface to Computing

Resources. Technical report, Jülich, Forschungszentrum, Germany, 2003.

[123] ESG-II: ESG-II Architectural Specification. http://sdm.lbl.gov/esg/

esg-2-arch-spec.php.

[124] ESG-II: Functional Specification for ESG-II. http://sdm.lbl.gov/esg/

esg-2-func-spec.php.

[125] ESGO: European Grid of Solar Observations . http://www.egso.org/.

[126] EuroGrid. Eurogrid: European Testbed for GRID Applications. Technical report,

http://www.eurogrid.org.

[127] Dror G. Feitelson and Tomer Klainer. XML, Hyper-Media, and Fortran I/O. In Hai

Jin, Toni Cortes, and Rajkumar Buyya, editors, High Performance Mass Storage

and Parallel I/O: Technologies and Applications, chapter 43, pages 633–644. IEEE

Computer Society Press and Wiley, New York, NY, 2001.

[128] Rene Felder. ViPFS: An XML Based Distributed File System for Cluster Architec-

ture . Master’s thesis, University of Vienna, November 2001.

[129] Renato Ferreira, Tahsin Kurc, Michael Beynon, Chialin Chang, Alan Sussman, and

Joel Saltz. Object-Relational Queries into Multi-dimensional Databases with the

Active Data Repository. Parallel Processing Letters, 9(2):173–195, 1999.

[130] Stephen J. Fink, Scott R. Kohn, and Scott B. Baden. Efficient Run-Time Support

for Irregular Block-Structured Applications . Journal of Parallel and Distributed

Computing, 50(12):618, April/May 1998.

[131] Fleet Numerical Meteorology and Oceanography Center. http://www.fnoc.

navy.mil.

[132] Ian Foster. Grid Technologies & Applications: Architecture & Achievements. Tech-

nical report, GriPhyN Technical Report, http://www.griphyn.org, 2001.

BIBLIOGRAPHY 276

[133] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit.

The International Journal of Supercomputer Applications and High Performance

Computing, 11(2):115–128, Summer 1997.

[134] Ian Foster and Carl Kesselman. A Data Grid Reference Architecture. Technical

report, http://www.griphyn.org, February 2001.

[135] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steve Tuecke. Grid Services for

Distributed System Integration. Computer, 35(6), 2002.

[136] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steve Tuecke. The Physiology of

the Grid: An Open Grid Services Architecture for Distributed Systems Integration.

Technical report, Open Grid Service Infrastructure WG, http://www.ggf.org, June

2002.

[137] Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid: En-

abling Scalable Virtual Organizations. High Performance Computing Applications,

15(3):200–222, 2001.

[138] Ian Foster, David Kohr, Jr., Rakesh Krishnaiyer, and Jace Mogill. Remote I/O: Fast

Access to Distant Storage. In Proceedings of the Fifth Workshop on Input/Output

in Parallel and Distributed Systems, pages 14–25, San Jose, CA, USA, November

1997. ACM Press.

[139] Ian Foster and Jarek Nieplocha. ChemIO: High-Performance I/O for Computational

Chemistry Applications. http://www.mcs.anl.gov/chemio/, February 1996.

[140] Ian Foster and Jarek Nieplocha. Disk Resident Arrays: An Array-Oriented I/O Li-

brary for Out-of-Core Computations. In Hai Jin, Toni Cortes, and Rajkumar Buyya,

editors, High Performance Mass Storage and Parallel I/O: Technologies and Appli-

cations, chapter 33, pages 488–498. IEEE Computer Society Press and Wiley, New

York, NY, 2001.

[141] Ian Foster, Jens Vöckler, Michael Wilde, and Yong Zhao. Chimera: A Virtual

Data System for Representing, Querying, and Automating Data Derivation. In Pro-

ceedings of the 14th International Conference on Scientific and Statistical Database

Management (SSDBM02), page 37ff., July 2002.

[142] Ian Foster, Jens Vöckler, Michael Wilde, and Yong Zhao. The Virtual Data Grid:

A New Model and Architecture for Data Intensive Collaboration. In Proceedings

BIBLIOGRAPHY 277

of th 1st Biennial Conference on Innovative Data Systems Research (CIDR 2003),

January 2003.

[143] FreeBSD. http://www.freebsd.org/.

[144] Thomas Fuerle, Oliver Jorns, Erich Schikuta, and Helmut Wanek. Meta-ViPIOS:

Harness Distributed I/O Resources with ViPIOS. Iberoamerican Journal of Re-

search ”Computing and Systems”, Special Issue on Parallel Computing, 4(2):124–

142, October-December 2000.

[145] Emin Gabrielyan. SFIO, Parallel File Striping for MPI-I/O . EPFL-SCR, 12, Novem-

ber 2000.

[146] Emin Gabrielyan and Roger D. Hersch. SFIO, a Striped File I/O Library for MPI .

In http://storageconference.com, 2001.

[147] Felix Garcı́a, Alejandaro Calderón, Jesus Carretero, Jesus Pérez, and Javier

Fernández. A Parallel and Fault Tolerant File System Based on NFS Servers. In

Proceedings of the Eleventh Euromicro Conference on Parallel, Distributed and

Network-Based Processing, pages 83–92, February 2003.

[148] Felix Garcı́a, Alejandaro Calderón, Jesus Carretero, Jesus Pérez, and Javier

Fernández. The Design of the Expand Parallel File System. International Jour-

nal of High Performance Computing Applications, 17:21–37, 2003.

[149] Joydeep Ghosh and Arindam Nag. An Overview of Radial Basis Function Networks

. Radial Basis Function Neural Network Theory and Applications, 2000.

[150] Francesco Giacomini, Francesco Prelz, Massimo Sgaravatto, Igor Terekhov,

Gabriele Garzoglio, and Todd Tannenbaum. Planning on the Grid: A Status Report

[DRAFT]. Technical Report PPDG-20, Particle Physics Data Grid collaboration,

http://www.ppdg.net, October 2002.

[151] Garth A. Gibson, David Nagle, Khalil Amiri, Fay W. Chang, Eugene M. Feinberg,

Howard Gobioff, Chen Lee, Berend Ozceri, Erik Riedel, David Rochberg, and Jim

Zelenka. File Server Scaling with Network-Attached Secure Disks. In Measurement

and Modeling of Computer Systems, pages 272–284, 1997.

[152] Global Grid Forum. http://www.gridforum.org.

BIBLIOGRAPHY 278

[153] Globus. Globus Toolkit 2.2 MDS Technology Brief . Technical Report Draft 4,

http://www.globus.org, January 2003.

[154] Globus I/O Functions: globus io . http://www-unix.globus.org/api/c/

globus_io/html/main.html.

[155] Tom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Masso, Thomas Radke, Ed-

ward Seidel, and John Shalf. The Cactus Framework and Toolkit: Design and Ap-

plications. In Vector and Parallel Processing - VECPAR’2002, 5th International

Conference, Lecture Notes in Computer Science, 2002.

[156] K. Gopinath, Nitin Muppalaneni, N. Suresh Kumar, and Pankaj Risbood. A 3-Tier

RAID Storage System with RAID1, RAID5, and Compressed RAID5 for Linux. In

Proceedings of FREENIX Track: 2000 USENIX Annual Technical Conference, 18 –

23 June 2000.

[157] Otis Graf. Basics of the High Performance Storage System . http://www4.

clearlake.ibm.com/hpss/about/HPSS-Basics.pdf.

[158] Steve Graham, Simon Simeonov, Toufic Boubez, Glen Daniels, Doug Davis, Yuichi

Nakamura, and Ryo Nyeama. Building Web Services with Java: Making Sense of

XML, SOAP, WSDL, and UDDI . SAMS, 2001.

[159] GRAM: Globus Resource Allocation Manager . http://www-unix.globus.org/

developer/resource-management.html.

[160] GRIA: GRID for Business and Industry . http://www.gria.org.

[161] Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler. Scal-

able, Distributed Data Structures for Internet Service Construction. In Proceedings

of the Fourth Symposium on Operating Systems Design and Implementation (OSDI

2000), 2000.

[162] John Linwood Griffin, Steven W. Schlosser, Gregory R. Ganger, and David F. Nagle.

Modeling and Performance of MEMS-Based Storage Devices. In Proceedings of

ACM SIGMETRICS 2000, Santa Clara, California, USA, June 2000.

[163] Andrew Grimshaw, Adam Ferrari, Fritz Knabe, and Marty Humphrey. Legion: An

Operating System for Wide-Area Computing. IEEE Computer, 32(5):29–37, May

1999.

BIBLIOGRAPHY 279

[164] GRIP: GRid Interoperability Project . http://www.grid-interoperability.

org.

[165] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A High-

Performance, Portable Implementation of the MPI Message Passing Interface Stan-

dard. Parallel Computing, 22(6):789–828, 1996.

[166] GSI: Grid Security Infrastructure . http://www.globus.org/security/.

[167] GSI-SFS. http://www.biogrid.jp/e/research_work/gro1/gsi_sfs/index.

html.

[168] GUIDE Grid Portal. http://www.biogrid.jp/e/research_work/gro1/guide/

index.html.

[169] Leanne Guy, Peter Kunszt, Erwin Laure, Heinz Stockinger, and Kurt Stockinger.

Replica Management in Data Grids. Technical report, CERN, European Organiza-

tion for Nuclear Research, July 2002.

[170] Mehnaz Hafeez, Asad Samar, and Heinz Stockinger. A Data Grid Prototype for Dis-

tributed Data Production in CMS. In VII International Workshop on Advanced Com-

puting and Analysis Techniques in Physics Research (ACAT2000), October 2000.

[171] Steve Hammond. Prototyping an Earth System Grid. In Workshop on Advanced

Networking Infrastructure Needs in Atmospheric and Related Sciences, National

Center for Atmospheric Research, Boulder, CO, USA, June 1999.

[172] Bruce Hendrickson and Robert Leland. The Chaco User’s Guide: Version 2.0. Tech-

nical Report SAND94-2692, Sandia National Laboratories, 1994.

[173] Bill Hibbard. VisAD: Connecting People to Computations and People to People.

ACM SIGGRAPH Computer Graphics, 32(3):10–12, August 1998.

[174] Dave Hitz, James Lau, and Michael Malcolm. File System Design for an NFS File

Server Appliance. In Proceedings of the USENIX Winter 1994 Technical Confer-

ence, pages 235–246, San Fransisco, CA, USA, 17–21 1994.

[175] Koen Holtman and Heinz Stockinger. Building a Large Location Table to Find

Replicas of Physics Objects. Journal of Computer Physics Communications,

140:146–152, 2001.

BIBLIOGRAPHY 280

[176] Neil P. Chue Hong, Amy Krause, Simon Laws, Susan Malaika, Gavin McCance,

James Magowan, Norman W. Paton, and Greg Riccardi. Grid Database Service

Specification. Technical report, Documents Produced for GGF7.

[177] Hans-Christian Hoppe and Daniel Mallmann. EUROGRID - European Testbed for

GRID Applications . In GRIDSTART Technical Bulletin, October 2002.

[178] James V. Huber, Jr., Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and

David S. Blumenthal. PPFS: A High Performance Portable Parallel File System. In

Hai Jin, Toni Cortes, and Rajkumar Buyya, editors, High Performance Mass Storage

and Parallel I/O: Technologies and Applications, chapter 22, pages 330–343. IEEE

Computer Society Press and Wiley, New York, NY, USA, 2001.

[179] Harry Hulen, Otis Graf, Keith Fitzgerald, and Richard W. Watson. Storage Area

Networks and the High Performance Storage System, April 15 - 18 2002.

[180] David A. Hutchinson, Peter Sanders, and Jeffrey Scott Vitter. The Power of Duality

for Prefetching and Sorting with Parallel Disks. In ACM Symposium on Parallel

Algorithms and Architectures, pages 334–335, 2001.

[181] Kai Hwang, Hai Jin, and Roy S. C. Ho. Orthogonal Striping and Mirroring in Dis-

tributed RAID for I/O-Centric Cluster Computing. In IEEE Transactions on Parallel

and Distributed Systems, volume 13, pages 26–44, January 2002.

[182] InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.0,

October 2000 . http://www.infinibandta.org.

[183] Yannis E. Ioannidis, Miron Livny, Anastassia Ailamaki, Anand Narayanan, and An-

drew Therber. Zoo: A Desktop Experiment Management Environment. In Proceed-

ings of the 22th International Conference on Very Large Data Bases, pages 274–285,

1996.

[184] Florin Isaila. An Overview of File System Architectures. In Ulrich Meyer, Peter

Sanders, and Jop F. Sibeyn, editors, Algorithms for Memory Hierarchies, volume

2625 of Lecture Notes in Computer Science, pages 273–289. Springer, 2003.

[185] Florin Isaila and Walter F. Tichy. Clusterfile: A Flexible Physical Layout Parallel

File System. In Proceedings of the 3rd IEEE International Conference on Cluster

Computing (CLUSTER’01), page 37ff., 8–11 October 2001.

BIBLIOGRAPHY 281

[186] iVDGL: international Virtual Data Grid Laboratory . http://www.ivdgl.org/.

[187] Keith R. Jackson. pyGlobus: a Python Interface to the Globus Toolkit. Concurrency

and Computation: Practice and Experience, 14(13–15):1075–1083, 2002.

[188] Java Universe . http://www.cs.wisc.edu/condor/manual/v6.4/2_4Road_

map_Running.html#SECTION00%341600000000000000.

[189] Kaiser: Medical Imaging . http://www-itg.lbl.gov/DPSS/Kaiser/.

[190] Mahesh Kallahalla and Peter J. Varman. Analysis of Simple Randomized Buffer

Management for Parallel I/O. IPL (accepted).

[191] Mahesh Kallahalla and Peter J. Varman. PC-OPT: Optimal Prefetching and Caching

for Parallel I/O Systems. In IEEE Transactions on Computers, volume 15, pages

1333–1344, November 2002.

[192] Kerberos: The Network Authentication Protocol . http://web.mit.edu/

kerberos/www/.

[193] Carl Kesselman, Randy Butler, Ian Foster, Joe Futrelle, Doru Marcusiu, Sridhar

Gulipalli, Laura Pearlman, and Chuck Severance. NEESgrid System Architecture.

Technical Report Version 1.1, http://www.neesgrid.org, May 2003.

[194] Gene Kim, Ronald Minnich, and Larry McVoy. A Parallel File-Striping NFS-Server.

Technical report, Sun Microsystems Computer Corp., 1994.

[195] Tracy Kimbrel and Anna R. Karlin. Near-Optimal Parallel Prefetching and Caching.

In IEEE Symposium on Foundations of Computer Science, pages 540–549, 1996.

[196] Donald Ervin Knuth. Art of Computer Programming, Volume 3: Sorting and Search-

ing (2nd Edition). Addison-Wesley Pub Co, April 1998.

[197] Julian Bunn Koen. The GIOD Project - Globally Interconnected Object Databases.

In Proceedings of CHEP 2000, Padova, Italy, February 2000.

[198] David Kotz. Expanding the Potential for Disk-Directed I/O. In Proceedings of

the 1995 IEEE Symposium on Parallel and Distributed Processing, pages 490–495,

1995.

[199] David Kotz. Disk-Directed I/O for MIMD Supercomputers. In ACM Transactions

on Computer Systems, volume 15, pages 41–74, February 1997.

BIBLIOGRAPHY 282

[200] Orran Krieger and Michael Stumm. HFS: A Performance-Oriented Flexible

File System Based on Building-Block Compositions. ACM Trans. Comp. Syst.,

15(3):286–321, 1997.

[201] Peter Kunszt, Erwin Laure, Heinz Stockinger, and Kurt Stockinger. Advanced

Replica Management with Reptor. In In 5th International Conference on Parallel

Processing and Applied Mathematics, September 7–10 2003.

[202] Tahsin Kurc, Umit Catalyurek, Chialin Chang, Alan Sussman, and Joel Saltz. Ex-

ploration and Visualization of Very Large Datasets with the Active Data Repository.

IEEE Computer Graphics and Applications, 21(4):24–33, July/August 2001.

[203] Tahsin Kurc, Chialin Chang, Renato Ferreira, and Alan Sussman. Querying Very

Large Multi-Dimensional Datasets in ADR. In Proceedings of SC99: High Per-

formance Networking and Computing, Portland, OR, USA, 1999. ACM Press and

IEEE Computer Society Press.

[204] Mario Lauria, Keith Bell, and Andrew Chien. A High-Performance Cluster Storage

Server. In Proceedings of the Eleventh IEEE International Symposium on High

Performance Distributed Computing, pages 311–320, Edinburgh, Scotland, 2002.

IEEE Computer Society Press.

[205] LCG: LHC Computing Grid Project . http://lcg.web.cern.ch/LCG/.

[206] Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed Virtual Disks. In

Proceedings of the 7th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS-VII, pages 84–92, October

1996.

[207] Jonghyun Lee, Xiaosong Ma, Marianne Winslett, and Shengke Yu. Active Buffering

Plus Compressed Migration: an Integrated Solution to Parallel Simulations’ Data

Transport Needs. In Proceedings of the 16th international conference on Supercom-

puting, pages 156–166, June 2002.

[208] Jonghyun Lee, Marianne Winslett, Xiaosong Ma, and Shengke Yu. Enhancing Data

Migration Performance via Parallel Data Compression. In IPDPS 2002, 2002.

[209] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John L.

Hennessy. The Directory-Based Cache Coherence Protocol for the DASH Multipro-

BIBLIOGRAPHY 283

cessor. In Proceedings of the 17th International Symp. on Computer Architecture,

pages 148–159, Seattle, WA, May 1990.

[210] Michael J. Lewis and Andrew Grimshaw. The Core Legion Object Model . In

Proceedings of the Fifth IEEE International Symposium on High Performance Dis-

tributed Computing, Los Alamitos, California, August 1996. IEEE Computer Soci-

ety Press.

[211] LHC - The Large Hadron Collider. http://public.web.cern.ch/public/

about/future/whatisLHC/whatisLHC.html.

[212] Jianwei Lia, Wei keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William

Gropp, and Rob Latham. Parallel netCDF: A Scientific High-Performance I/O In-

terface . In SC2003, November 2003.

[213] LIGO: Laser Interferometer Gravitational Wave Observatory. http://www.ligo.

caltech.edu/.

[214] Hyeran Lim, Vikram Kapoor, Chirag Wighe, and David H.-C. Du. Active Disk File

System: A Distributed, Scalable File System, April 2001.

[215] Ling Lio, Calton Pu, and Wei Tang. Continual Queries for Internet Scale Event-

Driven Information Delivery. Transactions on Knowledge and Data Engineering,

11(4):610–628, July 1999.

[216] Witold Litwin, Marie-Anna Neimat, and Donovan A. Schneider. LH* - a Scalable,

Distributed Data Structure. ACM Transactions on Database Systems, 21(4):480–

525, 1996.

[217] Witold Litwin and Thomas Schwarz. LH*RS : A High-Availability Scalable Dis-

tributed Data Structure Using Reed Solomon Codes. In SIGMOD Conference, pages

237–248, 2000.

[218] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - A Hunter of Idle

Workstations. In Proceedings of the 8th International Conference of Distributed

Computing Systems, June 1988.

[219] Xiaosong Ma, Marianne Winslett, Jonghyun Lee, and Shengke Yu. Faster Collective

Output through Active Buffering. In Proceedings of the International Parallel and

Distributed Processing Symposium, pages 34–41, 15–19 April 2002.

BIBLIOGRAPHY 284

[220] Xiaosong Ma, Marianne Winslett, Jonghyun Lee, and Shengke Yu. Improving MPI-

IO Output Performance with Active Buffering Plus Threads. In Proceedings of the

International Parallel and Distributed Processing Symposium (IPDPS’03), pages

68–77. IEEE Computer Society Press, 22–26 April 2003.

[221] F. J. Mac Williams and N. J. Sloane. The Theory of Error-Correcting Codes, 1977.

[222] Ravi K. Madduri, Cynthia S. Hood, and William E. Allcock. Reliable File Transfer

in Grid Environments. Technical Report Preprint ANL/MCS-P983-0802, Mathe-

matics and Computer Science Division, Argonne National Laboratory, August 2002.

[223] Tara M. Madhyastha, Christopher L. Elford, and Daniel A. Reed. Optimizing In-

put/Output Using Adaptive File System Policies. In Proceedings of the Fifth NASA

Goddard Conference on Mass Storage Systems, pages II:493–514, September 1996.

[224] Kostas Magoutis, Salimah Addetia, Alexandra Fedorova, Margo I. Seltzer, Jeffrey S.

Chase, Andrew Gallatin, Richard Kisley, Rajiv Wickremesinghe, and Eran Gabber.

Structure and Performance of the Direct Access File System. In Proceedings of

USENIX 2002 Annual Technical Conference, Monterey, CA, USA, pages 1–14, June

2002.

[225] MCAT: A Meta Information Catalog . http://www.npaci.edu/DICE/SRB/mcat.

html.

[226] Kurt Mehlhorn and Stephan Näher. Leda, a Platform for Combinatorial and Geo-

metric Computing . Communications of the ACM, 38:96–102, 1995.

[227] Gokhan Memik, Mahmut T. Kandemir, and Alok Choudhary. Design and Eval-

uation of a Compiler-Directed Collective I/O Technique. In Proceedings of the

European Conference on Parallel Computing (Euro-Par 2000), pages 1263–1272,

August 2000.

[228] Gokhan Memik, Mahmut T. Kandemir, and Alok Choudhary. Exploiting Inter-File

Access Patterns Using Multi-Collective I/O. In Proceedings of USENIX Conference

on File and Storage Technologies (FAST), January 2002.

[229] Gokhan Memik, Mahmut T. Kandemir, Alok Choudhary, and Valerie E. Taylor.

APRIL: A Run-Time Library for Tape-Resident Data. In IEEE Symposium on Mass

Storage Systems, pages 61–74, 2000.

BIBLIOGRAPHY 285

[230] MEMS: Microelectromechanical Systems Laboratory. http://www.ece.cmu.

edu/˜mems/.

[231] Vincent Messerli. Tools for Parallel I/O and Compute Intensive Applications. PhD

thesis, École Polytechnique Fédérale de Lausanne, 1999.

[232] Paul C. Messina, Sharon Brunett, Dan Davis, Thomas T. Gottschalk, David Curk-

endall, Laura Ekroot, and Peter H. Siegel. Distributed Interactive Simulation for

Synthetic Forces. In Proceedings of the 6th Heterogeneous Computing Workshop,

Geneva, Switzerland, April 1997.

[233] Microsoft. Distributed File System: A Logical View of Physical Storage. Technical

report, Microsoft Corporation, 1999.

[234] Millipede: A Future AFM-Based Data Storage System . http://www.zurich.

ibm.com/st/storage/millipede.html.

[235] Reagan W. Moore. Knowledge-Based Persistent Archives. Technical Report SDSC

TR-2001-7, SDSC, January 2001.

[236] Reagan W. Moore. The San Diego Project: Persistent Objects. In Proceedings of

the Workshop on XML as a Preservation Language, Urbino, Italy, October 2002.

[237] Reagen W. Moore. Recommendations for Standard Operations at Remote Sites.

Technical report, SDSC, 2003.

[238] Reagen W. Moore and Andre Merzky. Persistent Archive Concept. Technical report,

SDSC, 2003.

[239] Richard P. Mount. US Grid Projects: PPDG and iVDGL. In CHEP 2001, Beijing,

China, September 2001.

[240] Steven A. Moyer and Vaidy S. Sunderam. A Parallel I/O System for High-

Performance Distributed Computing . Technical report, Department of Mathematics

and Computer Science, Emory University, Atlanta, GA, USA, January 1994.

[241] MPIF: Message Passing Interface Forum . http://www.mpi-forum.org/.

[242] MPICH: A Portable Implementation of MPI . http://www-unix.mcs.anl.gov/

mpi/mpich/.

BIBLIOGRAPHY 286

[243] Message Passing Interface Forum MPIF. MPI-2: Extensions to the Message-Passing

Interface. Technical report, University of Tennessee, Knoxville, USA, 1996.

[244] Myrinet . http://www.myri.com/.

[245] Elsie Nallipogu, Füsun Özgüner, and Mario Lauria. Improving the Throughput of

Remote Storage Acces Through Pipelining . In Grid 2002, pages 305–316, 2002.

[246] Anand Natrajan, Marty Humphrey, and Andrew Grimshaw. Grids: Harnessing

Geographically-Separated Resources in a Multi-Organisational Context. Technical

report, Presented at High Performance Computing Systems, June 2001.

[247] NCDC: National Climatic Data Center . http://www.ncdc.noaa.gov.

[248] NCSA/UIUC. Introduction to HDF5, May 2000.

[249] NetRPC: NetRemote Procedure Call . http://www.cs.duke.edu/ari/

publications/talks/freebsdcon/tsld025.htm.

[250] Nexus: The Nexus Multithreaded Communication Library . http://www.globus.

org/nexus/.

[251] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global Arrays:

A Nonuniform Memory Access Programming Model for High-Performance Com-

puters. The Journal of Supercomputing, 10(2):169–189, 1996.

[252] Niels Nieuwejaar. Galley: A New Parallel File System for Scientific Workloads.

PhD thesis, Department of Computer Science, Dartmouth College, Hanover, NH

03755-3510, USA, 1996.

[253] Ninf: A Global Computing Infrastructure . http://ninf.apgrid.org/.

[254] Jaechun No, Rajeev Thakur, and Alok Choudhary. High-Performance Scien-

tific Data Management System. Journal of Parallel and Distributed Computing,

63(4):434–447, 2003.

[255] Jaechun No, Rajeev Thakur, Dinesh Kaushik, Lori Freitag, and Alok Choudhary.

A Scientific Data Management System for Irregular Applications. In Proc. of the

Eighth International Workshop on Solving Irregular Problems in Parallel (Irregular

2001), April 2001.

BIBLIOGRAPHY 287

[256] Jaechun No, Rajev Thakur, and Alok Choudhary. Integrating Parallel File I/O and

Database Support for High-Performance Scientific Data Management. In Supercom-

puting Conference, Dallas, Texas, USA, November 2000.

[257] Klaus-Dieter Oertel and Mathilde Romberg. The UNICORE Grid System. In Euro-

Par, 2002.

[258] Ron Oldfield. Summary of Existing and Developing Data Grids. White paper for

the Remote Data Access group of the Global Grid Forum, March 2001.

[259] Ron Oldfield. Efficient I/O for Computational Grid Applications. PhD thesis, Dept.

of Computer Science, Dartmouth College, May 2003. Available as Dartmouth Com-

puter Science Technical Report TR2003-459.

[260] Ron Oldfield. High-Performance I/O for Computational Grid Applications. Invited

talk at Sandia National Laboratories, Albuquerque, NM, USA, January 2003.

[261] Ron Oldfield and David Kotz. Armada: A Parallel File System for Computational

Grids. In Proceedings of the First IEEE/ACM International Symposium on Cluster

Computing and the Grid, pages 194–201, Brisbane, Australia, May 2001. IEEE

Computer Society Press.

[262] Ron Oldfield and David Kotz. Armada: a Parallel I/O Framework for Computational

Grids. Future Generation Computing Systems (FGCS), 18(4):501–523, March 2002.

[263] Ron Oldfield and David Kotz. The Armada Framework for Parallel I/O on Com-

putational Grids. Work-in-progress report at the Conference on File and Storage

Technologies, January 2002.

[264] Ron Oldfield and David Kotz. Improving Data Access for Computational Grid Ap-

plications. Cluster Computing, The Journal of Networks, Software Tools and Appli-

cations, 2003. Accepted for publication.

[265] Emil Ong, Ewing Lusk, and William Gropp. Scalable Unix Commands for Parallel

Processors: A High-Performance Implementation . In Proceedings of the Recent

Advances in Parallel Virtual Machine and Message Passing Interface: 8th European

PVM/MPI Users’ Group Meeting, volume 2131/2001 of Lecture Notes in Computer

Science, page 410 ff, Santorini/Thera, Greece, September 2001. Springer.

[266] Parallel I/O Archive. http://www.cs.dartmouth.edu/pario/.

BIBLIOGRAPHY 288

[267] Manish Parashar, Gregor von Laszewski, Snigdha Verma, Jarek Gawor, and Kate

Keahey. A CORBA Commodity Grid Kit. Concurrency and Computation: Practice

and Experience, 14:1057–1074, July 2002.

[268] Norman Paton, Malcolm Atkinson, Vijay Dialani, Dave Pearson, Tony Storey, and

Paul Watson. Database Access and Integration Services on the Grid. Technical

Report UK e-Science Programme Technical Report Series Number UKeS-2002-03,

National e-Science Centre, March 2002.

[269] Craig J. Patten and Ken A. Hawick. Flexible High-Performance Access to Dis-

tributed Storage Resources. In Ninth IEEE International Symposium on High Per-

formance Distributed Computing (HPDC’00), page 175, Pittsburgh, Pennsylvania,

USA, 2000.

[270] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Ze-

lenka. Informed Prefetching and Caching. In Hai Jin, Toni Cortes, and Rajkumar

Buyya, editors, High Performance Mass Storage and Parallel I/O: Technologies and

Applications, chapter 16, pages 224–244. IEEE Computer Society Press and Wiley,

New York, NY, USA, 2001.

[271] José M. Pérez, Félix Garcı́a, Jesús Carretero, Alejandro Calderón, and Javier

Fernández. A Parallel I/O Middleware to Integrate Heterogeneous Storage Re-

sources on Grids. In 1st European Across Grids Conference, Universidad de Santi-

ago de Compostela, Spain, February 2003.

[272] Marı́a S. Pérez, Jesús Carretero, Félix Garcia, José M. Peña, and Victor Robles.

MAPFS: A Flexible Infrastructure for Data-Intensive Grid Applications. In 1st Eu-

ropean Across Grids Conference, Universidad de Santiago de Compostela, Spain,

February 2003.

[273] David Petrou, Khalil Amiri, Gregory R. Ganger, and Garth A. Gibson. Easing the

Management of Data-Parallel Systems via Adaptation . In Proceedings of the 9th

ACM SIGOPS European Workshop, Kolding, Denmark, September 2000.

[274] PHOENIX: A Physics Experiment at RHIC. http://www.phenix.bnl.gov/.

[275] Beth Plale, Volker Elling, Greg Eisenhauer, Karsten Schwan, Davis King, and

Vernard Martin. Realizing Distributed Computational Laboratories. International

Journal of Parallel and Distributed Systems and Networks, 2(3), 1999.

BIBLIOGRAPHY 289

[276] Beth Plale and Karsten Schwan. dQUOB: Managing Large Data Flows Using

Dynamic Embedded Queries. In IEEE High Performance Distributed Computing

(HPDC), August 2000.

[277] Beth Plale and Karsten Schwan. Dynamic Querying of Streaming Data with the

dQUOB System. In IEEE Transactions on Parallel and Distributed Systems, vol-

ume 14, April 2003.

[278] Kenneth W. Preslan, Andrew P. Barry, Jonathan Brassow, Russell Cattelan, Adam

Manthei, Erling Nygaard, Seth Van Oort, David Teigland, Mike Tilstra, Matthew

O’Keefe, Grant Erickson, and Manish Agarwal. Implementing Journaling in a Linux

Shared Disk File System. In IEEE Symposium on Mass Storage Systems, pages 351–

378, 2000.

[279] Kenneth W. Preslan, Andrew P. Barry, Jonathan E. Brassow, Grant M. Erickson,

Erling Nygaard, Christopher J. Sabol, Steven R. Soltis, David C. Teigland, and

Matthew T. O’Keefe. A 64-bit, Shared Disk File System for Linux. In Proceed-

ings of the Seventh NASA Goddard Conference on Mass Storage Systems, pages

22–41, San Diego, CA, USA, March 1999. IEEE Computer Society Press.

[280] Python . http://www.python.org.

[281] Kumaran Rajaram. Principal Design Criteria Influencing the Performance of a

Portable, High Performance Parallel I/O Implementation. Master’s thesis, Depart-

ment of Computer Science, Mississippi State University, May 2002.

[282] Arcot Rajasekar, Richard Marciano, and Reagan Moore. Collection-Based Persis-

tent Archives. In IEEE Symposium on Mass Storage Systems 1999, pages 176–184,

1999.

[283] Arcot Rajasekar, Michael Wan, and Reagan Moore. MySRB & SRB – Compo-

nents of a Data Grid . In The 11th International Symposium on High Performance

Distributed Computing (HPDC-11), Edinburgh, Scotland, 24–26 July 2002.

[284] Arcot Rajasekar, Michael Wan, Reagan W. Moore, Arun Jagatheesan, and George

Kremenek. Real Experiences with Data Grids - Case-Studies in Using the SRB. In

Proceedings of the 6th International Conference/Exhibition on High Performance

Computing Conference in Asia Pacific Region (HPC-Asia), Bangalore, India, De-

cember 2002.

BIBLIOGRAPHY 290

[285] Rajesh Raman and Miron Livny. High Throughput Resource Management. In Ian

Foster and Carl Kesselman, editors, The Grid: Blueprint for a New Computing In-

frastructure, chapter 13. Morgan Kaufmann, San Francisco, CA, USA, 1999.

[286] Raju Rangaswami, Zoran Dimitrijevic, Edward Chang, and Klaus E. Schauser.

MEMS-Based Disk Buffer for Streaming Media Servers. To appear in IEEE In-

ternational Conference on Data Engineering, 2003.

[287] Russell K. Rew and Glenn P. Davis. Unidata’s NetCDF Interface for Data Access. In

Proceedings of the Thirteenth International Conference on Interactive Information

and Processing Systems for Meteorology, Oceanography, and Hydrology, Anaheim,

California, USA, February 1997. American Meteorology Society.

[288] Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci, and Daniel A. Reed. Autopilot:

Adaptive Control of Distributed Applications. In Proceedings of the 7th IEEE In-

ternational Symposium on High Performance Distributed Computing, page 172ff.,

Chicago, Illinois, USA, 28–31 July 1998.

[289] John R. Rice and Ronald F. Boisvert. From Scientific Software Libraries to Problem-

Solving Environments. IEEE Computational Science and Engineering, pages 44–

53, 1996.

[290] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. Active Disks

for Large-Scale Data Processing . IEEE Computer, 34(6):68–74, June 2001.

[291] Erik Riedel and Garth A. Gibson. Active Disks - Remote Execution for Network-

Attached Storage. PhD thesis, Electrical & Computer Engineering, Carnegie Mellon

University Pittsburgh, Pittsburgh, PA, USA, November 1999.

[292] RIO: Remote I/O for Metasystems . http://www-fp.globus.org/details/rio.

html.

[293] Manuel Rodrı́guez-Martı́nez and Nick Roussopoulos. MOCHA: A Self-Extensible

Database Middleware System for Distributed Data Sources. In ACM SIGMOD Con-

ference 2000, pages 213–224, Dallas, TX, USA, May 2000.

[294] Rob Ross, Walt Ligon, Phil Carns, Neill Miller, and Rob Latham. Parallel Virtual

File System, Version 2 . Technical report, Parallel Architecture Research Laboratory

(PARL), Clemson University, Clemson, South Carolina, USA, September 2003.

BIBLIOGRAPHY 291

[295] Robert Ross, Daniel Nurmi, and Albert Cheng Michael Zingale. A Case Study in

Application I/O on Linux Clusters. In Proceedings of SC2001, Denver, CO, USA,

November 2001.

[296] Robert B. Ross. Reactive Scheduling for Parallel I/O Systems. PhD thesis, Elec-

trical and Computer Engineering Department, Clemson University, Clemson, South

Carolina, USA, 2000.

[297] Robert B. Ross and Walter B. Ligon III. Server-Side Scheduling in Cluster Parallel

I/O Systems . Calculateurs Parallèles Journal Special Issue on Parallel I/O for

Cluster Computing, October 2001.

[298] Run II Computing Project . http://runiicomputing.fnal.gov/.

[299] Joel Saltz. Data Realted Systems Software. Technical report, University of Mary-

land, Johns Hopkins Medical School.

[300] Asad Samar and Heinz Stockinger. Grid Data Management Pilot (GDMP): A Tool

for Wide Area Replication. In IASTED International Conference on Applied Infor-

matics (AI2001), Innsbruck, Austria, February 2001.

[301] Samba . http://www.samba.org.

[302] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. De-

sign and Implementation of the Sun Network Filesystem. In Proceedings of the

Summer 1985 USENIX Technical Conference, pages 119–130, June 1985.

[303] Peter Sanders, Sebastian Egner, and Jan H. M. Korst. Fast Concurrent Access to

Parallel Disks. In Symposium on Discrete Algorithms, pages 849–858, 2000.

[304] Erich Schikuta and Thomas Fuerle. ViPIOS Islands: Utilizing I/O Resources on

Distributed Clusters. In 15th International Conference on Parallel and Distributed

Computing Systems (PDCS 2002), Special Session on Data Management and I/O

Techniques for Data Intensive Applications, Louisville, KY USA, September 2002.

IASTED.

[305] Erich Schikuta, Thomas Fuerle, and Helmut Wanek. ViPIOS: The Vienna Parallel

Input/Output System. In Proceedings of the Euro-Par’98, Lecture Notes in Com-

puter Science, Southampton, England, September 1998. Springer-Verlag.

BIBLIOGRAPHY 292

[306] Erich Schikuta and Heinz Stockinger. Parallel I/O for Clusters: Methodologies and

Systems. In Rajkumar Buyya, editor, High Peformance Cluster Computing, pages

439–462. Prentice Hall PTR, 1999.

[307] Steven W. Schlosser, John Linwood Griffin, David Nagle, and Gregory R. Ganger.

Designing Computer Systems with MEMS-Based Storage. In Architectural Support

for Programming Languages and Operating Systems, pages 1–12, 2000.

[308] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for Large

Computing Clusters. In Proceedings of the Conference on File and Storage Tech-

nologies (FAST02), 28–30 January 2002.

[309] Martin Schulz. DIOM: Parallel I/O for Data Intensive Applications on Commodity

Clusters. In Parallel and Distributed Computing and Systems (PDCS), Los Angeles,

CA, USA, August 2001.

[310] Martin Schulz and Daniel A. Reed. Using Semantic Information to Guide Efficient

I/O on Clusters. In Proceedings of the Eleventh IEEE International Symposium

on High Performance Distributed Computing, pages 135–142, Edinburgh, Scotland,

2002. IEEE Computer Society Press.

[311] SDSS: Sloan Digital Sky Survey . http://www.sdss.org/.

[312] Kent E. Seamons. Panda: Fast Access to Persistent Arrays Using High Level In-

terfaces and Server Directed Input/Output. PhD thesis, University of Illinois at

Urbana-Champaign, May 1996.

[313] Kent E. Seamons, Ying Chen, Mark P. Jones, J. Jozwiak, and Marianne Winslett.

Server-Directed Collective I/O in Panda. In Proceedings of Supercomputing ’95,

San Diego, CA, USA, December 1995. IEEE Computer Society Press.

[314] Kent E. Seamons and Marianne Winslett. Multidimensional Array I/O in Panda 1.0.

Journal of Supercomputing, 10(2):191–211, 1996.

[315] Ben Segal. Grid Computing: The European Data Grid Project. In IEEE Nuclear

Science Symposium and Medical Imaging Conference, Lyon, October 2000.

[316] Edward Seidel and Wai-Mo Suen. Numerical Relativity as a Tool for Computational

Astrophysics. Journal of Computational and Applied Mathematics, 1999.

BIBLIOGRAPHY 293

[317] Self-Certifying File System. http://www.fs.net.

[318] SETI@home . http://setiathome.ssl.berkeley.edu/.

[319] SGI CXFS: A High-Performance, Multi-OS SAN Filesystem from SGI.

[320] SGI CXFS Shared Filesystem. http://www.sgi.com/pdfs/2816.pdf.

[321] SGI XFS: Extended File System. http://www.sgi.com/software/xfs.

[322] Xiaohui Shen and Alok Choudhary. A Distributed Multi-Storage Resource Archi-

tecture and I/O Performance Prediction for Scientific Computing. In Proceedings

of the Ninth IEEE International Symposium on High Performance Distributed Com-

puting (HPDC’00), page 21ff., 1–4 August 2000.

[323] Xiaohui Shen and Alok N. Choudhary. DPFS: A Distributed Parallel File System.

In Proceedings of the International Conference on Parallel Processing (ICPP ’01),

pages 533–544, Valencia, Spain, 03–07 September 2001.

[324] Arie Shoshani, Alex Sim, and Junmin Gu. Storage Resource Managers: Middleware

Components for Grid Storage . In MSS, 2002.

[325] Seth Shostak. Sharing the Universe: Perspectives on Extraterrestrial Life. Berkeley

Hills Books, January 1998.

[326] Sistina . http://www.sistina.com.

[327] Global Telecommunications Company Calls on Sistina GFS. http://www.

sistina.com/downloads/casestudies/telco_CS202A.pdf.

[328] SOAP: Simple Object Access Protocol. http://www.w3.org/TR/SOAP/.

[329] Steve R. Soltis, Grant Erickson, Ken Preslan, Matthew T. O’Keefe, and Tom Ruwart.

The Design and Performance of a Shared Disk File System for IRIX. In The Sixth

Goddard Conference on Mass Storage Systems and Technologies in cooperation

with the Fifteenth IEEE Symposium on Mass Storage Systems, pages 41–56, College

Park, MD, USA, March 1998.

[330] Steven R. Soltis, Thomas M. Ruwart, and Matthew T. O’Keefe. The Global File

System. In Proceedings of the Fifth NASA Goddard Conference on Mass Storage

Systems, pages 319–342, College Park, MD, September 1996. IEEE Computer So-

ciety Press.

BIBLIOGRAPHY 294

[331] Hyo J. Song, Xin Liu, Dennis Jakobsen, Ranjita Bhagwan, Xianan Zhang, Ken-

jiro Taura, and Andrew A. Chien. The MicroGrid: a Scientific Tool for Modeling

Computational Grids. In in Proceedings of SC2000, 2000.

[332] STAR. http://www.star.bnl.gov/.

[333] Heinz Stockinger. Dictionary on Parallel Input/Output. Master’s thesis, Department

of Data Engineering, University of Vienna, Austria, February 1998.

[334] Heinz Stockinger, Asad Samar, Bill Allcock, Ian Foster, Koen Holtman, and Brian

Tierney. File and Object Replication in Data Grids. In 10th IEEE Symposium

on High Performance Distributed Computing (HPDC-10). IEEE Press, 7–9 August

2001.

[335] Sun HPC Parallel File System Documentation . http://docs.sun.com/db/doc/

805-1555/6j1h5o7ng?a=view.

[336] Mark Swanson, Leigh Stoller, and John Carter. Making Distributed Shared Memory

Simple, yet Efficient. In HIPS 98, 1998.

[337] Adam Sweeney, Doug Doucette, Wwi Hu, Curtis Anderson, Mike Nishimoto, and

Geoff Peck. Scalability in the XFS File System. In Proceedings of the USENIX

1996 Technical Conference, pages 1–14, 22–26 1996.

[338] Cluster File Systems. Lustre: a Scalable, High-Performance File System. Technical

Report Whitepaper Version 1.0, Cluster File Systems, Inc., November 2002.

[339] Osamu Tatebe, Youhei Morita, Satoshi Matsuoka, Noriyuki Soda, Hiroyuki Sato,

Yoshio Tanaka, Satoshi Sekiguchi, Yoshiyuki Watase, Masatoshi Imori, and Tomio

Kobayashi. Grid Data Farm for Petascale Data Intensive Computing. Technical

Report ETL-TR2001-4, Electrotechnical Laboratory, 2001.

[340] Osamu Tatebe, Youhei Morita, Satoshi Matsuoka, Noriyuki Soda, and Satoshi

Sekiguchi. Grid Datafarm Architecture for Petascale Data Intensive Computing. In

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing

and the Grid (CCGrid 2002), pages 102–110, 2002.

[341] Tcl: Tool Command Language . http://tcl.sourceforge.net.

[342] TeraGrid . http://www.teragrid.org/.

BIBLIOGRAPHY 295

[343] TerraFlow: Computations on Massive Grids. http://www.cs.duke.edu/geo*/

terraflow.

[344] Terravision: Interactive Terrain Visualization System . http://www.ai.sri.com/

TerraVision/.

[345] Douglas Thain, Jim Basney, Se-Chang Son, and Miron Livny. The Kangaroo Ap-

proach to Data Movement on the Grid. In Proceedings of the Tenth (IEEE) Sympo-

sium on High Performance Distributed Computing (HPDC10), San Francisco, CA,

August 2001.

[346] Douglas Thain, John Bent, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, and

Miron Livny. Gathering at the Well: Creating Communities for Grid I/O. In Pro-

ceedings of Supercomputing 2001, Denver, Colorado, USA, November 2001.

[347] Douglas Thain and Miron Livny. Parrot: Transparent User-Level Middleware for

Data-Intensive Computing , September 2003.

[348] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the Grid. In Fran

Berman, Geoffrey Fox, and Tony Hey, editors, Grid Computing: Making the Global

Infrastructure a Reality. John Wiley & Sons Inc., December 2002.

[349] Rajeev Thakur, Rajesh Bordawekar, Alok Choudhary, Ravi Ponnusamy, and Tarvin-

der Singh. PASSION Runtime Library for Parallel I/O. In Proceedings of the Scal-

able Parallel Libraries Conference, pages 119–128, October 1994.

[350] Rajeev Thakur and Alok Choudhary. An Extended Two-Phase Method for Access-

ing Sections of Out-of-Core Arrays. Scientific Programming, 5(4):301–317, 1996.

[351] Rajeev Thakur, Alok Choudhary, Rajesh Bordawekar, Sachin More, and Sivara-

makrishna Kuditipudi. Passion: Optimized I/O for Parallel Applications . IEEE

Computer, 29(6):70–78, June 1996.

[352] Rajeev Thakur, William Gropp, and Ewing Lusk. An Abstract-Device Interface for

Implementing Portable Parallel-I/O Interfaces. In Proceedings of the Sixth Sympo-

sium on the Frontiers of Massively Parallel Computation, pages 180–187, October

1996.

BIBLIOGRAPHY 296

[353] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and Collective I/O

in ROMIO. In Proceedings of the Seventh Symposium on the Frontiers of Mas-

sively Parallel Computation, pages 182–189. IEEE Computer Society Press, Febru-

ary 1999.

[354] Rajeev Thakur, William Gropp, and Ewing Lusk. On Implementing MPI-IO

Portably and with High Performance. In Proceedings of the Sixth Workshop on

Input/Output in Parallel and Distributed Systems, pages 23–32, May 1999.

[355] Rajeev Thakur, William Gropp, and Ewing Lusk. Optimizing Noncontiguous Ac-

cesses in MPI-IO. Parallel Computing, 28(1):83–105, January 2002.

[356] Rajeev Thakur, Ewing Lusk, and William Gropp. I/O Characterization of a Portable

Astrophysics Application on the IBM SP and Intel Paragon. Technical Report MCS-

P534-0895, Mathematics and Computer Science Division, Argonne National Labo-

ratory, 1995.

[357] Rajeev Thakur, Ewing Lusk, and William Gropp. Users Guide for ROMIO: A High-

Performance, Portable MPI-IO Implementation. Technical Report ANL/MCS-TM-

234, Mathematics and Computer Science Division, Argonne National Laboratory,

October 1997.

[358] Oliver E. Theel and Brett D. Fleisch. The Boundary-Restricted Coherence Pro-

tocol for Scalable and Highly Available DSM Systems. The Computer Journal,

39(6):496–510, 1996.

[359] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A

Scalable Distributed File System. In Proceedings of the 16th ACM Symposium on

Operating Systems Principles, pages 224–237, October 1997.

[360] Mary Thomas, Steve Mock, and Gregor von Laszewski. A Perl Commodity Grid

Kit. Concurrency and Computation: Practice and Experience, accepted.

[361] Brian L. Tierney. High-Performance Data Intensive Distributed Computing. Tech-

nical report, Lawrence Berkeley National Laboratory.

[362] Brian L. Tierney, William E. Johnston, Hanan Herzog, Gary Hoo, Guojun Jin, and

Jason Lee. System Issues in Implementing High Speed Distributed Parallel Storage

Systems. In Proceedings of the USENIX Symposium on High Speed Networking,

pages 61–72, August 1994.

BIBLIOGRAPHY 297

[363] Brian L. Tierney, William E. Johnston, Hanan Herzog, Gary Hoo, Guojun Jin, Ja-

son Lee, Ling Tony Chen, and Doron Rotem. Using High Speed Networks to En-

able Distributed Parallel Image Server Systems. In Supercomputing ’94 Conference,

pages 610–619, 1994.

[364] Brian L. Tierney, William E. Johnston, Jason Lee, Gary Hoo, and Mary Thompson.

An Overview of the Distributed Parallel Storage Server (DPSS) . Technical report,

Lawrence Berkeley National Laboratory.

[365] Brian L. Tierney, Jason Lee, Ling Tony Chen, Hanan Herzog, Gary Hoo, Guojun

Jin, and William E. Johnston. Distributed Parallel Data Storage Systems: A Scalable

Approach to High Speed Image Servers. In Proceedings of the ACM Multimedia,

pages 399–405, October 1994.

[366] Titan Project. http://www.cs.umd.edu/projects/hpsl/chaos/

ResearchAreas/titan.html.

[367] Laura Toma, Rajiv Wickremesinghe, Lars Arge, Jeffrey S. Chase, Jeffrey Scott Vit-

ter, Patrick N. Halpin, and Dean Urban. Flow Computation on Massive Grids.

In Proc. ACM Symposium on Advances in Geographic Information Systems, 2001.

Journal version in preparation.

[368] Triana . http://www.triana.co.uk/.

[369] Steve Tuecke, Karl Czajkowski, Ian Foster, Jeff Frey, Steve Graham, Carl Kessel-

man, Tom Maquire, Thomas Sandholm, David Snelling, and Pete Vanderbilt. Open

Grid Services Infrastructure (OGSI) Version 1.0 . Technical report, Global Grid

Forum, http://www.ggf.org, June 2003.

[370] Unidata. http://www.unidata.ucar.edu.

[371] Mustafa Uysal, Anurag Acharya, and Joel Saltz. Evaluation of Active Disks for

Large Decision Support Databases. Technical Report TRCS99-25, Computer Sci-

ence Dept., University of California, Santa Barbara, CA, USA, 25, 1999.

[372] Vanilla Universe . http://www.cs.wisc.edu/condor/manual/v6.4/2_4Road_

map_Running.html#SECTION00%341200000000000000.

BIBLIOGRAPHY 298

[373] Sudharshan Vazhkudai, Steve Tuecke, and Ian Foster. Replica Selection in the

Globus Data Grid. In Proceedings of the First IEEE/ACM International Confer-

ence on Cluster Computing and the Grid (CCGRID 2001), pages 106–113. IEEE

Computer Society Press, May 2001.

[374] VDT: Virtual Data Toolkit. Components . http://www.lsc-group.phys.uwm.

edu/vdt/contents1.1.11.html.

[375] VDT: Virtual Data Toolkit . http://www.lsc-group.phys.uwm.edu/vdt/home.

html.

[376] Darren Erik Vengroff and Jeffrey Scott Vitter. Supporting I/O-Efficient Scientific

Computation in TPIE. In In Proceedings of the IEEE Symposium on Parallel and

Distributed Computing, 1995.

[377] Snighda Verma, Manish Parashar, Jarek Gawor, and Gregor von Laszewski. Design

and Implementation of a CORBA Commodity Grid Kit. In Craig A. Lee, editor,

Second International Workshop on Grid Computing - GRID 2001, volume 2241

of Lecture Notes in Computer Science, pages 2–12, Denver, CO, USA, November

2001. Springer.

[378] Murali Vilayannur, Anand Sivasubramaniam, Mahmut Kandemir, Rajeev Thakur,

and Robert Ross. Discretionary Caching for I/O on Clusters. In Proceedings of the

3rd International Symposium on Cluster Computing and the Grid (CCGRID), page

96ff., 12–15 May 2003.

[379] Visible Embryo NGI Project . http://www.visembryo.org.

[380] Jeffrey Scott Vitter. External Memory Algorithms and Data Structures: Dealing with

Massive Data. ACM Computing Surveys, 33(2):209–271, June 2001.

[381] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for Parallel Memory I:

Two-Level Memories. Algorithmica, 12(2-3):110–147, 1994.

[382] Visualization of Astronomy Data with ADR and MPIRE . http://mpire.sdsc.

edu/adr99.html.

[383] Bill von Hagen. Using the Intermezzo Distributed Filesystem Getting Connected in

a Disconnected World. http://www.linuxplanet.com, August 2002.

BIBLIOGRAPHY 299

[384] Gregor von Laszewski, Beulah Alunkal, Jarek Gawor, Ravi Madduri, Pawel

Plaszczak, and Xian-He Sun. A File Transfer Component for Grids . In Inter-

national Conference on Parallel and Distributed Processing Techniques and Appli-

cations, Las Vegas, Nevada, USA, June 2003.

[385] Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane. A Java Commodity

Grid Kit. Concurrency and Computation: Practice and Experience, 13(8-9):643–

662, 2001.

[386] Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane, Nell Rehn, and Mike

Russell. Designing Grid-Based Problem Solving Environments and Portals. In 34th

Hawaiian International Conference on System Science, Maui, Hawaii, USA, Jan-

uary 2001.

[387] Gregor von Laszewski, Ian Foster, Jarek Gawor, Warren Smith, and Steve Tuecke.

CoG Kits: A Bridge between Commodity Distributed Computing and High-

Performance Grids. In ACM Java Grande 2000 Conference, pages 97–106, San

Francisco, CA, USA, June 2000.

[388] Gregor von Laszewski, Jarek Gawor, Sriram Krishnan, and Keith Jackson. Com-

modity Grid Kits - Middleware for Building Grid Computing Environments. In Fran

Berman, Geoffrey Fox, and Tony Hey, editors, Grid Computing: Making the Global

Infrastructure a Reality, chapter 26. John Wiley & Sons Inc., December 2002.

[389] Gregor von Laszewski, Jarek Gawor, Peter Lane, Nell Rehn, Mike Russell, and

Keith Jackson. Features of the Java Commodity Grid Kit. Concurrency and Com-

putation: Practice and Experience, 14(13–15):1045–1055, 2002.

[390] Gregor von Laszewski, Gail Pieper, and Patrick Wagstrom. Gestalt of the Grid. In

Salim Hariri and Manish Parashar, editors, Performance Evaluation and Character-

ization of Parallel and Distributed Computing Tools, Wiley Book Series on Parallel

and Distributed Computing. John Wiley & Sons Inc., 2002.

[391] Gregor von Laszewski, Branko Ruscic, Patrick Wagstrom, Sriram Krishnan, Kaizar

Amin, Sandeep Nijsure, Sandra Bittner, Reinhardt Pinzon, John C. Hewson,

Melita L. Norton, Mike Minkoff, and Al Wagner. A Grid Service-Based Active

Thermochemical Table Framework. In Proceedings of Grid Computing - GRID

2002 : Third International Workshop, volume 2536 of Lecture Notes in Computer

Science, pages 25–38, Baltimore, MD, USA, November 2002. Springer.

BIBLIOGRAPHY 300

[392] W3C. Web Services Activity. http://www.w3c.org/2002/ws.

[393] WALDO: Wide Area Large Data Object . http://www-itg.lbl.gov/WALDO/.

[394] David Watson, Yan Luo, and Brett D. Fleisch. The Oasis+ Dependable Distributed

Storage System. In Proceedings of the 2000 Pacific Rim International Symposium

on Dependable Computing, Los Angeles, CA, USA, 18–19 December 2000.

[395] David Watson, Yan Luo, and Brett D. Fleisch. Experiences with Oasis+: A Fault

Tolerant Storage System. In Proceedings of the IEEE International Conference on

Cluster Computing, Newport Beach, CA, USA, 8–11 October 2001.

[396] Richard W. Watson and Robert A. Coyne. The Parallel I/O Architecture of the

High-Performance Storage System (HPSS). In Proceedings of the Fourteenth IEEE

Symposium on Mass Storage Systems, pages 27–44. IEEE Computer Society Press,

September 1995.

[397] WebDAV: Web-based Distributed Authoring and Versioning . http://www.

webdav.org.

[398] Von Welch, Frank Siebenlist, Ian Foster, John Bresnahan, Karl Czajkowski, Jarek

Gawor, Carl Kesselman, Sam Meder, Laura Pearlman, and Steve Tuecke. Secu-

rity for Grid Services. In Twelfth International Symposium on High Performance

Distributed Computing (HPDC-12). IEEE Press, 2003.

[399] Brian S. White, Andrew S. Grimshaw, and Anh Nguyen-Tuong. Grid-Based File

Access: The Legion I/O Model , August 2000.

[400] Brian S. White, Michael Walker, Marty Humphrey, and Andrew S. Grimshaw.

LegionFS: A Secure and Scalable File System Supporting Cross-Domain High-

Performance Applications. In Proceedings of the 2001 ACM/IEEE conference on

Supercomputing (CDROM), pages 59–59, Denver, Colorado, 2001.

[401] Rajiv Wickremesinghe, Jeffrey S. Chase, and Jeffrey S. Vitter. Distributed Com-

puting with Load-Managed Active Storage. In Proceedings of the Eleventh IEEE

International Symposium on High Performance Distributed Computing, pages 24–

34, Edinburgh, Scotland, 2002. IEEE Computer Society Press.

[402] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID

Hierarchical Storage System. In Hai Jin, Toni Cortes, and Rajkumar Buyya, editors,

BIBLIOGRAPHY 301

High Performance Mass Storage and Parallel I/O: Technologies and Applications,

pages 90–106. IEEE Computer Society Press and Wiley, New York, NY, 2001.

[403] WP2. User Guide for EDG Replica Manager 1.5.4. Technical report, CERN, Euro-

pean Organization for Nuclear Research, October 2003.

[404] WP2. User Guide for EDG Replica Optimization Service 2.1.4. Technical report,

CERN, European Organization for Nuclear Research, October 2003.

[405] WP2. User Guide for EDG RLS Replica Location Index 2.1.4. Technical report,

CERN, European Organization for Nuclear Research, October 2003.

[406] WP2. User Guide for Local Replica Catalog 2.1.3. Technical report, CERN, Euro-

pean Organization for Nuclear Research, October 2003.

[407] WP2. User Guide for Replica Metadata Service 2.1.3. Technical report, CERN,

European Organization for Nuclear Research, October 2003.

[408] XPath: XML Path Language . http://www.w3.org/TR/xpath.

[409] XQuery: XML Query Language . http://www.w3.org/TR/xquery/.

[410] Shengke Yu, Marianne Winslett, Jonghyun Lee, and Xiaosong Ma. Automatic and

Portable Performance Modeling for Parallel I/O: A Machine-Learning Approach.

ACM SIGMETRICS Performance Evaluation Review, 30(3):3–5, December 2002.

[411] Erez Zadok, Ion Badulescu, and Alex Shender. Extending File System Using Stack-

able Templates. In Proceedings of the 1999 Annual USENIX Technical Conference,

pages 57–70. USENIX Association, 1999.

