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Abstract—A rebroadcast attack, in which an image is manip-
ulated and then re-imaged, is a simple attack against forensic
techniques designed to distinguish original from edited images.
Various techniques have been developed to detect rebroadcast
attacks. These forensic analyses, however, face new threats from
sophisticated machine learning techniques that are designed to
modify images to circumvent detection. We describe a framework
to analyze the resilience of rebroadcast detection to adversarial
attacks. We describe the impact of repeated attacks and defenses
on the efficacy of detecting rebroadcast content. This basic
framework may be applicable to understanding the resilience
of a variety of forensic techniques.

I. INTRODUCTION

A number of forensic techniques have been developed to
detect various types of image manipulations [1]. Among these
techniques, there exists what is often referred to as file-
based techniques that are specifically designed to detect any
modification of an original JPEG file, but not necessarily
the nature of the manipulation. These include: (1) analyz-
ing JPEG compression parameters, JPEG file markers, and
EXIF format and content to determine if the overall JPEG
packaging is consistent with the expected properties of the
source camera [2], [3], [4]; (2) analyzing the embedded
thumbnail image to determine if its construction and format are
consistent with the source camera or that of a photo-editing
software [7]; and (3) analyzing the encoded discrete cosine
transform coefficients for evidence of multiple compressions
that would arise, for example, after modifying and saving an
image in a photo-editing software [9], [10]. Recent advances in
machine learning have also been used to automatically detect
changes to an original JPEG file [5], [6], [8], [11], [12].

Despite their efficacy, these techniques suffer from a simple
rebroadcast attack in which an altered image is re-imaged, thus
ensuring that all underlying camera properties will appear as
original. We describe a technique for detecting this type of
attack and its resilience to further adversarial attacks.

II. REBROADCAST ATTACK AND DEFENSE

There are two simple types of rebroadcast attacks generated
by photographing a high-quality printed copy of an image, or
photographing a displayed image on a high-resolution monitor.
These approaches are relatively easy to execute and will result
in an image file that is consistent with a camera original. Two
other types of rebroadcast attacks are generated by scanning

with a high-resolution flatbed scanner a printed copy of an
image or capturing a screen-grab of a displayed image on a
monitor. Unlike the first two approaches, these approaches will
require some further manipulation to add the necessary JPEG
file details to be consistent with a camera original.

Many techniques have been developed to detect rebroadcast
attacks. These include the use of higher-order wavelet statistics
to identify scanned images [13], local binary patterns to iden-
tify displayed images [14], Markov-based features to identify
printed images [15], physics-based features to identify printed
images [16], noise statistics and double JPEG compression to
identify displayed images [17], aliasing patterns to identify
displayed images [18], image-edge profiles to identify dis-
played images [19], and a convolutional neural network to
identify displayed images [20]. A few other techniques attempt
to simultaneously detect rephotographed printed and displayed
images [21], [22], [23].

The simultaneous detection of all four types of rebroadcast
attacks was first described in [24]. We will briefly summarize
these results. The authors in [24] collect a dataset of 14, 500
original images from 1, 294 distinct cameras and 14, 500
rebroadcast images from a diverse set of distinct recapture
devices: 234 displays, 173 scanners, 282 printers, and 180
recapture cameras. The performance of four different classi-
fication techniques is evaluated against this dataset: Three of
the techniques are based on hand-crafted features [13], [14],
[15] coupled with a non-linear support vector machine (SVM),
and the fourth technique is based on a convolutional neural
network (CNN). The CNN, described below, significantly
outperforms the other approaches, so we will focus only on
this classifier.

As proposed in [24], we train a CNN to classify small image
blocks as original or rebroadcast, where a rebroadcast image
block can be any of the four classes described above. The input
to the network is a monochromatic (red channel) 64×64 image
block I , and the output is a two-dimensional vector given
by the function φ(I) ∈ R2. The network consists of seven
convolutional layers and two fully connected layers followed
by a log-softmax layer. The first convolutional layer consists
of 16 predefined Gaussian filters residuals with two different
filter sizes and 8 different standard deviations. The detailed
description of all hyper-parameters can be found in [24].

The set of 14, 500 original and 14, 500 rebroadcast images



is randomly divided into 60:20:20 training, validation and
testing sets. These images are partitioned into 4.35, 1.44, and
1.45 million training, validation, and testing image blocks.
The overall training, validation, and testing accuracies are
98.85%, 98.46%, and 98.61%, with almost no difference in
the detection of original or rebroadcast.

Here we analyze the vulnerability and resilience of this
CNN-based approach towards multiple and repeated counter-
forensic attacks that are designed to modify images to circum-
vent detection. A similar type of attack was proposed in [30]
in which the authors described a gradient-based attack against
SVM classifiers. Expanding on this basic idea, we explore the
impact of repeated attacks and defenses on CNN classifiers.

III. A SECOND ATTACK AND DEFENSE

In the previous section, we see that a CNN can be trained
to effectively distinguish original from rebroadcast images. In
this section, we evaluate the resilience of this network to a
counter-forensic attack.

Given an input image block I (we will refer to this block
simply as an image), the output of our CNN is a two-
dimensional vector φ(I). The input is classified as original
or rebroadcast based on the sign of the following function:

f(I) = ~vTφ(I), (1)

where ~vT =
(
−1 1

)
. The function f(·) computes the

difference between the two outputs and classifies an image
as original if this difference is less than zero, f(I) < 0, and
rebroadcast otherwise.

The goal of attacking this CNN is to modify a rebroadcast
image I (with f(I) ≥ 0) such that it will be classified as
original (f(I) < 0). This attack can be formalized as an
optimization of the following form:

Î = arg min
I

f(I). (2)

We solve this optimization problem using the gradient descent
method with momentum which iteratively updates the solution
according to the following update rule at the kth iteration (k =
0, 1, 2, · · · ):

Ik+1 = Ik − α
(
mf ′(Ik−1) + f ′(Ik)

)
, (3)

where m is the momentum, α is the learning rate, and f ′(·)
is the gradient of Equation (1). Our CNN is implemented
using the PyTorch framework [31]. PyTorch’s autograd me-
chanics provides a reverse automatic differentiation system
which yields the desired gradient f ′(·). The gradient descent
optimization is initialized with I0 = I , f ′(I−1) = 0, and
momentum m = 0.9. The learning rate is initialized to
α = 1e−4 and is decreased by a factor of 0.9 when the loss
plateaus. When the learning rate is reduced, the momentum
is set to m = 0 for that iteration and reset to m = 0.9 in
subsequent iterations.

The gradient descent iteration terminates under any of the
following conditions: (1) the modified rebroadcast image is
classified as original: f(Ik) < 0; (2) the learning rate α is

less than a predefined threshold of 1e−8; or (3) the number of
iterations k exceeds a predefined threshold of 1, 000.

A successful attack is one in which the modified rebroadcast
images are mis-classified as original and the average difference
between the rebroadcast and modified rebroadcast images is
minimal (we measure image difference using mean-squared
error, MSE). We do not explicitly penalize large deviations of
MSE to give the attacker as much flexibility as possible. We
have found, however, that a small learning rate typically (but
not always) yields a modified rebroadcast image that is similar
to the input rebroadcast image.

Starting with 0.63 million rebroadcast images, we generate a
corresponding set of 0.63 million attack-rebroadcast images.
The true positive rate (correctly classifying rebroadcast im-
ages) from the previous section is 98.54%. This rate plunges
to 0.005% on the attack-rebroadcast images. At the same
time, the average MSE between the rebroadcast and attack-
rebroadcast images is only 0.96 (all images are integer-valued
and span an intensity scale of [0, 255]).

IV. ITERATIVE ATTACKS AND DEFENSES

We have seen that a CNN is highly effective at detecting
a broad range of rebroadcast attacks. We have also seen that
this same CNN is vulnerable to a fairly simple counter-forensic
attack in which a rebroadcast image can be slightly modified
to evade detection. In this section we ask if a newly trained
CNN can detect this new attack, and if repeated attacks against
this defense are successful or not.

A. Single attack

The set of original and rebroadcast images described in
Section II is denoted as O and R. The CNN trained to
discriminate between these images is denoted as D1. In the
previous section, we describe how D1 can be attacked. In this
section we explore whether this type of attack can be defended
against repeated cycles of detect (D) and attack (A):
(D1) The first full detect/attack cycle starts with a defense

against a rebroadcast attack. In particular, a CNN D1 is
trained to distinguish between original O and rebroad-
cast R images as described in Section II.

(A1) The first cycle ends with an attack against D1 in which
attack-rebroadcast images R1 are generated from R
by attacking D1 using the gradient descent method
described in Section III.

(D2) In the second defense, a new CNN D2 is trained on
{O,R,R1}, where, all of the rebroadcast and attack-
rebroadcast images are bundled together into a single
class.

(A2) This cycle ends with an attack against D2 in which
attack-rebroadcast images R2 are generated from R by
attacking D2.

(Di) In the ith defense, a CNN Di is trained on
{O,R,R1, · · · ,Ri−1}.

(Ai) This cycle ends with an attack against Di in which
attack-rebroadcast images Ri are generated from R by
attacking Di.
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Fig. 1. Detection accuracy for detectors Di against original O, rebroadcast, R, and attack-rebroadcast Rj images, corresponding to (a) a single attack; (b)
multiple attacks; and (c) multiple (slow) attacks. The light gray bars (i > j) correspond to the accuracy against content for which the CNN detectors are
trained. The dark gray (i = j) and white bars (i < j) correspond to the accuracy for attack-rebroadcast images against detectors in the current and previous
detect/attack cycles. The dark gray bars are each annotated with an MSE value corresponding to the difference between the rebroadcast and attack-rebroadcast
images (the integer-valued images are on an intensity scale of [0, 255]). All bars to the right of these dark gray bars are white.

In order to avoid a skewed training dataset, in the ith cycle,
the rebroadcast class is constructed from a randomly selected
fraction of 1/i rebroadcast images R along with their corre-
sponding attack-rebroadcast images in {R1, · · · ,Ri−1}. This
sampling ensures that the rebroadcast class size stays the same
in each cycle.

We carry out six detect/attack cycles. The CNN training
(detect) and the gradient descent (attack) are the same as
described in the previous sections. Shown in Fig. 1(a) are the
detection accuracies of these six CNNs on each subset of origi-
nal, rebroadcast, and attack-rebroadcast images. Each detector
Di is trained on the images rendered as light gray bars. In
each case, and as expected, detection accuracy remains high on
these images (above 97%). We see, for example, that the CNN
D3 can learn to discriminate original (O) from rebroadcast
(R) as well as attack-rebroadcast (R1 and R2) images. This
detector, however, is unable to defend against a new attack

R3 as shown by the low detection accuracy rendered in dark
gray. As shown in Fig. 1(a), this pattern continues for all
detectors Di: CNN Di detects {R,R1, · · · ,Ri−1}, but not
the subsequent attack Ri.

The value above each dark gray bar in Fig. 1(a) corre-
sponds to the average MSE between the rebroadcast and
attack-rebroadcast images. Although the classifier on repeated
detect/attack cycles is not able to defend against new attacks,
we do see that the attack does become more difficult as the
MSE grows from 1.0 for R1 in D1 to 14.7 for R6 in D6.
Despite the slight increase in MSE after repeated detect/attack
cycles, it would appear as if the CNN cannot effectively defend
against repeated attacks.

Note, however, that we only test the attack-rebroadcast
images Ri against a single CNN Di. When we test Ri

against other CNNs in the earlier detect/attack cycles, we
find reason for hope. The white bars in Fig. 1(a) correspond



to the detection accuracy of Ri against all classifiers in the
earlier detect/attack cycles. The attack-rebroadcast images R6,
for example, are thoroughly mis-classified by D6 but are
correctly classified at a high rate by D2 through D5. Perhaps
this shouldn’t be surprising since the attack is designed to
circumvent a single classifier, D6.

In the next section, we will explore a detect/attack cycle in
which the attacker now has to attack all previous classifiers to
avoid detection.

B. Multiple attacks

In the previous section we see that a gradient descent attack
is successful at defeating a single detector but not all previous
detectors in the cycle. In this section we will test the efficacy
of attacking all detectors in the cycle. The training of each
detector Di is the same as in the previous section. The attack
A1 in the first cycle is also the same, but subsequent iterations
differ in that instead of attacking a single CNN, the attacker
simultaneously attacks all previous CNNs in the cycle:
(A2) In this second attack, attack-rebroadcast images R2 are

generated from R by attacking {D1,D2} using the
gradient descent method described below.

(Ai) In this attack, attack-rebroadcast images Ri are gener-
ated from R by attacking {D1,D2, · · · ,Di}.

The extension from attacking a single CNN to multiple
CNNs is straightforward. In the ith detect/attack cycle, a
rebroadcast image I is modified such that it will be clas-
sified as original by all previous detectors: fj(I) < 0, for
j = 1, 2, · · · , i. As before, the input to the jth CNN is
classified as original or rebroadcast based on the sign of the
following function:

fj(I) = ~vTφj(I), (4)

where ~vT =
(
−1 1

)
, and φj(I) is the output of the jth CNN

Dj .
Following a similar approach as in the previous section, the

gradient descent method with momentum iteratively updates
the solution according to the following update rule at the kth

iteration (k = 0, 1, 2, · · · ):

Ik+1 = Ik −
i∑

j=1

αj

(
mjf

′
j(I

k−1) + f ′j(I
k)
)
, (5)

where mj is the momentum, αj is the learning rate, and f ′j(·)
is the gradient of Equation (4).

The gradient descent is initialized with I0 = I , f ′j(I
−1) =

0, and momentum mj = 0.9. The learning rate is initialized
to αj = 1e−4 and is decreased by a factor of 0.9 when the
loss fj(·) plateaus. When the learning rate αj is reduced,
the momentum is set to mj = 0 for that iteration and reset
to mj = 0.9 in subsequent iterations. The gradient descent
iteration terminates under any of the following conditions: (1)
the modified rebroadcast image is classified as original by all
CNNs; (2) all of the learning rates αj are less than predefined
threshold of 1e−8; or (3) the number of iterations k exceeds
a predefined threshold of 1, 000.

We carry out three detect/attack cycles. Shown in Fig. 1(b)
are detection accuracies of three CNN detectors on different
images. Each detector Di is trained on the images rendered as
light gray bars. As before, detection accuracy for each detector
remains high on these images (above 97%). By only the second
iteration, we see that the attacker is struggling to defeat the
detectors. In particular, although the attack-rebroadcast images
R3 are able to mostly circumvent detection by D1, D2, and
D3, we see that it comes at the price of a high MSE of 102.7.
That is, in order to circumvent detection, the images have
to be significantly modified in appearance which presumably
would be easily flagged as suspicious. We only perform three
iterations because on the third iteration the MSE is so large
that further iterations seem unlikely to yield an effective attack.

At this point, it seems that the defender has the upper
hand. In the next section, we briefly explore strategies that
the attacker can employ to defeat the defender.

C. Multiple (slow) attacks

In the previous section, the CNN learning rate is initialized
to αj = 1e−4. We hypothesized that a slower learning rate
may benefit the attacker allowing them to both circumvent
detection while minimizing the MSE between the rebroadcast
and attack-rebroadcast images. Shown in Fig. 1(c) are the
results of the detect/attack cycles described in the previous
section with a learning rate of αj = 1e−5. As before, the CNN
detectors can accurately classify the content on which they
are trained, but fail to detect future attacks. And, the slower
learning rate yields significantly lower MSEs, between 0.1 and
3.5. With this lower learning rate, the attacker is victorious. It
remains to be seen if even more detect/attack iterations will
yield larger and prohibitive MSEs.

V. CONCLUSION

A CNN is able to reliably detect rebroadcast attacks. This
CNN, however, is vulnerable to a simple counter-forensic
attack in which a rebroadcast image is modified to appear
as an original image. In repeated detect/attack cycles, the at-
tacker seems to eventually succeed at circumventing detection.
Across these cycles, however, the modified attack-rebroadcast
image degrades in quality.

Although it appears that the attacker has the upper hand, we
assume that the attacker has full knowledge of the defender
(the CNN). It remains to be seen if the attacker can success-
fully circumvent detection with partial or no knowledge of the
defender. Lastly, our attack only modifies a small image block.
It remains to be seen if the attacker can seamlessly piece these
blocks together to create a full-size adversarial image.
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[6] L. Bondi, L. Baroffio, D. Güera, P. Bestagini, E. J. Delp, and S. Tubaro,
“First steps toward camera model identification with convolutional
neural networks,” IEEE Signal Processing Letter, vol. 24, no. 3, pp.
259–263, 2017.

[7] E. Kee and H. Farid, “Digital image authentication from thumbnails,”
in Proc. SPIE, Media Forensics and Security II, 2010.

[8] B. C. Chen, P. Ghosh, V. I. Morariu, and L. S. Davis, “Detection
of metadata tampering through discrepancy between image content
and metadata using multi-task deep learning,” in IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2017, pp. 1872–
1880.

[9] A. C. Popescu and H. Farid, “Exposing digital forgeries in color filter
array interpolated images,” IEEE Transactions on Signal Processing,
vol. 53, no. 10, pp. 3948–3959, 2005.

[10] M. Kirchner, “Efficient estimation of CFA pattern configuration in digital
camera images,” in Proc. SPIE, Electronic Imaging, Media Forensics and
Security, 2010.

[11] M. Barni, L. Bondi, N. Bonettini, P. Bestagini, A. Costanzo, M. Maggini,
B. Tondi, and S. Tubaro, “Aligned and non-aligned double JPEG
detection using convolutional neural networks,” Journal of Visual Com-
munication and Image Representation, vol. 49, pp. 153–163, 2017.

[12] I. Amerini, T. Uricchio, L. Ballan, and R. Caldelli, “Localization of
JPEG double compression through multi-domain convolutional neural
networks,” IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pp. 1865–1871, 2017.

[13] H. Farid and S. Lyu, “Higher-order wavelet statistics and their applica-
tion to digital forensics,” in IEEE Workshop on Statistical Analysis in
Computer Vision (in conjunction with CVPR), vol. 8, 2003, pp. 94–94.

[14] H. Cao and A. C. Kot, “Identification of recaptured photographs on LCD
screens,” in IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2010, pp. 1790–1793.

[15] J. Yin and Y. Fang, “Markov-based image forensics for photographic
copying from printed picture,” in ACM International Conference on
Multimedia, 2012, pp. 1113–1116.

[16] X. Gao, T. T. Ng, B. Qiu, and S. Chang, “Single-view recaptured
image detection based on physics-based features,” in IEEE International
Conference on Multimedia and Expo, 2010, pp. 1469–1474.

[17] J. Yin and Y. Fang, “Digital image forensics for photographic copying,”
in Proc. SPIE, Media Watermarking, Security, and Forensics, 2012, p.
83030F.
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