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Abstract

The unique statureof photographsas a de niti ve recordingof eventsis being diminisheddue, in part, to the
easewith which digital imagescanbe manipulatedand altered.Although goodforgeriesmay leave no visual clues
of having beentamperedwith, they may, neverthelessalter the underlying statisticsof an image. For example,
we describehow re-sampling(e.qg.,scalingor rotating)introducesspeci c statisticalcorrelations,and describehow
thesecorrelationscan be automaticallydetectedin ary portion of an image. This techniqueworks in the absence
of ary digital watermarkor signature We shav the ef cacy of this approachon uncompressed|FF images,and
JPEGand GIF imageswith minimal compressionWe expect this techniqueto be amongthe rst of mary tools

thatwill be neededo exposedigital forgeries.

. INTRODUCTION

With the adventof low-costandhigh-resolutiondigital camerasandsophisticateaditing software, digital images
can be easily manipulatedand altered. Digital forgeries,often leaving no visual clues of having beentampered
with, can be indistinguishablefrom authenticphotographsAs a result, photographao longer hold the unique
statureas a de niti ve recordingof events.Of particularconcernis how the judicial systemand news mediawill
contendwith this issue.For example,in March of 2003 the Los Angeles Times published,on its front page,a
dramaticphotographof a soldierdirectingan Iraqi citizen to take cover. The photographhowever, was a fake - it
wasdigitally createdby splicing togethertwo photographs. This andsimilar incidentsnaturallyleadus to wonder
how mary of the imagesthat we seeevery day have beendigitally doctored.

Digital watermarkinchasbeenproposedisa meansy which animagecanbeauthenticatedsee for example,[1],
[2] for generalsuneys). Within this broad area, several authenticationschemeshave beenproposed:embedded
signatureg3], [4], [5], [6], [7], eraseabldragile watermarkd8], [9], semi-fragilewatermarkq10], [11], [12], [13],
robusttell-tale watermarkg14], [15], [12], [16], [17], andself-embeddingvatermarkg18]. All of theseapproaches
work by eitherinsertingat the time of recordingan imperceptibledigital code (a watermark)into the image, or

extractingat the time of recordinga digital code (a signature)from the imageandre-insertingit into the imageor

A. C. Popescus with the ComputerScienceDepartmentat DartmouthCollege.

Correspondin@uthor:H. Farid, 6211 Sudiloff Lab, ComputerScienceDepartmentPartmouthCollege, Hanoser, NH 03755USA (email:
farid@cs.dartmouth.edtel/fax: 603.646.2761/603.646.167 A)his work wassupportecby an Alfred P. SloanFellowship,a NationalScience
FoundationCAREER Award (11S-99-83806),a Departmentof Justice Grant (2000-DFCS-K001), and a departmentaNational Science
FoundationInfrastructureGrant (EIA-98-02068).
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image header With the assumptiorthat digital tamperingwill alter a watermark(or signature),an image can be
authenticatedby verifying thatthe extractedwatermarkis the sameasthatwhich wasinserted . The major dravback
of this approachis that a watermarkmust be insertedat preciselythe time of recording,which would limit this
approacho speciallyequippedigital camerasThis methodalsorelieson the assumptiorthatthe digital watermark
cannotbe easily removed and reinserted it is not yet clearwhetherthis is a reasonableassumption(e.g.,[19]).
In contrastto theseapproachesye describea techniquefor detectingtracesof digital tamperingin the complete
absencef ary form of digital watermarkor signature This approactworks on the assumptiorthatalthoughdigital
forgeriesmay leave no visual clues of having beentamperedwith, they may, neverthelessalter the underlying
statisticsof animage.For example,considerthe creationof a digital forgery that shows a pair of famousmovie
stars,rumoredto have a romantic relationship,walking hand-in-hand.Such a photographcould be createdby
splicing togetherindividual imagesof eachmovie starandoverlayingthe digitally createdcompositeonto a sunset
beachln orderto createa corvincing match,it is oftennecessaryo re-size rotate,or stretchportionsof theimages.
This procesgequiresre-samplinghe originalimageonto a new samplinglattice. Althoughthis re-samplings often
imperceptible,t introducesspeci c correlationsinto the image, which when detectedcan be usedas evidenceof
digital tampering.We describethe form of thesecorrelations,and how they canbe automaticallydetectedn ary
portion of animage.We shav the generaleffectivenesof this techniqueand analyzeits sensitvity androbustness

to counterattacks.

I[l. RE-SAMPLING

For purposesof exposition we will rst describehow and where re-samplingintroducescorrelationsin 1-D
signals,and how to detectthesecorrelations.The relatively straight-forvard generalizatiorto 2-D imagesis then

presented.

A. Re-samplingSignals

Considera 1-D discretely-sampledignal x[t] with m samplesFig. 1(a). The numberof samplesn this signal
canbe increasedr decreasedy a factor p=qto n samplesn threesteps[20]:
1) up-samplecreatea new signal x[t] with pm sampleswherexy[pt] = x[t], t = 1,;2;::;;m, andxt] = 0
otherwise Fig. 1(b).
2) interpolate:convolve x[t] with a low-pass Iter: x[t] = xy[t] ? h[t], Fig. 1(c).
3) down-sample:createa new signal x4[t] with n sampleswherexq[t] = x;[qt], t = 1;2;:::;n. Denotethe
re-sampledsignalasy[t] Xql[t], Fig. 1(d).
Different typesof re-samplingalgorithms(e.g., linear, cubic) differ in the form of the interpolation Iter h[t] in
step2. Sinceall threestepsin the re-samplingof a signal are linear, this processcan be describedwith a single

linear equation.Denaoting the original and re-sampledsignalsin vector form, x and ¥, respectiely, re-sampling
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Fig. 1. Re-samplinga signal by a factor of 4=3: shavn are (a) the original signal; (b) the up-sampledsignal; (c) the interpolatedsignal;

and (d) the nal re-sampledsignal.

takesthe form:
¥ = Apgt 1)

wherethen m matrix A,-, embodiesthe entire re-samplingprocessFor example,the matrix for up-sampling

by a factor of 4=3 usinglinear interpolation(Fig. 1) hasthe form:
2

1 0 0 0
025 075 O 0
0O 050 050 O
0 0 075 025
0 0 0 1

Dependingonthere-samplingate,there-samplingorocesswill introducecorrelationsof varyingdegreesbetween
neighboringsamplesFor example,considerthe up-samplingof a signalby afactorof two usinglinearinterpolation.

In this case the re-samplingmatrix takes the form:



1 0 0
05 05 O
0 1 0
Army = : 3)
0O 05 05
0 0 1

y2i = 05 + 0:5Xi41; (4)

wherei = 1;:::;m 1. Note that sinceeachsampleof the original signalcanbe found in the re-sampledsignal,
i.e., Xi = Yo 1 andXj+1 = VYi+1, the above relationshipcan be expressedn termsof the re-sampledsamples

only:
yai = 0:5yy 1+ 0:5ygisq: %)

Thatis, acrosghe entirere-sampleignal,eachevensamples preciselythe samelinearcombinationof its adjacent
two neighbors.In this simple case,at least, a re-sampledsignal could be detected(in the absenceof noise) by
noticing that every other sampleis perfectly correlatedto its neighbors.To be usefulin a generalforensicsetting
we need,at a minimum, for thesetypesof correlationsto be presentregardlessof the re-samplingrate.
Considemow re-samplinga signal by an arbitraryamountp=q In this casewe rst ask,whenis thei" sample

of a re-sampledsignal equalto a linear combinationof its 2N neighborsthatis:
X

1o

Yi kYi+ks (6)
k= N

where | are scalarweights(and ¢ = 0). Re-orderingterms,and re-writing the above constraintin termsof the

re-samplingmatrix yields:

X
Yi KYi+k = O (7)
k= N
X
(& %) K@+ x) = 0 (8)
k= N |
" !
= KBisk %X = 0 )
k= N

wheresq; is the i™ row of the re-samplingmatrix A,=q: andx is the original signal. We seenow that the jth
sampleof a re-sampledsignalis equalto a linear combinationof its neighborswhentheit" row of the re-sampling

matrix, g;, is equalto a linear combinationof the neighboringrows, |':'= N k8&i+k. For example,in the caseof



up-samplingoy a factorof two, Equation(3), the evenrows area linear combinationof the two adjaceniodd rows.
Note alsothatif thei!" sampleis a linear combinationof its neighborsthenthe (i kp)"" sample(k an integer)
will be the samecombinationof its neighborsthatis, the correlationsare periodic. It is, of course possiblefor the
constraintof Equation(9) to be satis ed whenthe differenceon the left-handside of the equationis orthogonalto

the original signal». While this may occuron occasion thesecorrelationsare unlikely to be periodic.

B. DetectingRe-sampling

Given a signalthathasbeenre-sampledy a known amountandinterpolationmethodi,it is possibleto nd aset
of periodic samplesthat are correlatedin the sameway to their neighbors.Consideragainthe re-samplingmatrix
of Equation(2). Here, basedon the periodicity of the re-samplingmatrix, we seethat, for example,the 3'9, 7t
11| etc. samplesof the re-sampledsignal will have the samecorrelationsto their neighbors.The speci ¢ form
of the correlationscan be determinedoy nding the neighborhoodsize, N, andthe setof weights,~, that satisfy:
q = P :2': N k8i+k, Equation(9), wheres; is theit" row of the re-samplingmatrix andi = 3;7;11, etc.If, on
the otherhand,we know the speci ¢ form of the correlations,~, thenit is straight-forvard to determinewhich
samplessatisfyy; = P 'lz': N kYi+k, Equation(7).

In practice,of course,neitherthe re-samplingamountnor the speci ¢ form of the correlationsare typically
known. In orderto determineif a signhalhasbeenre-sampledwe employ the expectation/maximizatiomlgorithm
(EM) [21] to simultaneoushestimatea setof periodicsampleghatarecorrelatedo their neighborsandthe speci ¢
form of thesecorrelations We begin by assuminghat eachsamplebelongsto oneof two models.The rst model,
M1, corresponddo thosesamplesthat are correlatedto their neighbors,and the secondmodel, M ,, corresponds
to thosesampleghatarenot (i.e., an outlier model). The EM algorithmis a two-stepiterative algorithm: (1) in the
E-stepthe probability that eachsamplebelongsto eachmodelis estimatedand(2) in the M-stepthe speci ¢ form
of the correlationsbetweensamplesis estimated More speci cally, in the E-step,the probability of eachsample

yi belongingto modelM ; canbe obtainedusing Bayes'rule:

Priyi 2 M1jyig =
o Priyijyi 2 M,gPrfyi 2 M1g (10)
E-1 Priyijyi 2 MgPriy; 2 Mig’
wherethe priors Prfy; 2 Mg andPrfy; 2 Mg areassumedo be equalto 1=2. We also assumehat
Priyijyi 2 Mg =, o 3
Yi h kYi+k
1 1 k= N
—p?expg >3 £ (11)

andthat Prfyijy; 2 Mg is uniformly distributed over the rangeof possiblevaluesof the signaly. The variance,

, of the Gaussiardistribution in Equation(11) is estimatedn the M-step (seeAppendix A). Note thatthe E-step
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Fig. 2. A signalwith 32 samplegtop) andthis signalre-sampledy a factorof 4=3 (bottom).Eachsampleis annotatedvith its probability
of being correlatedto its neighbors.Note that for the up-sampledsignal theseprobabilitiesare periodic, while for the original signal they
are not.

requiresan estimateof ~, which on the rst iterationis chosenrandomly In the M-step, a new estimateof ~ is
computedusing weightedleast-squareghat is, minimizing the following quadraticerror function:

X X 2
E(-) = w(i) i KYisk (12)
i k= N

where the weights w(i) Prfy; 2 Mijyig, Equation(10), and o = 0. This error function is minimized by

computingthe gradientwith respectto ~, settingthe resultequalto zero,and solving for ~, yielding:

~ = (YTWY) YTwy; (13)
wherethe matrix Y is:
2 3
y1 YN YN +2 SiroYoan+
Y2 it YN+ YN+3  TID YoN+2
Y=6: : : : ; (14)
Yio 00 YN+io1 YN+i+1 fil Yon+i

and W is a diagonalweighting matrix with w(i) along the diagonal.The E-stepand the M-step are iteratively
executeduntil a stableestimateof ~ is achieved (seeAppendix A for more details).

Shawn in Fig. 2 arethe resultsof runningEM on the original andre-sampledsignalsof Fig. 1. Shavn on the top
is the original signalwhere eachsampleis annotatedwith its probability of being correlatedto its neighbors(the
rst andlasttwo samplesare not annotateddueto bordereffects- a neighborhoodsizeof ve (N = 2) wasused
in this example).Similarly, shavn on the bottom s the re-sampledsignal and the correspondingprobabilities.In
the later case the periodic patternis obvious, whereonly every 4™ samplehasprobability 1, aswould be expected
from an up-samplingby a factor of 4=3, Equation(2). As expected,no periodic patternis presentin the original
signal.

The periodic patternintroducedby re-samplingdependspf course,on the re-samplingrate. It is not possible,

however, to uniguely determinethe speci ¢ amountof re-sampling.The reasonis that althoughperiodic patterns



may be uniquefor a setof re-samplingparametersthere are parameterghat will producesimilar patterns.For
example,re-samplingoy a factorof 3=4 andby a factorof 5=4 will produceindistinguishableperiodicpatternsAs
a result,we canonly estimatethe amountof re-samplingwithin this ambiguity Sincewe are primarily concerned
with detectingtracesof re-sampling,and not necessariljthe amountof re-samplingthis limitation is not critical.
Thereis a rangeof re-samplingratesthat will not introduceperiodic correlations For example,considerdown-
samplingby a factor of two (for simplicity, considerthe casewherethereis no interpolation). The re-sampling

matrix, in this case,is given by:

2
00100
A = : (15)

Noticethatno row canbe written asa linear combinationof the neighboringrows - in this case re-samplings not
detectableMore generally the detectabilityof any re-samplingcan be determinedoy generatingthe re-sampling
matrix and determingwhetherary rows can be expressedas a linear combinationof their neighboringrows - a

simple empirical algorithmis describedn Sectionlll-A.

C. Re-samplingmages

In the previous sectionswe showved that for 1-D signalsre-samplingintroducesperiodic correlationsand that
thesecorrelationscan be detectedusing the EM algorithm. The extensionto 2-D imagesis relatively straight-
forward. As with 1-D signals,the up-samplingor down-samplingof animageis still linear andinvolvesthe same
three steps:up-sampling,interpolation,and down-sampling- thesestepsare simply carriedout on a 2-D lattice.
Again, aswith 1-D signals,the re-samplingof an image introducesperiodic correlations.Thoughwe will only
show this for up- and down-sampling,the sameis true for an arbitrary af ne transform(and more generallyfor
ary non-lineargeometrictransformation).

Considerfor example,the simple caseof up-samplingoy a factorof two. Showvn in Fig. 3 is, from left to right,
a portion of an original 2-D samplinglattice, the samelattice up-sampledby a factor of two, and a subsetof the

pixels of the re-sampledmage.Assuminglinear interpolation,thesepixels are given by:

y2 = 0:5y1 + 0:5y3
ya = O:5y; + 0:5y7 (16)
ys = 0:25y1 + 0:25y3 + 0:25y7 + 0:25y9;

wherey; = X1, Y3 = X2, Y7 = X3, Yo = X4. Note that all the pixels of the re-sampledmagein the odd rows and
even columns(e.g.,y2) will all be the samelinear combinationof their two horizontal neighbors.Similarly, the

pixels of the re-sampledmagein the evenrows andodd columns(e.g.,y4) will all be the samelinear combination



X1 | 0| X2 Yi|Y2|Y3
0/0]0 Ya | Ys

X3 | 0| X4 y7 Yo

X1 | X2

X3 | X4

Fig. 3. Shavn from left to right are: a portion of the 2D lattice of animage,the samelattice up-sampledy a factorof two, anda portion

of the lattice of the re-sampledmage.

of their two vertical neighborsThatis, the correlationsare,aswith the 1-D signals,periodic.And in the sameway
that EM was usedto uncover theseperiodic correlationswith 1-D signals,the sameapproachcan be usedwith

2-D images.

1. RESULTS

For the resultspresentedere,we built a databasef 200 grayscaleémagesin TIFF format. Theseimageswere
512 512 pixels in size. Each of theseimageswere croppedfrom a smaller set of twenty- ve 1200 1600
imagestaken with a Nikon Coolpix 950 camera(the camerawas setto captureand storein uncompressed|FF
format). Using bi-cubic interpolationtheseimageswere up-sampleddown-sampledrotated,or af ne transformed
by varying amounts.Although we will presentresultsfor grayscaleimages,the generalizatiornto color images
is straight-forvard - eachcolor channelwould be independentlysubjectedto the sameanalysisas that described
below.

For the original and re-sampledimages,the EM algorithm describedin Sectionll-B was usedto estimate
probability mapsthat embodythe correlationbetweeneachpixel andits neighborsThe EM parametersvere x ed
throughoutat N = 2, o = 0:0075 and Ny = 3 2 (seeAppendix A). Shovn in Figs. 4-6 are several examples
of the periodic patternsthat emeged dueto re-samplingIn the top row of each gure are (from left to right) the
original image, the estimatedprobability map and the magnitudeof the central portion of the Fourier transform
of this map (for display purposesgachFourier transformwas independentlyauto-scaledo Il the full intensity
rangeandhigh-passltered to remove the lowestfrequencies)Shovn belaw this row is the sameimageuniformly
re-samplecht differentrates.For the re-sampledmages note the periodic natureof their probability mapsandthe
localized peaksin their corresponding-ourier transforms.Showvn in Fig. 7 are examplesof the periodic patterns
that emepge from four differentafne transforms.Shown in Fig. 8 are the resultsfrom applying consecutre re-
samplings Speci cally, the imagein the top row was rst upsampledy 15% andthenthis up-sampledmagewas
rotatedby 5 . The sameoperationswere performedin reverseorder on the imagein the bottom row. Note that
while the imagesare perceptuallyindistinguishablethe periodic patternsthat emege are quite distinct, with the
lastre-samplingoperationdominatingthe pattern.Note, however, that the correspondind-ourier transformscontain
several sets of peakscorrespondingto both re-samplingoperations.As with a single re-sampling,consecutre

re-samplingsare easily detected.

2The blurring of the residualerror with a binomial lter of width Ny, is not critical, but merely accelerateshe convergenceof EM.
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Fig. 4. Shawn in the top row is the original image,and shavn belav is the sameimage up-samplecby varying amounts.Shavn in the
middle columnarethe estimatedprobability maps(p) that embodythe spatialcorrelationsin the image.The Fourier transformof eachmap

is shawn in the right-mostcolumn. Note that only the re-sampledmagesyield periodic maps.

Shawn in Figs. 9-10 are examplesof our detectionalgorithm appliedto imageswhere only a portion of the
image was re-sampled Regions in eachimage were subjectedto a range of stretching,rotation, shearing,etc.
(thesemanipulationswere done in Adobe Photoshopusing bi-cubic interpolation). Shovn in each gure is the
original photographthe forgery, andthe estimatedorobability map. Note thatin eachcase the re-sampledegion
is clearly detected while the periodicpatternsarenot particularlyvisible in the spatialdomainat thereducedscale,
the well localized peaksin the Fourier domain clearly reveal their presencgfor display purposesgachFourier
transformwasindependenthauto-scaledo Il thefull intensityrangeandhigh-passltered to suppresshe lowest
frequencies)Note also that in Fig. 9 the white sheetof paperon top of the trunk has strong activation in the
probability map - when seenin the Fourier domain,however, it is clearthat this region is not periodic, but rather

is uniform, and thus not representatie of a re-sampledegion.

A. Sensitivityand Rolustness

From a digital forensic perspectie it is importantto quantify the robustnessand sensitvity of our detection
algorithm. To this end,it is rst necessaryo devise a quantitatve measureof the extent of periodicity found in
the estimatedprobability maps.To do so, we comparethe estimatedprobability map with a set of synthetically

generategrobability mapsthat containperiodic patternssimilar to thosethat emepge from re-sampledmages.
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Fig. 5. Shawn in thetop row is the original image,and shavn belaw is the sameimagedown-sampledby varying amounts Shavn in the
middle columnarethe estimatedprobability maps(p) that embodythe spatialcorrelationsin the image.The Fourier transformof eachmap
is shawn in the right-mostcolumn. Note that only the re-sampledmagesyield periodic maps.

Given a set of re-samplingparametersand interpolation method,a syntheticmap is generatedbasedon the
periodicity of the re-samplingmatrix. Note, however, that there are several possibleperiodic patternsthat may
emegein are-sampledmage.For example,in the caseof up-samplingoy a factorof two usinglinearinterpolation,
Equation(16), the coefcients ~ estimatedby the EM algorithm (with a3 3 neighborhood)are expectedto be

one of the following:

2 3 2 3 2 3
0 05 0O 0 0 O 025 0 02
~1= EO 0 Oz ~2 = §0:5 0 0252 ~3= E 0O 0 O (17)
0 05 0 0 0 O 025 0 0:25

We have obsened that EM will return one of theseestimatesonly when the initial value of ~ is closeto one
of the above threevalues,the neighborhoodsizeis 3, andthe initial varianceof the conditionalprobability ( in
Equation(11)) is relatively small. In generalhowever, this ne tuning of the startingconditionsis not practical.To
be broadly applicable we randomlychoosean initial value for ~, and setthe neighborhoodsize andinitial value
of to valuesthat afford corvergencefor a broadrangeof re-samplingparametersUnder theseconditions,we
have foundthatfor speci ¢ re-samplingparametersindinterpolationmethod the EM algorithmtypically corverges

to a uniquesetof linear coefcients. In the above exampleof up-samplingby a factor of two the EM algorithm
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Fig. 6. Shawn in thetop row is the original image,and shavn below is the sameimagerotatedby varying amounts.Shavn in the middle
columnarethe estimatecdprobability maps(p) thatembodythe spatialcorrelationsin theimage.The Fourier transformof eachmapis shavn
in the right-mostcolumn. Note that only the re-sampledmagesyield periodic maps.

typically corvergesto:

2 3

025 05 02
~=§ 05 0 0571: (18)

025 05 025
Notethatthis solutionis differentthaneachof the solutionsin Equation(17). Yet, therelationshipsn Equation(16)
arestill satis ed by this choiceof coefcients. Sincethe EM algorithmtypically corvergesto a uniquesetof linear
coefcients, thereis alsoa uniqueperiodic patternthat emepes.lIt is possibleto predictthis patternby analyzing
the periodic patternshatemege from a large setof images.In practice,however, this approachs computationally
demanding,and thereforewe employ a simpler methodthat was experimentallydeterminedto generatesimilar
periodic patterns.This method rst warpsa rectilinearinteger lattice accordingto a speci ed set of re-sampling
parametersirom this warpedlattice, the syntheticmapis generatedy computingthe minimum distancebetween
a warpedpoint and an integer samplinglattice. More speci cally, let M denotea generalaf ne transformwhich

embodiesa speci ¢ re-samplingLet (x; y) denotethe pointson aninteger lattice, and (¢, y¥) denotethe points of
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Fig. 7. Shown arefour imagesaf ne transformecdby randomamountsShavn in the middle columnarethe estimatecbrobability maps(p)
that embodythe spatial correlationsin the image. The Fourier transformof eachmapis shavn in the right-mostcolumn. Note that these

imagesyield periodic maps.

a lattice obtainedby warping the integer lattice (x; y) accordingto M :
23 2 3
X, X
4°5 = pm4'5: (19)
¥ y
The syntheticmap, s(x; y), correspondingo M is generatecbhy computingthe minimum distancebetweeneach

point in the warpedlattice (¢; ¥) to a pointin the integer lattice:

p
s(x;y) = Q@ (x x0)?+ (¥ Y02 (20)

wherexg andyg areintegers,and( y) arefunctionsof (x; y) asgivenin Equation(19). Syntheticmapsgenerated
usingthis methodare similar to the experimentallydeterminedprobability maps,Fig. 11.

The similarity betweenan estimatedprobability map, p(x; y), and a syntheticmap, s(x;y), is computedas
follows:

1) The probabilitymapp is FouriertransformedP (! x;!y) = F(p(x;y) W(X;y)), wherethe radial portion of

the rotationally invariantwindow, W (x; y), takesthe form:
8

21 0 r<3=4
f(r)= (21)

r 3=4) _ p_.
Cos F5— 34 r 2
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Fig. 8. Shawn aretwo imagesthat were consecutiely re-sampledtop left: upsampledoy 15% andthenrotatedby 5 ; top right : rotated

by 5 andthenupsampledy 15%). Shavn in the secondrow arethe estimatedorobability mapsthat embodythe spatialcorrelationsin the

image.The magnitudeof the Fourier transformof eachmapis shavn in the bottomcolumn- notethe multiple setof peaksthat correspond

to both the rotation and up-sampling.

2)

3)

4)
5)

where the radial axis is normalizedbetween0 and P 2. Note that for notational corveniencethe spatial
argumentson p( ) andP () will be dropped.
The Fourier transformedmap P is then high-passlitered to remove undesiredow frequenyg noise:Py =

P H, wherethe radial portion of the rotationallyinvarianthighpasslter, H, takesthe form:

1 1 r P
h(r) = > Ecos 19—z ;0 2: (22)
The high-passedspectrumPy is then normalized,gammacorrectedin orderto enhancefrequeny peaks,
andthenrescaledbackto its original range:

B Py .
Pc = max(Pn]) max(jPuj): (23)

The syntheticmap s is simply Fourier transformedsS = F (s).
The measureof similarity betweenp ands is thengiven by:

X
M (p;s) = Pe(t st y)i IS it yis (24)

Tty

wherej j denotesabsolutevalue (note that this similarity measurds phaseinsensitve).

A setof syntheticprobability mapsare rst generatedrom a numberof differentre-samplingparameterskor a

given probability map p, the mostsimilar syntheticmap, s?, is found througha brute-forcesearchover the entire
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Fig. 9. Shawn arethe original imageand a forgery The forgery consistsof splicing in a new licenseplate number Shavn below is the
estimatedprobability map (p) of the forgery and the magnitudeof the Fourier transform(F (p)) of a region in the licenseplate (left) and

on the car trunk (right). The periodic pattern(spikesin F (p)) in the licenseplate suggestghat this region was re-sampled.
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Fig. 10. Shawn aretheoriginalimageanda forgery The forgery consistsof remoring a stoolandsplicingin anew oor takenfrom another
image of the sameroom. Shavn belaw is the estimatedprobability map (p) of the forgery, and the magnitudeof the Fourier transform

(F (p)) of aregionin the new oor (left) andon the original oor (right). The periodic pattern(spikesin F (p)) in the nev oor suggests

that this region was re-sampled.
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Fig. 11. Shawn in the rst two rows are estimatedprobability maps,p, from imagesthat were re-sampledaf ne transformed).and the
magnitudeof the Fouriertransformof thesemaps.Note the strongperiodicpatterns Shavn in the third andfourth rows arethe synthetically

generatedprobability mapscomputedusing the samere-samplingparameters note the similarity to the estimatedmaps.

set:s” = argmaxs M (p;s). If the similarity measureM (p;s?), is above a speci ed threshold,then a periodic
patternis assumedo be presentin the estimatedprobability map, andthe imageis classi ed asre-sampledThis
thresholdis empirically determinedusingonly the original imagesin the databaseo yield a false positive rateless
than 1%.

With the ability to quantitatvely measurevhetheran imagehasbeenre-samplede testedthe ef cacy of our
techniqueto detectinga rangeof re-samplingparametersand the sensitvity to simple countermeasureshat may
be usedto hide tracesof re-sampling.In theseanalysesve employed the sameset of imagesas describedn the
beginning of this section,and usedthe sameset of algorithmic parametersThe imageswere re-sampledusing
bi-cubic interpolation.The probability mapfor a re-sampledmagewasestimatedand comparedagainsta large set
of syntheticmaps.For up-sampling,160 syntheticmapswere generatedvith re-samplingratesbetweenl1% and
100% in stepsof 0:6%. For down-sampling,160 syntheticmapswere generatedvith re-samplingratesbetween
1% and 50%, in stepsof 0:3%. For rotations,45 syntheticmapswere generatedvith rotation anglesbetweenl

and45 , in stepsof 1 .
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Fig. 12. Detectionaccurag asa function of differentre-samplingparametersEachdatapoint correspondso the averagedetectionaccurag

from 50 images.
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Fig. 13. Detectionaccurag as a function of the amountof (non-linear)gammacorrection.Shavn in the top graphis the accurag for
up-samplingby a factorof 30% (black dots) and down-samplingby a factorof 20% (white dots). Showvn belaw is the accurag for rotating

by 10 (blackdots)and2 (white dots).Eachdatapoint correspondso the averagedetectionaccurag from 50 images.

Shawn in Fig. 12 are threegraphsshawing the detectionaccurag for a rangeof up-sampling,dovn-sampling,
androtationrates.Eachdatapoint correspondso the averagedetectionaccurag from 50 images.In theseresults,
the false-positre rate (an imageincorrectly classi ed asre-sampled)s lessthan 1%. Note that detectionis nearly
perfectfor up-samplingatesgreaterthan 1%, andfor rotationsgreaterthanl . As expectedthe detectionaccurag
decreaseasthe down-samplingrateapproache80% Equation(15). We have alsomeasuredhe detectionaccuray
in the presenceof multiple re-samplings(e.g., up-samplingfollowed by rotation). In thesecases,the detection
accuray is typically governedby the smallestdetectionaccurag of the multiple re-samplings.

Shawn in Figs. 13-15are graphsshowving the robustnessof our algorithmto simple countermeasureshat may
destry the periodic correlationsthat result from re-sampling.Speci cally, after re-samplingthe image we (1)

gammacorrected;(2) addednoiseto; or (3) JPEGcompressedhe image.Shown in eachof these gures is the
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Fig. 14. Detectionaccurag asa function of signal-to-noiseratio. Shavn in the top graphis the accurag for up-samplingby a factor of
30% (black dots) and down-samplingby a factorof 20% (white dots). Shavn below is the accurag for rotatingby 10 (black dots)and?2

(white dots). Eachdatapoint corresponddo the averagedetectionaccurag from 50 images.
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Fig. 15. Detectionaccurag asa function of differentre-samplingparametereand JPEGcompressionThe black dotscorrespondo a JPEG
quality of 100 (out of 100), and the white dotsto a quality of 97. Eachdatapoint correspondgo the averagedetectionaccurag from 50

images.

detectionaccurag for up-samplingby 30% down-samplingby 20% and rotatingby 2 and 10 . Note that the
detectionis nearlyperfectfor alargerangeof gammavalues Fig. 13, andthatdetectionaccuray remaingreasonable
for even fairly low signal-to-noiseratios, Fig. 14. Fig. 15, however, revealsa weaknessn our approach.Shavn
hereis the detectionaccuray after the original TIFF imagewas JPEGcompressedvith a compressiorguality of
100 and 97 (out of 100). While the detectionaccurag is good at a quality of 100 thereis a precipitousfall in
detectionat a quality of 97 (at a quality of 90, detectionis nearly at chancefor all re-samplingrates).Note also
that at an up-samplingrate of 60% and a down-samplingrate of 20% the detectionaccuray dropssuddenly This
is becausdhe periodic JPEGblocking artifacts happento coincidewith the periodic patternsintroducedby these

re-samplingparameters theseartifactsdo not interferewith the detectionof rotations.The reasonfor the general
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poor performanceof detectingre-samplingn JPEGcompressedmagesis two-fold. First, lossy JPEGcompression
introducesnoiseinto the image(e.g.,a compressiorguality of 90 introduces,on average,28 db of noise),and as

canbe seenin Fig. 14, this amountof noisesigni cantly affectsthe detectionaccurag. Secondthe block artifacts

introducedby JPEG introduce very strong periodic patternsthat interfere with and mask the periodic patterns
introducedby re-samplingln preliminaryresults,we found that underJPEG2000 compressiongetectionremains
robustdown to 2 bits/pixel, with signi cant deteriorationbelon 1:5 bits/pixel. This improved performanceas most

likely dueto the lack of the blocking artifactsintroducedby standardJPEG.

We have also testedour algorithm againstGIF format images.Speci cally, a 24-bit color (RGB) image was
subjectedto a range of re-samplingsand then corvertedto 8-bit indexed color format (GIF). This corversion
introducesapproximately21 db of noise.For rotationsgreaterthan10 , up-samplinggreaterthan20% and down-
samplinggreaterthan 15% detectionaccuray is, on average,80% 60% and 30% respectiely, with a lessthan
1% false-positie rate.While not asgoodasthe uncompressed|FF images thesedetectionratesareroughly what
would be expectedwith the level of noiseintroducedby GIF compressionkig. 14. And nally , we have testedour
algorithm againstRGB imagesreconstructedrom a color lter array (CFA) interpolationalgorithm. In this case,
the non-linearCFA interpolationdoesnot interferewith our ability to detectre-sampling.

In summary we have shovn that for uncompressed|FF images,and JPEGand GIF imageswith minimal
compressiorwe can detectwhetheran image region has beenre-sampledscaled,rotated,etc.), as might occur

when animagehasbeentamperedwith.

IV. DIsSCUSSION

When creatingdigital forgeries,it is often necessanto scale,rotate, or distort a portion of an image. This
processinvolves re-samplingthe original image onto a new lattice. Although this re-samplingprocesstypically
leavesbehindno perceptuahrtifacts,it doesintroducespeci ¢ periodic correlationsbetweenthe image pixels. We
have shovn how and when thesepatternsare introduced,and describeda techniqueto automatically nd such
patternsin ary region of an image. This techniqueis able to detecta broadrangeof re-samplingrates,and is
reasonablyobustto simple counterattacks.This techniqueis not ableto uniquelyidentify the speci ¢ re-sampling
amount,as different re-samplingswill manifestthemseleswith similar periodic patterns Although we have only
describedhow linear or cubic interpolationcan be detectedthereis no inherentreasonwhy more sophisticated
non-linearinterpolationtechniquege.g., edge preservinginterpolation) cannotbe detectedusing the samebasic
framework of estimatinglocal spatialcorrelations.

Our techniqueworks in the completeabsenceof ary digital watermarkor signature offering a complementary
approachto authenticatingdigital images.While statisticaltechniquessuch as that presentedhere pose mary
challengeswe believe that their developmentwill be importantto contendwith the caseswhen watermarking
technologiesare not applicable.

The major weaknesof our approachis thatit is currently only applicableto uncompressed|FF images,and
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JPEGand GIF imageswith minimal compressionWe believe, however, that this techniquewill still prove useful
in a numberof differentdigital forensicsettings- for examplea court of law might insist that digital imagesbe
submittedinto evidencein an uncompressetligh-resolutionformat.

We are currently exploring several other techniquedor detectingotherforms of digital tampering.We believe
thatmary complementaryechniquesuchasthat presentedhere,andthosethatwe (e.g.,[22]) andothersdevelop,
will be neededto reliably exposedigital forgeries. Thereis little doubt that even with the developmentof a
suite of detectiontechniquesmore sophisticatedamperingtechniqueswill emege, which in turn will leadto the

developmentof more detectiontools, and so on, thus making the creationof forgeriesincreasinglymore dif cult.
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AppendixA: EM Algorithm

* Initialize */

choosea random~g

chooseN and g

setpp to the reciprocalof the rangeof the signaly
setY asin Equation(14)

seth to be a binomial low-pass lter of size(Ny, Np)

n=20
repeat
[* expectationstep*/
for eachsamplei
R(@) = y(i) P Moy n(K)y(i + k) /* residual®/
end
R = R ?h /* spatially averagethe residualerror */
for eachsamplei
P(i) = —#5=e RO’=2 1 /* conditionalprobability */

P (i)

W(i) = 50+ po

[* posteriorprobability */

end

/* maximizationstep*/
W=0
for eachsamplei

W (i; i) = w(i) /* weightingmatrix */

end
P 1=
n+l = —‘% /* new varianceestimate*/
~n+1 = (YTWY) YTWy /* new estimate*/

n=n+1



until ( k~n

~n 1k<

) I* stoppingcondition*/
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