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ExposingDigital Forgeriesby
DetectingTracesof Re-sampling

Alin C. PopescuandHany Faridy

Abstract

The uniquestatureof photographsas a de�niti ve recordingof eventsis being diminisheddue, in part, to the

easewith which digital imagescanbe manipulatedandaltered.Although goodforgeriesmay leave no visual clues

of having beentamperedwith, they may, nevertheless,alter the underlying statisticsof an image.For example,

we describehow re-sampling(e.g.,scalingor rotating) introducesspeci�c statisticalcorrelations,anddescribehow

thesecorrelationscan be automaticallydetectedin any portion of an image.This techniqueworks in the absence

of any digital watermarkor signature.We show the ef�cacy of this approachon uncompressedTIFF images,and

JPEGand GIF imageswith minimal compression.We expect this techniqueto be amongthe �rst of many tools

that will be neededto exposedigital forgeries.

I . INTRODUCTION

With theadventof low-costandhigh-resolutiondigital cameras,andsophisticatededitingsoftware,digital images

can be easily manipulatedand altered.Digital forgeries,often leaving no visual cluesof having beentampered

with, can be indistinguishablefrom authenticphotographs.As a result, photographsno longer hold the unique

statureas a de�niti ve recordingof events.Of particularconcernis how the judicial systemand news mediawill

contendwith this issue.For example, in March of 2003 the Los Angeles Times published,on its front page,a

dramaticphotographof a soldierdirectingan Iraqi citizen to take cover. The photograph,however, wasa fake - it

wasdigitally createdby splicing togethertwo photographs1. This andsimilar incidentsnaturallyleadus to wonder

how many of the imagesthat we seeevery day have beendigitally doctored.

Digital watermarkinghasbeenproposedasameansby whichanimagecanbeauthenticated(see,for example,[1],

[2] for generalsurveys). Within this broad area,several authenticationschemeshave beenproposed:embedded

signatures[3], [4], [5], [6], [7], eraseablefragile watermarks[8], [9], semi-fragilewatermarks[10], [11], [12], [13],

robust tell-talewatermarks[14], [15], [12], [16], [17], andself-embeddingwatermarks[18]. All of theseapproaches

work by either insertingat the time of recordingan imperceptibledigital code(a watermark)into the image,or

extractingat the time of recordinga digital code(a signature)from the imageandre-insertingit into the imageor
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imageheader. With the assumptionthat digital tamperingwill alter a watermark(or signature),an imagecan be

authenticatedby verifying that theextractedwatermarkis thesameasthatwhich wasinserted.Themajordrawback

of this approachis that a watermarkmust be insertedat preciselythe time of recording,which would limit this

approachto speciallyequippeddigital cameras.This methodalsorelieson theassumptionthatthedigital watermark

cannotbe easily removed andreinserted- it is not yet clearwhetherthis is a reasonableassumption(e.g., [19]).

In contrastto theseapproaches,we describea techniquefor detectingtracesof digital tamperingin the complete

absenceof any form of digital watermarkor signature.This approachworkson theassumptionthatalthoughdigital

forgeriesmay leave no visual clues of having beentamperedwith, they may, nevertheless,alter the underlying

statisticsof an image.For example,considerthe creationof a digital forgery that shows a pair of famousmovie

stars,rumored to have a romantic relationship,walking hand-in-hand.Such a photographcould be createdby

splicing togetherindividual imagesof eachmovie starandoverlayingthe digitally createdcompositeonto a sunset

beach.In orderto createa convincing match,it is oftennecessaryto re-size,rotate,or stretchportionsof theimages.

This processrequiresre-samplingtheoriginal imageontoa new samplinglattice.Althoughthis re-samplingis often

imperceptible,it introducesspeci�c correlationsinto the image,which whendetectedcanbe usedas evidenceof

digital tampering.We describethe form of thesecorrelations,andhow they canbe automaticallydetectedin any

portion of an image.We show the generaleffectivenessof this techniqueandanalyzeits sensitivity androbustness

to counter-attacks.

I I . RE-SAMPLING

For purposesof exposition we will �rst describehow and where re-samplingintroducescorrelationsin 1-D

signals,and how to detectthesecorrelations.The relatively straight-forward generalizationto 2-D imagesis then

presented.

A. Re-samplingSignals

Considera 1-D discretely-sampledsignalx[t] with m samples,Fig. 1(a). The numberof samplesin this signal

canbe increasedor decreasedby a factorp=q to n samplesin threesteps[20]:

1) up-sample:createa new signal xu [t ] with pm samples,wherexu [pt] = x[t], t = 1; 2; :::; m, and xu [t ] = 0

otherwise,Fig. 1(b).

2) interpolate:convolve xu [t ] with a low-pass�lter: x i [t ] = xu [t ] ? h[t], Fig. 1(c).

3) down-sample:createa new signal xd[t ] with n samples,where xd[t ] = x i [qt], t = 1; 2; :::; n. Denotethe

re-sampledsignalasy[t] � xd[t ], Fig. 1(d).

Different typesof re-samplingalgorithms(e.g., linear, cubic) differ in the form of the interpolation�lter h[t] in

step2. Sinceall threestepsin the re-samplingof a signal are linear, this processcan be describedwith a single

linear equation.Denoting the original and re-sampledsignalsin vector form, ~x and ~y, respectively, re-sampling
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Fig. 1. Re-samplinga signal by a factor of 4=3: shown are (a) the original signal; (b) the up-sampledsignal; (c) the interpolatedsignal;

and(d) the �nal re-sampledsignal.

takes the form:

~y = Ap=q~x; (1)

wherethe n � m matrix Ap=q embodiesthe entire re-samplingprocess.For example,the matrix for up-sampling

by a factorof 4=3 using linear interpolation(Fig. 1) hasthe form:

A4=3 =

2

6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 0

0:25 0:75 0 0

0 0:50 0:50 0

0 0 0:75 0:25

0 0 0 1
...

3

7
7
7
7
7
7
7
7
7
7
7
7
5

: (2)

Dependingon there-samplingrate,there-samplingprocesswill introducecorrelationsof varyingdegreesbetween

neighboringsamples.For example,considertheup-samplingof a signalby a factorof two usinglinearinterpolation.

In this case,the re-samplingmatrix takes the form:
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A2=1 =

2

6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0

0:5 0:5 0

0 1 0

0 0:5 0:5

0 0 1
...

3

7
7
7
7
7
7
7
7
7
7
7
7
5

: (3)

Here, the odd samplesof the re-sampledsignal~y take on the valuesof the original signal~x, i.e., y2i � 1 = x i ; i =

1; : : : ; m. The even samples,on the otherhand,are the averageof adjacentneighborsof the original signal:

y2i = 0:5x i + 0:5x i +1 ; (4)

wherei = 1; : : : ; m � 1. Note that sinceeachsampleof the original signalcanbe found in the re-sampledsignal,

i.e., x i = y2i � 1 and x i +1 = y2i+1 , the above relationshipcan be expressedin termsof the re-sampledsamples

only:

y2i = 0:5y2i � 1 + 0:5y2i+1 : (5)

Thatis, acrosstheentirere-sampledsignal,eachevensampleis preciselythesamelinearcombinationof its adjacent

two neighbors.In this simple case,at least,a re-sampledsignal could be detected(in the absenceof noise) by

noticing that every othersampleis perfectlycorrelatedto its neighbors.To be useful in a generalforensicsetting

we need,at a minimum, for thesetypesof correlationsto be presentregardlessof the re-samplingrate.

Considernow re-samplinga signalby an arbitraryamountp=q. In this casewe �rst ask,whenis the i th sample

of a re-sampledsignalequalto a linear combinationof its 2N neighbors,that is:

yi
?=

NX

k= � N

� kyi + k ; (6)

where � k are scalarweights(and � 0 = 0). Re-orderingterms,and re-writing the above constraintin termsof the

re-samplingmatrix yields:

yi �
NX

k= � N

� kyi + k = 0 (7)

(~ai � ~x) �
NX

k= � N

� k (~ai + k � ~x) = 0 (8)

 

~ai �
NX

k= � N

� k~ai + k

!

� ~x = 0; (9)

where~ai is the i th row of the re-samplingmatrix Ap=q, and ~x is the original signal. We seenow that the i th

sampleof a re-sampledsignalis equalto a linearcombinationof its neighborswhenthe i th row of the re-sampling

matrix,~ai , is equalto a linear combinationof the neighboringrows,
P N

k= � N � k~ai + k . For example,in the caseof
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up-samplingby a factorof two, Equation(3), theevenrows area linearcombinationof the two adjacentodd rows.

Note also that if the i th sampleis a linear combinationof its neighborsthen the (i � kp) th sample(k an integer)

will be thesamecombinationof its neighbors,that is, the correlationsareperiodic.It is, of course,possiblefor the

constraintof Equation(9) to be satis�ed whenthe differenceon the left-handsideof the equationis orthogonalto

the original signal~x. While this may occuron occasion,thesecorrelationsareunlikely to be periodic.

B. DetectingRe-sampling

Givena signalthathasbeenre-sampledby a known amountandinterpolationmethod,it is possibleto �nd a set

of periodicsamplesthat arecorrelatedin the sameway to their neighbors.Consideragainthe re-samplingmatrix

of Equation(2). Here,basedon the periodicity of the re-samplingmatrix, we seethat, for example,the 3r d, 7th ,

11th , etc. samplesof the re-sampledsignal will have the samecorrelationsto their neighbors.The speci�c form

of the correlationscanbe determinedby �nding the neighborhoodsize,N , andthe setof weights,~� , that satisfy:

~ai =
P N

k= � N � k~ai + k , Equation(9), where~ai is the i th row of the re-samplingmatrix and i = 3; 7; 11, etc. If, on

the other-hand,we know the speci�c form of the correlations,~� , then it is straight-forward to determinewhich

samplessatisfyyi =
P N

k= � N � kyi + k , Equation(7).

In practice,of course,neither the re-samplingamountnor the speci�c form of the correlationsare typically

known. In order to determineif a signalhasbeenre-sampled,we employ the expectation/maximizationalgorithm

(EM) [21] to simultaneouslyestimatea setof periodicsamplesthatarecorrelatedto their neighbors,andthespeci�c

form of thesecorrelations.We begin by assumingthat eachsamplebelongsto oneof two models.The �rst model,

M 1, correspondsto thosesamplesthat are correlatedto their neighbors,and the secondmodel,M 2, corresponds

to thosesamplesthat arenot (i.e., an outlier model).The EM algorithmis a two-stepiterative algorithm:(1) in the

E-stepthe probability thateachsamplebelongsto eachmodelis estimated;and(2) in the M-stepthe speci�c form

of the correlationsbetweensamplesis estimated.More speci�cally, in the E-step,the probability of eachsample

yi belongingto modelM 1 canbe obtainedusingBayes' rule:

Prf yi 2 M 1 j yi g =

Prf yi j yi 2 M 1gPrf yi 2 M 1g
P 2

k=1 Prf yi j yi 2 M kgPrf yi 2 M kg
; (10)

wherethe priors Prf yi 2 M 1g andPrf yi 2 M 2g areassumedto be equalto 1=2. We alsoassumethat

Prf yi jyi 2 M 1g =

1

�
p

2�
exp

2

6
4

�
�

yi �
P N

k= � N � kyi + k

� 2

2� 2

3

7
5 ; (11)

and that Prf yi jyi 2 M 2g is uniformly distributed over the rangeof possiblevaluesof the signal~y. The variance,

� , of the Gaussiandistribution in Equation(11) is estimatedin the M-step(seeAppendixA). Note that the E-step
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Fig. 2. A signalwith 32 samples(top) andthis signalre-sampledby a factorof 4=3 (bottom).Eachsampleis annotatedwith its probability

of being correlatedto its neighbors.Note that for the up-sampledsignal theseprobabilitiesare periodic,while for the original signal they

arenot.

requiresan estimateof ~� , which on the �rst iteration is chosenrandomly. In the M-step,a new estimateof ~� is

computedusingweightedleast-squares,that is, minimizing the following quadraticerror function:

E(~� ) =
X

i

w(i )

 

yi �
NX

k= � N

� kyi + k

! 2

; (12)

where the weights w(i ) � Prf yi 2 M 1jyi g, Equation(10), and � 0 = 0. This error function is minimized by

computingthe gradientwith respectto ~� , settingthe resultequalto zero,andsolving for ~� , yielding:

~� = (Y T W Y)� 1Y T W~y; (13)

wherethe matrix Y is:

Y =

2

6
6
6
6
6
6
6
6
6
4

y1 : : : yN yN +2 : : : y2N +1

y2 : : : yN +1 yN +3 : : : y2N +2
...

...
...

...

yi : : : yN + i � 1 yN + i+1 : : : y2N + i
...

...
...

...

3

7
7
7
7
7
7
7
7
7
5

; (14)

and W is a diagonalweighting matrix with w(i ) along the diagonal.The E-stepand the M-step are iteratively

executeduntil a stableestimateof ~� is achieved (seeAppendixA for moredetails).

Shown in Fig. 2 aretheresultsof runningEM on theoriginal andre-sampledsignalsof Fig. 1. Shown on thetop

is the original signalwhereeachsampleis annotatedwith its probability of beingcorrelatedto its neighbors(the

�rst and last two samplesarenot annotateddue to bordereffects - a neighborhoodsizeof � ve (N = 2) wasused

in this example).Similarly, shown on the bottom is the re-sampledsignal and the correspondingprobabilities.In

the latercase,theperiodicpatternis obvious,whereonly every 4th samplehasprobability1, aswould beexpected

from an up-samplingby a factor of 4=3, Equation(2). As expected,no periodic patternis presentin the original

signal.

The periodic patternintroducedby re-samplingdepends,of course,on the re-samplingrate. It is not possible,

however, to uniquely determinethe speci�c amountof re-sampling.The reasonis that althoughperiodic patterns
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may be unique for a set of re-samplingparameters,thereare parametersthat will producesimilar patterns.For

example,re-samplingby a factorof 3=4 andby a factorof 5=4 will produceindistinguishableperiodicpatterns.As

a result,we canonly estimatethe amountof re-samplingwithin this ambiguity. Sincewe areprimarily concerned

with detectingtracesof re-sampling,andnot necessarilythe amountof re-sampling,this limitation is not critical.

Thereis a rangeof re-samplingratesthat will not introduceperiodiccorrelations.For example,considerdown-

samplingby a factor of two (for simplicity, considerthe casewhere there is no interpolation).The re-sampling

matrix, in this case,is given by:

A1=2 =

2

6
6
6
6
6
6
4

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1
...

3

7
7
7
7
7
7
5

: (15)

Notice thatno row canbewritten asa linearcombinationof the neighboringrows - in this case,re-samplingis not

detectable.More generally, the detectabilityof any re-samplingcan be determinedby generatingthe re-sampling

matrix and determingwhetherany rows can be expressedas a linear combinationof their neighboringrows - a

simpleempiricalalgorithm is describedin SectionIII-A.

C. Re-samplingImages

In the previous sectionswe showed that for 1-D signalsre-samplingintroducesperiodic correlationsand that

thesecorrelationscan be detectedusing the EM algorithm. The extensionto 2-D imagesis relatively straight-

forward. As with 1-D signals,the up-samplingor down-samplingof an imageis still linear andinvolvesthe same

threesteps:up-sampling,interpolation,and down-sampling- thesestepsare simply carriedout on a 2-D lattice.

Again, as with 1-D signals,the re-samplingof an image introducesperiodic correlations.Though we will only

show this for up- and down-sampling,the sameis true for an arbitrary af�ne transform(and more generallyfor

any non-lineargeometrictransformation).

Consider, for example,the simplecaseof up-samplingby a factorof two. Shown in Fig. 3 is, from left to right,

a portion of an original 2-D samplinglattice, the samelattice up-sampledby a factorof two, anda subsetof the

pixels of the re-sampledimage.Assuminglinear interpolation,thesepixels aregiven by:

y2 = 0:5y1 + 0:5y3

y4 = 0:5y1 + 0:5y7

y5 = 0:25y1 + 0:25y3 + 0:25y7 + 0:25y9;

(16)

wherey1 = x1, y3 = x2, y7 = x3, y9 = x4. Note that all the pixels of the re-sampledimagein the odd rows and

even columns(e.g., y2) will all be the samelinear combinationof their two horizontalneighbors.Similarly, the

pixelsof the re-sampledimagein the evenrows andoddcolumns(e.g.,y4) will all be thesamelinearcombination
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Fig. 3. Shown from left to right are:a portion of the 2D lattice of an image,the samelattice up-sampledby a factorof two, anda portion

of the lattice of the re-sampledimage.

of their two verticalneighbors.That is, thecorrelationsare,aswith the 1-D signals,periodic.And in thesameway

that EM was usedto uncover theseperiodic correlationswith 1-D signals,the sameapproachcan be usedwith

2-D images.

I I I . RESULTS

For the resultspresentedhere,we built a databaseof 200 grayscaleimagesin TIFF format. Theseimageswere

512 � 512 pixels in size. Each of theseimageswere croppedfrom a smaller set of twenty-�ve 1200� 1600

imagestaken with a Nikon Coolpix 950 camera(the camerawas set to captureand storein uncompressedTIFF

format). Using bi-cubic interpolationtheseimageswereup-sampled,down-sampled,rotated,or af�ne transformed

by varying amounts.Although we will presentresults for grayscaleimages,the generalizationto color images

is straight-forward - eachcolor channelwould be independentlysubjectedto the sameanalysisas that described

below.

For the original and re-sampledimages,the EM algorithm describedin Section II-B was used to estimate

probability mapsthat embodythe correlationbetweeneachpixel andits neighbors.TheEM parameterswere�x ed

throughoutat N = 2, � 0 = 0:0075, and Nh = 3 2 (seeAppendix A). Shown in Figs. 4-6 are several examples

of the periodicpatternsthat emergeddue to re-sampling.In the top row of each�gure are(from left to right) the

original image,the estimatedprobability map and the magnitudeof the centralportion of the Fourier transform

of this map (for display purposes,eachFourier transformwas independentlyauto-scaledto �ll the full intensity

rangeandhigh-pass�ltered to remove the lowestfrequencies).Shown below this row is the sameimageuniformly

re-sampledat differentrates.For the re-sampledimages,notethe periodicnatureof their probability mapsandthe

localizedpeaksin their correspondingFourier transforms.Shown in Fig. 7 are examplesof the periodic patterns

that emerge from four different af�ne transforms.Shown in Fig. 8 are the resultsfrom applying consecutive re-

samplings.Speci�cally, the imagein the top row was�rst upsampledby 15% andthenthis up-sampledimagewas

rotatedby 5� . The sameoperationswere performedin reverseorder on the image in the bottom row. Note that

while the imagesare perceptuallyindistinguishable,the periodic patternsthat emerge are quite distinct, with the

last re-samplingoperationdominatingthepattern.Note,however, that thecorrespondingFourier transformscontain

several setsof peakscorrespondingto both re-samplingoperations.As with a single re-sampling,consecutive

re-samplingsareeasilydetected.

2The blurring of the residualerror with a binomial �lter of width Nh is not critical, but merelyacceleratesthe convergenceof EM.
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p jF (p)j

5%

10%

20%

Fig. 4. Shown in the top row is the original image,and shown below is the sameimageup-sampledby varying amounts.Shown in the

middle columnarethe estimatedprobability maps(p) that embodythe spatialcorrelationsin the image.The Fourier transformof eachmap

is shown in the right-mostcolumn.Note that only the re-sampledimagesyield periodicmaps.

Shown in Figs. 9-10 are examplesof our detectionalgorithm applied to imageswhere only a portion of the

image was re-sampled.Regions in each image were subjectedto a rangeof stretching,rotation, shearing,etc.

(thesemanipulationswere done in Adobe Photoshopusing bi-cubic interpolation).Shown in each�gure is the

original photograph,the forgery, andthe estimatedprobability map.Note that in eachcase,the re-sampledregion

is clearlydetected- while theperiodicpatternsarenot particularlyvisible in thespatialdomainat thereducedscale,

the well localizedpeaksin the Fourier domainclearly reveal their presence(for display purposes,eachFourier

transformwasindependentlyauto-scaledto �ll the full intensityrangeandhigh-pass�ltered to suppressthe lowest

frequencies).Note also that in Fig. 9 the white sheetof paperon top of the trunk has strong activation in the

probability map- whenseenin the Fourier domain,however, it is clear that this region is not periodic,but rather

is uniform, and thusnot representative of a re-sampledregion.

A. Sensitivityand Robustness

From a digital forensic perspective it is important to quantify the robustnessand sensitivity of our detection

algorithm.To this end, it is �rst necessaryto devise a quantitative measureof the extent of periodicity found in

the estimatedprobability maps.To do so, we comparethe estimatedprobability map with a set of synthetically

generatedprobability mapsthat containperiodicpatternssimilar to thosethat emerge from re-sampledimages.
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p jF (p)j

2:5%
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10%

Fig. 5. Shown in the top row is the original image,andshown below is the sameimagedown-sampledby varying amounts.Shown in the

middle columnarethe estimatedprobability maps(p) that embodythe spatialcorrelationsin the image.The Fourier transformof eachmap

is shown in the right-mostcolumn.Note that only the re-sampledimagesyield periodicmaps.

Given a set of re-samplingparametersand interpolationmethod,a syntheticmap is generatedbasedon the

periodicity of the re-samplingmatrix. Note, however, that there are several possibleperiodic patternsthat may

emergein a re-sampledimage.For example,in thecaseof up-samplingby a factorof two usinglinearinterpolation,

Equation(16), the coef�cients ~� estimatedby the EM algorithm (with a 3 � 3 neighborhood)are expectedto be

oneof the following:

~� 1 =

2

6
6
6
4

0 0:5 0

0 0 0

0 0:5 0

3

7
7
7
5

~� 2 =

2

6
6
6
4

0 0 0

0:5 0 0:5

0 0 0

3

7
7
7
5

~� 3 =

2

6
6
6
4

0:25 0 0:25

0 0 0

0:25 0 0:25

3

7
7
7
5

: (17)

We have observed that EM will return one of theseestimatesonly when the initial value of ~� is close to one

of the above threevalues,the neighborhoodsize is 3, and the initial varianceof the conditionalprobability (� in

Equation(11)) is relatively small. In general,however, this �ne tuningof the startingconditionsis not practical.To

be broadlyapplicable,we randomlychoosean initial value for ~� , andset the neighborhoodsizeand initial value

of � to valuesthat afford convergencefor a broadrangeof re-samplingparameters.Under theseconditions,we

have foundthat for speci�c re-samplingparametersandinterpolationmethod,theEM algorithmtypically converges

to a uniqueset of linear coef�cients. In the above exampleof up-samplingby a factor of two the EM algorithm
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p jF (p)j

2o

5o

10o

Fig. 6. Shown in the top row is the original image,andshown below is the sameimagerotatedby varying amounts.Shown in the middle

columnaretheestimatedprobabilitymaps(p) thatembodythespatialcorrelationsin the image.TheFourier transformof eachmapis shown

in the right-mostcolumn.Note that only the re-sampledimagesyield periodicmaps.

typically convergesto:

~� =

2

6
6
6
4

� 0:25 0:5 � 0:25

0:5 0 0:5

� 0:25 0:5 � 0:25

3

7
7
7
5

: (18)

Notethat this solutionis differentthaneachof thesolutionsin Equation(17).Yet, therelationshipsin Equation(16)

arestill satis�ed by this choiceof coef�cients. SincetheEM algorithmtypically convergesto a uniquesetof linear

coef�cients, thereis alsoa uniqueperiodicpatternthat emerges.It is possibleto predict this patternby analyzing

the periodicpatternsthatemerge from a large setof images.In practice,however, this approachis computationally

demanding,and thereforewe employ a simpler methodthat was experimentallydeterminedto generatesimilar

periodic patterns.This method�rst warpsa rectilinear integer lattice accordingto a speci�ed set of re-sampling

parameters.From this warpedlattice, the syntheticmapis generatedby computingthe minimum distancebetween

a warpedpoint and an integer samplinglattice. More speci�cally, let M denotea generalaf�ne transformwhich

embodiesa speci�c re-sampling.Let (x; y) denotethe pointson an integer lattice, and (~x; ~y) denotethe pointsof
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p jF (p)j

Fig. 7. Shown arefour imagesaf�ne transformedby randomamounts.Shown in the middle columnarethe estimatedprobabilitymaps(p)

that embodythe spatialcorrelationsin the image.The Fourier transformof eachmap is shown in the right-mostcolumn.Note that these

imagesyield periodicmaps.

a lattice obtainedby warping the integer lattice (x; y) accordingto M :
2

4
~x

~y

3

5 = M

2

4
x

y

3

5 : (19)

The syntheticmap, s(x; y), correspondingto M is generatedby computingthe minimum distancebetweeneach

point in the warpedlattice (~x; ~y) to a point in the integer lattice:

s(x; y) = min
x0 ;y0

p
(~x � x0)2 + (~y � y0)2; (20)

wherex0 andy0 areintegers,and(~x; ~y) arefunctionsof (x; y) asgiven in Equation(19). Syntheticmapsgenerated

using this methodaresimilar to the experimentallydeterminedprobability maps,Fig. 11.

The similarity betweenan estimatedprobability map, p(x; y), and a syntheticmap, s(x; y), is computedas

follows:

1) The probability mapp is Fourier transformed:P(! x ; ! y) = F (p(x; y) � W (x; y)) , wherethe radial portion of

the rotationally invariantwindow, W (x; y), takes the form:

f (r ) =

8
><

>:

1 0 � r < 3=4

1
2 + 1

2 cos
�

� (r � 3=4)p
2� 3=4

�
3=4 � r �

p
2;

(21)
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Fig. 8. Shown aretwo imagesthat wereconsecutively re-sampled(top left: upsampledby 15% andthenrotatedby 5� ; top right : rotated

by 5� andthenupsampledby 15%). Shown in thesecondrow arethe estimatedprobability mapsthat embodythe spatialcorrelationsin the

image.The magnitudeof the Fourier transformof eachmapis shown in the bottomcolumn- notethe multiple setof peaksthat correspond

to both the rotationandup-sampling.

where the radial axis is normalizedbetween0 and
p

2. Note that for notational conveniencethe spatial

argumentson p(�) andP(�) will be dropped.

2) The Fourier transformedmap P is then high-pass�ltered to remove undesiredlow frequency noise:PH =

P � H , wherethe radial portion of the rotationally invarianthighpass�lter , H , takes the form:

h(r ) =
1
2

�
1
2

cos
�

� r
p

2

�
; 0 � r �

p
2: (22)

3) The high-passedspectrumPH is then normalized,gammacorrectedin order to enhancefrequency peaks,

and thenrescaledback to its original range:

PG =
�

PH

max(jPH j)

� 4

� max(jPH j): (23)

4) The syntheticmaps is simply Fourier transformed:S = F (s).

5) The measureof similarity betweenp ands is thengiven by:

M (p;s) =
X

! x ;! y

jPG(! x ; ! y)j � jS(! x ; ! y)j; (24)

wherej � j denotesabsolutevalue(note that this similarity measureis phaseinsensitive).

A setof syntheticprobability mapsare�rst generatedfrom a numberof differentre-samplingparameters.For a

given probability mapp, the mostsimilar syntheticmap,s?, is found througha brute-forcesearchover the entire
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original

forgery

probability map(p)

Fig. 9. Shown are the original imageand a forgery. The forgery consistsof splicing in a new licenseplate number. Shown below is the

estimatedprobability map (p) of the forgery, and the magnitudeof the Fourier transform(F (p)) of a region in the licenseplate (left) and

on the car trunk (right). The periodicpattern(spikes in F (p)) in the licenseplatesuggeststhat this region was re-sampled.
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original

forgery

probability map(p)

Fig. 10. Shown aretheoriginal imageanda forgery. Theforgeryconsistsof removing a stoolandsplicingin a new �oor taken from another

image of the sameroom. Shown below is the estimatedprobability map (p) of the forgery, and the magnitudeof the Fourier transform

(F (p)) of a region in the new �oor (left) andon the original �oor (right). The periodicpattern(spikes in F (p)) in the new �oor suggests

that this region was re-sampled.
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p

jF (p)j

s

jF (s)j

Fig. 11. Shown in the �rst two rows are estimatedprobability maps,p, from imagesthat were re-sampled(af�ne transformed),and the

magnitudeof theFourier transformof thesemaps.Note thestrongperiodicpatterns.Shown in the third andfourth rows arethesynthetically

generatedprobability mapscomputedusing the samere-samplingparameters- note the similarity to the estimatedmaps.

set: s? = argmaxs M (p;s). If the similarity measure,M (p;s?), is above a speci�ed threshold,then a periodic

patternis assumedto be presentin the estimatedprobability map,and the imageis classi�ed asre-sampled.This

thresholdis empiricallydeterminedusingonly the original imagesin the databaseto yield a falsepositive rateless

than1%.

With the ability to quantitatively measurewhetheran imagehasbeenre-sampled,we testedthe ef�cacy of our

techniqueto detectinga rangeof re-samplingparameters,and the sensitivity to simplecounter-measuresthat may

be usedto hide tracesof re-sampling.In theseanalyseswe employed the sameset of imagesasdescribedin the

beginning of this section,and usedthe sameset of algorithmic parameters.The imageswere re-sampledusing

bi-cubic interpolation.Theprobabilitymapfor a re-sampledimagewasestimatedandcomparedagainsta large set

of syntheticmaps.For up-sampling,160 syntheticmapswere generatedwith re-samplingratesbetween1% and

100%, in stepsof 0:6%. For down-sampling,160 syntheticmapswere generatedwith re-samplingratesbetween

1% and 50%, in stepsof 0:3%. For rotations,45 syntheticmapswere generatedwith rotation anglesbetween1�

and45� , in stepsof 1� .
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Fig. 12. Detectionaccuracy asa functionof differentre-samplingparameters.Eachdatapoint correspondsto theaveragedetectionaccuracy

from 50 images.
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Fig. 13. Detectionaccuracy as a function of the amountof (non-linear)gammacorrection.Shown in the top graph is the accuracy for

up-samplingby a factorof 30% (black dots)anddown-samplingby a factorof 20% (white dots).Shown below is the accuracy for rotating

by 10� (black dots)and2� (white dots).Eachdatapoint correspondsto the averagedetectionaccuracy from 50 images.

Shown in Fig. 12 are threegraphsshowing the detectionaccuracy for a rangeof up-sampling,down-sampling,

androtationrates.Eachdatapoint correspondsto the averagedetectionaccuracy from 50 images.In theseresults,

the false-positive rate(an imageincorrectlyclassi�ed asre-sampled)is lessthan1%. Note that detectionis nearly

perfectfor up-samplingratesgreaterthan1%, andfor rotationsgreaterthan1� . As expected,thedetectionaccuracy

decreasesasthedown-samplingrateapproaches50%, Equation(15).We have alsomeasuredthedetectionaccuracy

in the presenceof multiple re-samplings(e.g., up-samplingfollowed by rotation). In thesecases,the detection

accuracy is typically governedby the smallestdetectionaccuracy of the multiple re-samplings.

Shown in Figs. 13-15aregraphsshowing the robustnessof our algorithmto simplecounter-measuresthat may

destroy the periodic correlationsthat result from re-sampling.Speci�cally, after re-samplingthe image we (1)

gammacorrected;(2) addednoiseto; or (3) JPEGcompressedthe image.Shown in eachof these�gures is the
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Fig. 14. Detectionaccuracy asa function of signal-to-noiseratio. Shown in the top graphis the accuracy for up-samplingby a factor of

30% (black dots)anddown-samplingby a factorof 20% (white dots).Shown below is the accuracy for rotatingby 10� (black dots)and2�

(white dots).Eachdatapoint correspondsto the averagedetectionaccuracy from 50 images.
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Fig. 15. Detectionaccuracy asa functionof differentre-samplingparametersandJPEGcompression.Theblack dotscorrespondto a JPEG

quality of 100 (out of 100), and the white dots to a quality of 97. Eachdatapoint correspondsto the averagedetectionaccuracy from 50

images.

detectionaccuracy for up-samplingby 30%, down-samplingby 20%, and rotating by 2� and 10� . Note that the

detectionis nearlyperfectfor a largerangeof gammavalues,Fig. 13,andthatdetectionaccuracy remainsreasonable

for even fairly low signal-to-noiseratios, Fig. 14. Fig. 15, however, revealsa weaknessin our approach.Shown

hereis the detectionaccuracy after the original TIFF imagewasJPEGcompressedwith a compressionquality of

100 and 97 (out of 100). While the detectionaccuracy is good at a quality of 100, there is a precipitousfall in

detectionat a quality of 97 (at a quality of 90, detectionis nearly at chancefor all re-samplingrates).Note also

that at an up-samplingrateof 60% anda down-samplingrateof 20% the detectionaccuracy dropssuddenly. This

is becausethe periodicJPEGblocking artifactshappento coincidewith the periodic patternsintroducedby these

re-samplingparameters- theseartifactsdo not interferewith the detectionof rotations.The reasonfor the general
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poor performanceof detectingre-samplingin JPEGcompressedimagesis two-fold. First, lossyJPEGcompression

introducesnoiseinto the image(e.g.,a compressionquality of 90 introduces,on average,28 db of noise),andas

canbe seenin Fig. 14, this amountof noisesigni�cantly affectsthe detectionaccuracy. Second,the block artifacts

introducedby JPEGintroducevery strong periodic patternsthat interfere with and mask the periodic patterns

introducedby re-sampling.In preliminaryresults,we found that underJPEG2000compression,detectionremains

robust down to 2 bits/pixel, with signi�cant deteriorationbelow 1:5 bits/pixel. This improved performanceis most

likely due to the lack of the blocking artifactsintroducedby standardJPEG.

We have also testedour algorithm againstGIF format images.Speci�cally, a 24-bit color (RGB) image was

subjectedto a rangeof re-samplingsand then converted to 8-bit indexed color format (GIF). This conversion

introducesapproximately21 db of noise.For rotationsgreaterthan10� , up-samplinggreaterthan20%, anddown-

samplinggreaterthan 15%, detectionaccuracy is, on average,80%, 60%, and30%, respectively, with a lessthan

1% false-positive rate.While not asgoodastheuncompressedTIFF images,thesedetectionratesareroughlywhat

would beexpectedwith the level of noiseintroducedby GIF compression,Fig. 14. And �nally , we have testedour

algorithm againstRGB imagesreconstructedfrom a color �lter array (CFA) interpolationalgorithm.In this case,

the non-linearCFA interpolationdoesnot interferewith our ability to detectre-sampling.

In summary, we have shown that for uncompressedTIFF images,and JPEGand GIF imageswith minimal

compressionwe can detectwhetheran imageregion hasbeenre-sampled(scaled,rotated,etc.), as might occur

whenan imagehasbeentamperedwith.

IV. DISCUSSION

When creatingdigital forgeries, it is often necessaryto scale,rotate, or distort a portion of an image. This

processinvolves re-samplingthe original image onto a new lattice. Although this re-samplingprocesstypically

leavesbehindno perceptualartifacts,it doesintroducespeci�c periodiccorrelationsbetweenthe imagepixels.We

have shown how and when thesepatternsare introduced,and describeda techniqueto automatically�nd such

patternsin any region of an image.This techniqueis able to detecta broad rangeof re-samplingrates,and is

reasonablyrobust to simplecounter-attacks.This techniqueis not ableto uniquelyidentify the speci�c re-sampling

amount,asdifferent re-samplingswill manifestthemselveswith similar periodicpatterns.Although we have only

describedhow linear or cubic interpolationcan be detected,there is no inherentreasonwhy more sophisticated

non-linearinterpolationtechniques(e.g., edgepreservinginterpolation)cannotbe detectedusing the samebasic

framework of estimatinglocal spatialcorrelations.

Our techniqueworks in the completeabsenceof any digital watermarkor signature,offering a complementary

approachto authenticatingdigital images.While statistical techniquessuch as that presentedhere pose many

challenges,we believe that their developmentwill be important to contendwith the caseswhen watermarking

technologiesarenot applicable.

The major weaknessof our approachis that it is currently only applicableto uncompressedTIFF images,and
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JPEGandGIF imageswith minimal compression.We believe, however, that this techniquewill still prove useful

in a numberof different digital forensicsettings- for examplea court of law might insist that digital imagesbe

submittedinto evidencein an uncompressedhigh-resolutionformat.

We are currently exploring several other techniquesfor detectingother forms of digital tampering.We believe

thatmany complementarytechniquessuchasthatpresentedhere,andthosethatwe (e.g.,[22]) andothersdevelop,

will be neededto reliably exposedigital forgeries.There is little doubt that even with the developmentof a

suiteof detectiontechniques,moresophisticatedtamperingtechniqueswill emerge, which in turn will lead to the

developmentof moredetectiontools, andso on, thusmaking the creationof forgeriesincreasinglymoredif�cult.
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AppendixA: EM Algorithm

/* Initialize */

choosea random~� 0

chooseN and � 0

setp0 to the reciprocalof the rangeof the signal~y

setY as in Equation(14)

seth to be a binomial low-pass�lter of size (Nh � Nh)

n = 0

repeat

/* expectationstep*/

for eachsamplei

R(i ) =
�
�
�y(i ) �

P N
k= � N � n (k)y(i + k)

�
�
� /* residual*/

end

R = R ? h /* spatiallyaveragethe residualerror */

for eachsamplei

P(i ) = 1
� n

p
2�

e� R(i )2 =2� 2
n /* conditionalprobability */

w(i ) = P (i )
P (i )+ p0

/* posteriorprobability */

end

/* maximizationstep*/

W = 0

for eachsamplei

W (i; i ) = w(i ) /* weightingmatrix */

end

� n+1 =
� P

i w(i )R2 (i )P
i w(i )

� 1=2
/* new varianceestimate*/

~� n+1 = (Y T W Y)� 1Y T W~y /* new estimate*/

n = n + 1
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until ( k~� n � ~� n� 1k < � ) /* stoppingcondition*/
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