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We describe a computational technique for authenticating
works of art, specifically, paintings and drawings, from

high resolution digital scans of the original works. This ap-
proach builds a statistical model of an artist from the scans
of a set of authenticated works, against which new works
are then compared. The statistical model consists of first-

and higher-order wavelet statistics. We show preliminary
results from our analysis of thirteen drawings that have at
various times been attributed to Pieter Bruegel the Elder,
which confirm expert authentications. We also apply these

techniques to the problem of determining the number of
artists that may have contributed to a painting attributed
to Perugino and again achieve an analysis agreeing with

expert opinion.

1 Introduction

It probably wasn’t long after people began paying money
for art that a lucrative business in forging art was born.
And it probably wasn’t too much later that techniques
for detecting art forgeries emerged. Even today, the
early techniques for authentication remain pre-eminent.
By and large these are based on “connoisseurship”
and so rely upon the discerning eyes of a few experts
who are steeped in the work and life of the artist in
question. Their opinion may be informed by the cat-

alogue raisson which is the current acknowledged au-
thoritative work on the artist’s œuvre. Other desider-
ata may include provenance which might be traced
back to the artist’s circle or his collectors and makes
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possible the comparison of the work’s implicit biogra-
phy with the histories of related works, or even a de-
tailed analysis of any signature that may be present.
(See [19] for a survey of current techniques.)

In addition to the reliance on the human actor, quan-
titative methods can be brought to bear. X-ray analy-
sis can reveal a painting beneath a painting that can
shed light on its origins. Surface analysis of the paint-
ing materials is another approach, most famously ap-
plied in the investigation of the famous “van Meerghen
forgeries.” In this case, the forgery of paintings at-
tributed to Vermeer was confirmed by dating the paint-
ings according to the proportion of a certain lead iso-
tope in the lead-based paint. An elementary applica-
tion of differential equations allows for the actual iso-
tope content to be compared with the expected con-
tent had the work been painted in Vermeer’s day [10].
This marks a first use of mathematics in the service of
authentication.

With the advent of powerful digital technology, com-
putational tools may be able to provide new insights
and techniques into the art and science of art authen-
tication. For example, a fractal analysis of Jackson
Pollock’s drip paintings has revealed interesting rela-
tions between the evolution of Pollock’s aesthetic and
the fractal dimension of his work [21, 20]. The anal-
ysis also raises the possibility of using fractal dimen-
sion to help authenticate Pollock. Various techniques
from machine learning have been applied to the anal-
ysis and classification of craquelure – the crack lines
that appear over time in a painting [2].

In this paper we present a new computational tool
for analyzing prints, drawings and paintings for use
in authentication. Specifically, we perform a multi-
scale, multi-orientation image decomposition
(e.g., wavelets) of a collection of high-resolution dig-
ital scans of a drawing or painting. This decompo-
sition changes the basis from functions maximally lo-
calized in space (pixels) to one in which the basis func-
tions are localized not only in space, but also in ori-
entation and scale. A familiar analogy comes from
sound, where the original sound might be transformed
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into a vector of local frequency information which re-
flects how much of each frequency comprises the orig-
inal sound over a short time window. We construct
a compact model of the statistics from such a multi-
scale, multi-orientation image decomposition, and look
for consistencies or inconsistencies across different draw-
ings or paintings, or within a single work. The latter is
the so-called “problem of many hands” in which we
try to determine the regions of a collaborative work
that have been accomplished by a single artist.

The analysis produces local oriented spatial frequency
data, and so suggests that the accompanying model
captures the subtle pen and brush strokes character-
istic of an artist. Although an imitation 1 may be per-
ceptually similar to an original (i.e., very much in the
“style of the master”), the subtle differences in stroke
can reveal the presence of an imitation. In a sense
this work is a natural successor to the mathematical
techniques used for graphology, or handwriting anal-
ysis (see e.g., [11]), distilling not just the character-
istic lines and curves of a painter’s literal signature,
(which is often part of the process of authentication)
but even more, moving toward a characterization of
the artist’s aesthetic signature, resident within the line
and curve of his or her work.

Analogous techniques have already made their way
into the literary world, where they fall within the dis-
cipline of stylometry [8]. The problem of classification
has been applied to divvying up the attribution of
the Federalist papers between Madison and Hamil-
ton (see e.g., [13]) and the determination of the au-
thorship of the fifteenth book in the Oz series [3]. Sta-
tistical approaches to the question of authentication
have surfaced in the analysis of Shakespeare’s son-
nets [22]. The problem of many hands finds its mirror
in a study of the conjectured multiple authorship of
the Old Testament [7].

We begin by applying our analysis to the problem
of authentication of a collection of thirteen drawings

1Henceforth we will give the benefit of the doubt to the imitator
and use the terminology “imitation” rather than the more charged
“forgery.”

MMA
Cat. No. Title Artist

3 Pastoral Landscape Bruegel
4 Mountain Landscape with Bruegel

Ridge and Valley
5 Path through a Village Bruegel
6 Mule Caravan on Hillside Bruegel
9 Mountain Landscape with Bruegel

Ridge and Travelers
11 Landscape with Saint Jermove Bruegel
13 Italian Landscape Bruegel
20 Rest on the Flight into Egypt Bruegel

7 Mule Caravan on Hillside -
120 Mountain Landscape with -

a River, Village, and Castle
121 Alpine Landscape -
125 Solicitudo Rustica -
127 Rocky Landscape with Castle Savery

and a River

Figure 1: Authentic (top) and imitations (bottom).
The first column corresponds to the Metropolitan
Museum of Art (MMA) catalog number in [14].

that have at one time or another been attributed to
the famous draughtsman Pieter Bruegel the Elder. We
then follow with a “many-hands” analysis of a por-
trait by the great Renaissance painter Perugino. We
close with a synopsis of the tools used in the analysis
and describe the underlying statistical model. We col-
lect some of the more technical points in an appendix.

2 Bruegel

The Flemish painter and draftsman, Pieter Bruegel
the Elder (1525/30-1569)was among the greatest artists
of the sixteenth century. Of particular beauty and
fame are Bruegel’s landscape drawings. Over time
he acquired many imitators, some undoubtedly sim-
ply eager to work in the style of the great master,
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while others surely hoping to pass off their work as
Bruegel’s for monetary gain. Some of these followers
and imitators were expert enough that after being un-
masked (or discovered) they became famous in their
own right e.g., Jacob Savery. Bruegel’s work has re-
cently been the subject of renewed study and inter-
est [12, 14, 15]. As a result many drawings formerly
attributed to Bruegel are now attributed to others.

The delicate line and shading comprising these works
suggests that their classification according to a wavelet-
like analysis may be both appropriate and fruitful.
For our analysis we digitally scanned (at 2400 dpi)
eight authenticated drawings by Bruegel and five ac-
knowledged Bruegel imitations from 35mm color slides,
Figure 1 (slides were provided courtesy of the Metropoli-
tan Museum of Art [14]). These color (RGB) images,
originally of size 3894× 2592, were cropped to a cen-
tral 2048× 2048 pixel region, converted to grayscale 2

(gray = 0.299R + 0.587G + 0.114B), and autoscaled to
fill the full intensity range [0, 255]. Shown in Figure 2
are examples of an authentic drawing and an imita-
tion.

Each digital image was then subdivided into 64

non-overlapping 256×256 pixel regions. Each of these
subimages was then transformed using a five-level,
three-orientation wavelet-like decomposition (see Sec-
tion 4 for details). From this decomposition, a 72-
length feature vector of coefficient and error statistics
is extracted for each subimage (Section 4.) Each draw-
ing now corresponds to a set of points in this 72-D
space. Authentication is indicated by the distance be-
tween these point clouds, with the belief that works
by the same artist will be close together, irrespective
of content, and an imitation will be relatively far from
the authenticated Bruegels. Thus, we first computed
the Hausdorff distance [9] between all pairs of im-
ages (Appendix A). The resulting 13×13 distance ma-

2While converting from color to grayscale results in a significant
loss of information, we did so in order to make it more likely that
the measured statistical features and subsequent classification was
more likely to be based on the artist’s strokes, and not on simple
color differences.

Figure 2: Authentic #6 (top) and imitation #7 (bot-
tom), see Table 1.

Figure 3: Results of analyzing 8 authentic Bruegel
drawings (blue circles) and 5 imitations (red
squares). Note how the imitations lie significantly
outside of the bounding sphere of authentic draw-
ings.
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trix was then subjected to a multidimensional scaling
(MDS) [5] (Appendix B). Shown in Figure 3 is the re-
sult of visualizing the original 13 images in a lower-
dimensional space as determined by a MDS analysis.
The blue circles in Figure 3 correspond to the authen-
tic drawings, and the red squares to the imitations.
For purposes of visualization the wire-frame sphere
is rendered at the center of mass of the eight authen-
ticated drawings and with a radius set to fully en-
compass all eight data points (in so doing, we assume
knowledge of the authenticated Bruegels). Note that
all five imitations fall well outside of the sphere. The
distances from the authenticated Bruegels to the cen-
ter of the sphere are 0.34, 0.35, 0.55, 0.90, 0.56, 0.17,
0.54, and 0.85. The distances from the imitations are
considerably larger at 1.58, 2.20, 1.90, 1.48, and 1.33

(the means of these two distance populations are sta-
tistically significant: p < 1−5 (one-way anova)). Even
in this space of reduced dimension, there is a clear dif-
ference between the authentic drawings and the imi-
tations.

3 Perugino

Pietro di Cristoforo Vannucci (Perugino) (1446-1523)
is well known as a portraitist and a fresco painter, but
perhaps he is best known for his altarpieces. By the
1490s Perugino maintained a workshop in Florence
as well as in Perugia and was quite prolific. Shown in
Figure 4 is the painting Madonna With Child by Pe-
rugino. As with many of the great Renaissance paint-
ings, however, it is likely that Perugino only painted
a portion this work - apprentices did the rest. To this
end, we wondered if we could uncover statistical dif-
ferences amongst the faces of the individual charac-
ters.

The painting (at the Hood Museum, Dartmouth
College) was photographed using a large-format cam-
era (8×10 inch negative) and drum-scanned to yield a
color 16, 852× 18, 204 pixel image. As in the previous
section this image was converted to grayscale. The
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Figure 4: Madonna With Child by Perugino. How
many hands contributed to this painting?
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Figure 5: Results of analyzing the Perugino paint-
ing. The numbered data points correspond to the
six faces (from left to right) in Figure 4. Note how
the three left-most faces (1-3) cluster, while the re-
maining faces are distinct. This clustering pattern
suggests the presence of at least four distinct hands.
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facial region of each of the six characters was man-
ually localized. Each face was then partitioned into
non-overlapping 256 × 256 regions and auto-scaled
into the full intensity range [0, 255]. This partitioning
yielded (from left to right) 189, 171, 189, 54, 81, and
144 regions. The same set of statistics as described in
the previous section was collected from each of these
regions. Also as in the previous section, we com-
puted the Hausdorff distance (Appendix A) between
all pairs of six faces. The resulting 6× 6 distance ma-
trix was then subjected to MDS (Appendix B). Shown
in Figure 5 is the result of visualizing the original six
faces in a lower-dimensional space as determined by
a MDS analysis.

The numbered data points correspond to the six
faces (from left to right) in Figure 4. Note how the
three left-most faces cluster, while the remaining faces
are distinct. The average distance between faces 1− 3

is 0.61, while the average distance between the other
faces is 1.79. This clustering pattern suggests the pres-
ence of at least four distinct hands, and is consistent
with the views of some art historians [1].

4 Methods

Our methodology makes use of a decomposition of
images using basis functions that are localized in spa-
tial position, orientation, and scale (e.g., wavelets).
These sorts of expansions have proven extremely use-
ful in a range of applications (e.g., image compres-
sion, image coding, noise removal, and texture syn-
thesis). One reason for this is that such decompo-
sitions exhibit statistical regularities that can be ex-
ploited (e.g., [17, 16, 4]). Described below is one such
decomposition, and a set of statistics collected from
this decomposition. 3

3We also have experimented with both Laplacian and steerable
pyramid decompositions. Results from a steerable pyramid (with
eight orientation subbands) were similar to the results included
above (which use only three orientation subbands). Furthermore,
the Laplacian pyramid generally gave poor results. So while it

ωx

ωy

Figure 6: An idealized multi-scale and orientation
decomposition of frequency space. Shown, from
top to bottom, are levels 0,1, and 2, and from left
to right, are the lowpass, vertical, horizontal, and
diagonal subbands.

The decomposition is based on separable quadra-
ture mirror filters (QMFs) [23, 24, 18]. As illustrated
in Figure 6, this decomposition splits the frequency
space into multiple scales and orientations. This is ac-
complished by applying separable lowpass and high-
pass filters along the image axes generating a verti-
cal, horizontal, diagonal and lowpass subband. For
example, the horizontal subband is generated by con-
volving with the highpass filter in the horizontal di-
rection and lowpass in the vertical direction, the diag-
onal band is generated by convolving with the high-
pass filter in both directions, etc. Subsequent scales
are created by subsampling the lowpass by a factor of
two and recursively filtering. The vertical, horizon-
tal, and diagonal subbands at scale i = 1, ..., n are de-
noted as Vi(x, y), Hi(x, y), and Di(x, y), respectively.
Shown in Figure 7 is a three-level decomposition of

seems that oriented subbands are necessary, it also seems that a
finer tuning of orientation is not necessary for this particular task.
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Figure 7: Shown on the right are the absolute values of the subband coefficients at three scales and three orientations
(the residual lowpass subband is shown in the upper-left corner) for the Perugino (left).

the scanned Perugino, shown in the same figure.
Given this image decomposition, the statistical model

is composed of the mean, variance, skewness and kur-
tosis of the subband coefficients at each orientation
and at scales i = 1, ..., n − 2. These statistics char-
acterize the basic coefficient distributions. In order to
capture the higher-order correlations that exist within
this image decomposition, these coefficient statistics
are augmented with a set of statistics based on the er-
rors in an optimal linear predictor of coefficient mag-
nitude.

As described in [4], the subband coefficients are
correlated to their spatial, orientation and scale neigh-
bors. For purposes of illustration, consider first a ver-
tical band, Vi(x, y), at scale i. A linear predictor for
the magnitude of these coefficients in a subset of all

possible neighbors may be given by:

|Vi(x, y)| = w1|Vi(x− 1, y)|+ w2|Vi(x + 1, y)|

+ w3|Vi(x, y − 1)|+ w4|Vi(x, y + 1)|

+ w5|Vi+1(
x
2
, y

2
)|+ w6|Di(x, y)|

+ w7|Di+1(
x
2
, y

2
)|, (1)

where wk denotes scalar weighting values, and | · |

denotes magnitude. This particular choice of spatial,
orientation, and scale neighbors was employed in our
earlier work on detecting traces of digital tampering
in images [6]. Here we employ an iterative brute-force
search (on a per subband and per image basis) for the
set of neighbors that minimizes the prediction error
within each subband.

Consider again the vertical band, Vi(x, y), at scale i.
We constrain the search of neighbors to a 3× 3 spatial
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region at each orientation subband and at three scales,
namely, the neighbors:

Vi(x − cx, y − cy), Hi(x− cx, y − cy),

Di(x− cx, y − cy),

Vi+1(
x
2
− cx, y

2
− cy), Hi+1(

x
2
− cx, y

2
− cy),

Di+1(
x
2
− cx, y

2
− cy),

Vi+2(
x
4
− cx, y

4
− cy), Hi+2(

x
4
− cx, y

4
− cy),

Di+2(
x
4
− cx, y

4
− cy),

with cx = {−1, 0, 1}and cy = {−1, 0, 1}, and, of course,
excluding Vi(x, y). From these 80 possible neighbors,
the iterative search begins by finding the single most
predictive neighbor (e.g., Vi+1(x/2 − 1, y/2)) 4. This
neighbor is held fixed and the next most predictive
neighbor is found. This process is repeated five more
times to find the optimally predictive neighborhood.
On the kth iteration, the predictor coefficients (w1, ..., wk)
are determined as follows. Let the vector ~V contain
the coefficient magnitudes of Vi(x, y) strung out into
a column vector, and the columns of the matrix Q con-
tain the chosen neighboring coefficient magnitudes
also strung out into column vectors. The linear pre-
dictor then takes the form:

~V = Q~w, (2)

where the column vector ~w = ( w1 . . . wk )T , The
predictor coefficients are determined by minimizing
the quadratic error function:

E(~w) = [~V −Q~w]2. (3)

This error function is minimized by differentiating with
respect to ~w:

dE(~w)/d~w = 2QT [~V − Q~w], (4)

setting the result equal to zero, and solving for ~w to
yield:

~w = (QT Q)−1QT ~V . (5)

4Integer rounding is used when computing the spatial positions
of a parent, e.g., x/2 or x/4.

The log error in the linear predictor is then given by:

~Ev = log2(
~V )− log2(|Q~w|). (6)

Once the full set of neighbors is determined addi-
tional statistics are collected from the errors of the fi-
nal predictor - namely the mean, variance, skewness,
and kurtosis. This entire process is repeated for each
oriented subband, and at each scale i = 1, ..., n− 2,
where at each subband a new set of neighbors is cho-
sen and a new linear predictor estimated.

For a n-level pyramid decomposition, the coeffi-
cient statistics consist of 12(n−2) values, and the error
statistics consist of another 12(n− 2) values, for a to-
tal of 24(n − 2) statistics. These values represent the
measured statistics of an artist’s style and are used to
classify or cluster drawings or paintings.

As stated above, following the computation of the
feature vectors multi-dimensional scaling (MDS) was
employed to project the original 72-D feature vectors
into a 3-D subspace. Features with no discriminating
power (e.g., the means) will therefore play no role in
the lower-dimensional embedding.

5 Discussion

We have presented a computational tool for digitally
authenticating or classifying works of art. This tech-
nique looks for consistencies or inconsistencies in the
first- and higher-order wavelet statisticscollected from
drawings or paintings (or portions thereof). We showed
preliminary results from our analysis of thirteen draw-
ings either by, or in the style of, Pieter Bruegel the
Elder as well as a painting by Perugino. We expect
these techniques, in collaboration with existing phys-
ical authentication, to play an important role in the
field of art forensics.
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Appendix A: Hausdorff Distance

The Hausdorff distance is a distance metric defined
on two sets of vectors, X and Y . The metric, H(·, ·) is
defined as:

H(X, Y ) = max (h(X, Y ), h(Y, X)) ,

where h(·, ·) is defined as:

h(X, Y ) = max
~x∈X

(

min
~y∈Y

d(~x, ~y)

)

.

Here d(·, ·) can be any distance metric defined on the
vector space subsuming X and Y . In our case, we use
Euclidean distance d(~x, ~y) = (~x− ~y)T (~x− ~y).

Appendix B: Multidimensional

Scaling

Multidimensional scaling (MDS) is a popular method
to visualize high dimensional data. Given n vectors
{~x1, · · · , ~xn}, where ~xi ∈ Rm, the goal of MDS is to
find a lower-dimensional embedding for these data
that minimally distorts their pairwise distances. De-
note the n × n distance matrix as Dij = d(~xi, ~xj),
where d(·, ·) is a distance metric in Rm . The most
common such metric is Euclidean distance defined as
d(~xi, ~xj) = (~xi − ~xj)

T (~xi − ~xj).
Given the pairwise symmetric distance matrix, the

classic (metric) MDS algorithm is given by the follow-
ing steps:

1. Let Aij = −1

2
D2

ij .

2. Let B = HAH , where H = In − 1

n
~u~uT , In is a

n × n identity matrix, and each component of
the n-dimensional vector ~u is 1.

3. Compute the eigenvectors, ~e1, · · · , ~en, and cor-
responding eigenvalues, λ1, · · · , λn, of matrix B,
where λ1 ≥ λ2 ≥ · · · ≥ λn.

4. The new, lower-dimensional, representation of
the original data, ~xi, are then given by
~x′i = (~e1(i) ~e2(i) · · · ~em′ (i) ), where ~ek(i)

denotes the ith component of the vector, and in
our examples m′ = 3.
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