USB HID Drivers on OpenSolaris
and Linux — By Example

Copyright 2009: Max Bruning
Kernel Conference Australia,
July, 2009

Topics Covered

Description of Wacom Tablet
USB HID Device Driver Overview

_inux Input Event Subsystem Overview

HID Driver Framework on OpenSolaris

Wacom Kernel Module and X Input Extension
Library on OpenSolaris

Overview of the Wacom Tablet

 Tablet models come in different sizes and
features

 Each tablet comes with a pen with replaceable
stylus and side switches

* Tablet can send proximity events, absolute pen
coordinates, pressure, height, tilt, pen serial
number, and various “expresskey” events and
slider(s) events

» Tablet contains HID boot protocol which allows
pen to work like a mouse

e More information at www.wacom.com

http://www.wacom.com/productinfo/index.php

USB HID Device Overview

Communication between HID devices and a
HID driver are in the form of Device Descriptors
and/or data

Device Descriptor

» Configuration Descriptor

- Interface Descriptor

« Endpoint Descriptor
e HID Descriptor

- Report Descriptor
— Physical Descriptor

Descriptors can be viewed using ndb(1) or
prtpicl (1)

See Device Class Definition for Human Interface Devices(HID)

http://www.google.com/url?sa=t&source=web&ct=res&cd=2&url=http://www.usb.org/developers/devclass_docs/HID1_11.pdf&ei=J2FUSvjFB8jFsAaZ7qjSBw&rct=j&q=usb+hid+specification&usg=AFQjCNFEuxKl_CDWUSpdhHo-28H_MhrPAw

Device Descriptors For Wacom
Tablet

Loadi ng nodul es: [unix genuni x specfs dtrace mac cpu. generic

uppc pcplusnp scsi _vhci zfs sockfs ip hook neti sctp arp usba uhci

sd fctl nd |lofs audiosup fcip fcp random cpc crypto | ogi ndnux ptm ufs
nsnb sppp ipc]

> .. prtusb

| NDEX DRI VER | NST NODE VID. PID PRODUCT

1 ehci 0 pci 17aa, 200b 0000. 0000 No Product String
2 uhci 0 pci 17aa, 200a 0000. 0000 No Product String
3 uhci 1 pci 17aa, 200a 0000. 0000 No Product String
4 uhci 2 pci 17aa, 200a 0000. 0000 No Product String
5 uhci 3 pci 17aa, 200a 0000. 0000 No Product String
6 scsa2usb 1 st or age 1058. 0704 Ext ernal HDD

7 hi d 0 nouse 056a. 0065 MIE- 450

8 usb_ md 0 devi ce 0483. 2016 Bi onetri ¢ Coprocessor
>

Device Descriptors For Wacom
Tablet (Continued)

> .:prtusb -v -i 7 <« Add “-t” to also show HID Usage Tables
| NDEX DRI VER | NST NODE VID. PID PRODUCT
7 hi d 0 nouse 056a. 0065 MTE- 450

Devi ce Descri ptor « usb_dev _descr_t from uts/common/sys/usb/usbai.h

{
bLength = 0x12

bDescri pt or Type = 0x1
bcdUSB = 0x200
BDevi ceCl ass = 0 « class info in interface descriptor

bDevi ceSubC ass = 0
bDevi ceProtocol = 0
bMaxPacket Si zeO = 0x40

| dVendor = 0x56a «— Wacom vendor id
| dProduct = 0x65 «— “Bamboo”
bcdDevi ce = 0x108

| Manuf acturer = 0x1

| Product = 0x2

| Seri al Nunber = 0

bNunConfi gurati ons = 0x1

Device Descriptors for Wacom
Tablet (Continued)

-- Active Config Index O

Configuration Descriptor

{
bLength = 0x9
bDescri ptor Type = 0x2
wTot al Length = 0x22
bNum nterfaces = 0xl1
bConfi gurati onVal ue = 0x1
| Configuration = 0x0
bmAttri butes = 0x80 « bus powered
bMaxPower = 0x16 «44mA

| nterface Descri ptor
{
bLength = 0x9
bDescri pt or Type = 0x4
bl nt er f aceNunber = 0x0
bAl t ernateSetting = 0xO0
bNunmEndpoi nts = 0x1
bl nt erfaced ass = 0x3 «HID Class Device
bl nt er f aceSubCd ass = 0x1 « Device supports a boot interface
bl nt er f acePr ot ocol 0x2 « Boot protocol is mouse
i Interface = 0x0

Device Descriptors For Wacom

Tablet (Continued)

H D Descri ptor

{

}

bLengt h = 0x9
bDescri pt or Type = 0x21 « Assigned by USB, mouse
bcdH D = 0x100

bCount ryCode = 0x0 <«Not localized

bNumDescri ptors = 0x1
bRepor t Descri pt or Type

= 0x22 «<mouse
wReport Descri ptorLength =

0x92

Endpoi nt Descri pt or

{

bLengt h = 0x7

bDescri ptor Type = 0x5 «— mouse
bEndpoi nt Addr ess = 0x81 « input endpoint number 1
bmAt t ri but es = 0x3 « interrupt endpoint
wivaxPacket Si ze = 0x9

bl nterval = 0x4

Viewing Device Descriptors on
Linux

* On Linux, USB device information, including

descriptors, is located In
[proc/ bus/ usb/ devi ces

 Information is in ascii (so you can cat the file)

¢ See
Docunent at i on/ usb/ proc_usb I nfo.txt

In the Linux source code

e | susb -vvv also shows descriptors as well
as HID Usage Tables

USB HID Device Drivers on Linux

* Drivers for HID devices on Linux can be
implemented via:

A kernel driver that communicates with a USB host
controller driver via the usb-core API

- See Programming Guide for Linux USB Device Drivers
A user level driver that communicates with the
hi d_I nput kernel module

A user level driver that communicates with the
hi ddev kernel module

« H d- I nput and hi ddev communicate with the
USB host controller driver via hi d- cor e

http://www.lrr.in.tum.de/Par/arch/usb/usbdoc/

USB HID Device Drivers on Linux
(Continued)

e User level drivers communicate with kernel via
| 1 busb and/or |1 bhi d

* Note that the Wacom implementation on Linux
consists of a kernel module that communicates
directly with the USB host controller via
usb-core

* User level communication with Wacom is via Linux
generic | nput device (/ dev/ 1 nput/ event #)

USB HID Device Drivers on
OpenSolaris

* For HID devices, OpenSolaris provides the
hi d(7d) driver and hi dpar ser kernel module

 hi d(7d) handles all communication with the USB
host controller via usba(7d) (analagous to usb-
cor e on Linux)

e hid(7d) isa STREAMS driver

- Individual HID devices can use a STREAMS module
pushed onto the driver to handle the device

- There is no documentation for writing such a module
 The hi dpar ser module handles HID descriptors

USB HID Device Drivers on
OpenSolaris (Continued)

 OpenSolaris also has support for
| 1 busb(3LI B)

 Uses the ugen(7d) kernel driver to communicate
with the USB host controller via usba(7d)

* OpenSolaris currently has no support for
| | bdev orthe Linux i nput device module

 There are currently hi d(7d) STREAMS

modules to support mouse, keyboard, and
audio control devices.

Linux Input Device Handling

Application

|

Event Handler
(evdev, keybdev, mousedey, joydev)

|

input module

Driver

» Application opens and reads from an

input device (/dev/input/event#, for

instance)

* Event Handler is a kernel module that

gets input events from the input module

* The input module gets events from

registered drivers, and passes them to

registered handlers

» The driver handles the device. For

USB, the driver communicates with the

host controller via usb-core, or via hid-

core

* Input events include a time stamp, type

of event, code for event type, and a

value

> For instance, a type of event might

be a button event, the code indicates
which button, and the value would
indicate press or release.

Linux Input Device Handling — USB

Input Driver Example

/* note that in this exanple, nmany details are omtted */
static int foo probe(struct usb interface *intf,

{

Const struct usb device id *id)

struct foo *foo; /* private state data for device */

foo = kzal |l oc(si zeof (struct foo), GFP_KERNEL);

I nput _dev = input_all ocate _device();

foo->data = usb buffer_alloc(dev, len, flags, &foo->data dm);
foo->irq = usb_alloc _urb(0, flags);

| nput _dev->open = foo_open;

| nput _dev->cl ose = foo_cl ose;

/[* initialize input_dev capabilities, i.e., */

/* set input _dev evbits and keybits (buttons, abs vs. rel, etc. */
/[* tell i1nput nodul e about supported and m n/ nmax parans */

[* for instance... */

| nput _set _abs_parans(i nput _dev, ABS X, m nx, maxx, 0, 0);

endp = intf->cur_altsetting->endpoint[i].desc;

usb fill _int _urb(foo->irq, dev,
usb_rcvi nt pi pe(dev, endp->bEndpoi nt Address), foo->data, |en,
foo_irq, foo, endp->bEndpointlnterval);

| nput _regi ster _devi ce(foo->dev);

/* send/retrieve reports, as needed */

usb_set report(...);

Linux Input Device Handling — USB
Input Driver Example (Continued)

Static void
foo irqg(struct urb urb) /* called when data arrives from device (usb-core)*/
{
struct foo *foo = (struct foo *)urb->context;
unsi gned char *data = foo->data; /* the data fromthe device */
struct input_dev *input _dev = foo->i nputdev;
switch(urb->status) {
case O:
/* success, first process data, then send keys, abs/rel, events */
| nput _report _abs(input _dev, type, code, val ue);
/* and/or input_event(), input report _rel(), input _report _key() */
def aul t:
/* handl e error */

Linux Input Device Handling — Input
Module

« Each input device module maintains bit field arrays of capabilities of the underlying device
» Device driver fills in bits for corresponding capabilities supported by the device

> Events > LEDs

> Keys > Sound Effects

> Relative Positions > Force Feedback Events
> Absolute Positions > Switches

> Miscellaneous Events

» Device drivers tell the input module about events that have occurred
 Input module checks to make sure the device is capable of generating the event
* Then the input module passes the event to interested event handler(s), or sent
to the device (to turn on/off an LED, for instance)

* The input module is meant for generic input device handling, currently only used
with usb

Linux Input Device Handling — Event
Handler (evdev)

 The evdev module is meant for processing of generic events
« Other event handlers exist (mouse, keyboard, joystick), and others can be added
« evdev places the event in a client buffer and sends a SI G O to waiting application
» Applications using evdev will first open an event device (/ dev/ i nput / event # where
is between 0 and 31) corresponding to the device for which the application expects

events
 Handler is added for device during i nput _regi ster _devi ce()

» Applications must search / dev/ i nput / event # devices to find correct
corresponding device (open and then get vendor/product id)

Linux Input Device Handling —
Application Level

» User level code typically implemented in a library (f oo_drv. so)
1. Applications wishing to use the device link with the library
« For the X windowing system, the library does the following actions:
1.The Mbdul eSet upPr oc function tells X about the new input driver
2.The Pr el ni t function loads the kernel f oo driver and the event handler
module (for instance, evdev)
3. The device control function,on DEVICE I NI T, opens each
/ dev/i nput/ event # device until it finds one corresponding to the correct
underlying hardware
4. The read i nput function is called whenever packets are ready to be read by
the server.
i. For each packet read, r ead_i nput gathers the packets until it has enough
information to send event(s) associated with the packet(s)
ii. Once all packets have been read, the library calls xf 86Post xxxEvent () to
dispatch button press/release, motion, keystrokes, etc. events to the X server.
A description of the above functions can be found at
http://www.x.org/wiki/Development/Documentation/XorglnputHOWTO

http://www.x.org/wiki/Development/Documentation/XorgInputHOWTO

HID Framework on OpenSolaris
(Example)

Application
| |
streamhead streamhead
| |
Consms Conskbd
STREAMS STREAMS
Multiplexor Multiplexor
usbms usbkbm
Hid Hid
Driver Driver
usba

Host Controller Driver
ehci/ohci/uhci

Wacom Tablet on OpenSolaris

e 3 versions

* Modified usbms module
* Implement input device handling in kernel module
* Re-Implement Xinput library module

Wacom Driver as Modified usbms

» Usbms modified to support
both mouse and tablet

 All tablet events sent as
mouse events

 \ersion has been in
production for 2 years

Application
| |
streamhead streamhead
— —
Consms
STREAMS
Multiplexor
usbms usbms
Hid Hid
Driver Driver
usba

Host Controller Driver

ehci/ohci/uhci

Problems with First Solution

* The first iteration was implemented because |
could not find a way to “pop” the usbms module

 Plumbing of usbns module done by

consconfi g _dacf kernel module based on
dacf . conf (4)

- Boot protocol identifies tablet as a mouse

* No tablet key support (pen, erasor, and side
switches work)

« On SPARC, hwe module caused problem

 All handling of tablet specific data done by
modified usbns module

Wacom Module Implementing Linux
| nput Events

* Problem of mouse boot protocol goes away by
open(2) of the underlying device (usbns

module is popped)

« wacom STREAMS module pushed onto hi d
by modified Linux wacom drv. so library

e Otherwise, wacom drv. so needs no modification

« wacom module converts raw input from tablet into
| nput _event structures expected by library
module

o All features of tablet now work

Problems with Second Solution

* The Linux solution does much of the processing
twice, once in the kernel module, and again in
the library

e Licensing

» (But we won't talk about this...)

Wacom on OpenSolaris — Yet
Another Solution

« wacom kernel module puts the tablet into “pen”
mode, and sends raw tablet data to consumers

 The X input library, wacom dr v. so, accepts

raw data, converts into X events, and sends the
events.

* Currently, solution is using some Linux library
code

* S0, not yet released for OpenSolaris

Wacom Kernel Module — Sending a
ort

wacom get vid pid(wacomstate t §gconp) [* called from nodul e open */

{

struct iocblk nttlnsg;
mol k t *nctl _ptr;
dev_info t *devinfo;

gqueue_t *g = waconp->wacomirqg ptr;

nctl msg.ioc_cnd = H D GET VID PID;
nctl msg. i oc_count = O;

nctl _ptr = usba nk _nctl (nctl nmsg, NULL, 0);

put next (waconp- >wacom wg_ptr, nctl _ptr);
waconp- >wacom fl ags | = WACOM QMAI T;
whi l e (waconp->wacom fl ags & WACOM QM T) {
I (quwait_sig(q) == 0) {
waconp- >wacom fl ags = 0;
return (EINTR);
}
}
Ret urn(0);

Wacom Kernel Module — Reading a
Report

« The hi d module acts on M CTL messages
and sends another M_CTL message upstream

« The wacom module, when it receives the
answering M CTL message, takes appropriate

action (for instance, waking up code in the open
function), and discards the message

o All tablet data is received as M DATA

messages, which are passed upstream with no
processing

Acknowledgements

* Philip Brown's Wacom driver has been helpful, see
http://www.bolthole.com/solaris/drivers/usb-wacom.f

» Strony Zhang at Sun Microsystems
* Various people at Wacom

 James McPherson

* The Queensland Brain Institute

e The Source

http://www.bolthole.com/solaris/drivers/usb-wacom.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

