
CS 108, Midterm 1

Terms and Conditions. This is a take-home, open-book, open-manual, open-shell exam. The
solutions are due by morning of Wednesday February 24.

You are expected to use (at least) DTrace, the OpenGrok source code browser1, and the Modular
Debugger’s running kernel inspection capability2, and any other tools you find useful. The docu-
ments in the class directory http://www.cs.dartmouth.edu/~sergey/cs108/ and the textbook’s
index might be useful, too.

For each problem, you should “show your work”: the output of the above tools on your actual
OpenSolaris platform (virtual or physical). For OpenSolaris kernel code lines, provide the filename
and the line number, or the OpenGrok URL pointing to the right line.

You are allowed to discuss the use of tools with your fellow students, but not the problems or
solutions themselves. For example, sharing a tracing trick is OK, but sharing part of a solution as
such is not. Note that in most exercises you are free to choose your targets (which may help you
avoid conflicts with the above rule). If in doubt, ask.

Note that Problem 4 is optional, but is intended to provide a direction for a good class project.

Problem 1. Dissect the virtual address space of a UNIX process (say, ps(1) or ls(1)), both
in user and kernel context.

Show where various parts of the process and supporting shared libraries are loaded3. Show
where ELF segment headers are loaded. Show where the kernel data structures describing the
process are. Show where the kernel stack is. Show where the page tables of the process are. Show
any other data structures of interest.

Bonus points: Perform surgery on the process.
For example, suppose that you are a system administrator, and you mistakenly started editing

a configuration file without pfexec or sudo. When it’s time to save the file, you discover that your
process lacks the permission(s) to do so. Can you temporarily give the process that power without
having to restart it? (Of course, in reality you have other choices, such as saving the file elsewhere
and then copying it, etc.)

For more bonus points, perform a rootkit trick: hinder some OS functionality without crashing
or incapacitating the process, such as hide it, make it unkillable, or hide its specific open file or
socket.

Problem 2. OpenSolaris supports multiple executable file formats (e.g., ELF, the older a.out,
and the Java environment’s feature Javaexec). Identify the data structures and code line(s) involved
in this support.

Problem 3. Using the DTrace’s lockstat provider4, find the most contended lock on your
platform for the UNIX tool of your choice (ps(1), ls(1), or anything else in standard UNIX (1))

1http://src.opensolaris.org/source/search?path=uts&project=onnv
2mdb -k
3Some hints can be found at http://hub.opensolaris.org/bin/view/Community+Group+observability/procfs
4For some hints on lockstat, see http://wikis.sun.com/display/DTrace/lockstat+Provider



and the code path on which most contention occurs. You will, of course, need to script running
the tools enough times to be statistically “sure”.

Problem 4. (optional, open-ended, to start you thinking about a possible project):
Imagine a visualization of the physical RAM use by different processes and the kernel, in which

each physical page is represented by a pixel. The color of the pixel describes the current use of the
page (free, used for file I/O cache, kernel data structures, or for some user process’ code, data, or
stack).

Create such a visualization prototype based on DTrace and a scripting language that can handle
DTrace output (Ruby, Python or Perl)5

5For Ruby, see http://ruby-dtrace.rubyforge.org/ for DTrace bindings.


