
CS 108: Advanced Operating Systems

Sergey Bratus, Winter 2010

Goal: To explore and use new features of operating systems that appeared during the last decade. To
epxlore OS mechanisms that everyone uses every day, but few people know in detail, such as dynamic
linking, executable and linkable format, and OS debugging support. To write working, non-trivial kernel
code.

OS and HW: OpenSolaris on x86, with Linux used for comparison.

Lecture topics:

• Overview of UNIX system calls. The anatomy of a system call and x86 mechanisms for system call
implementation. How the MMU/memory translation, segmentation, and hardware traps interact to
create kernel–user context separation. What makes virtualization work.

• The kernel execution and programming context. Live debugging and tracing. Hardware and software
support for debugging.

• DTrace: programming, implementation/design, internals.

• Linking and loading. Executable and Linkable Format. Internals of linking and dynamic linking.

• Internals of effective spinlock implementations on x86. OpenSolaris adaptive mutexes: rationale and
implementation optimization. Pre-emptive kernels. Effects of modern memory hierarchies and related
optimizations.

• Process and thread kernel data structures, process table traversal, lookup, allocation and management
of new structures, /proc internals, optimizations.

• Virtual File System and the layering of a file system call from API to driver. Object-orientation
patterns in kernel code; a review of OO implementation generics (C++ vtables, etc).

• OpenSolaris virtual memory and address space structures. Tying top-down and bottom-up object and
memory page lookups with the actual x86 page translation and segmentation. How file operations,
I/O buffering, and swapping all converged to using the same mechanism.

• Kmem and Vmem allocators. OO approach to memory allocation. Challenges of multiple CPUs and
memory hierarchy.

• Security: integrity, isolation, auditing. From MULTICS and MLS to modern UNIX. SELinux type
enforcement: design, implementation, and pragmatics. Kernel hook systems and policies they enable.
Trap systems and policies they enable. Tagged architectures and multi-level UNIX.

• ZFS overview and pragmatics. OpenSolaris boot environments and snapshots.

• OpenSolaris and UNIX System V system administration pragmatics: service startup, dependencies,
management, system updates.

• Overview of the kernel network stack implementation. Path of a packet through a kernel. Berkeley
Packet Filter architecture. Linux Netfilter architecture.

Textbook: Solaris Internals, by Jim Mauro et al (2nd ed.), Linkers and Loaders, by John Levine.


