CS 258, Midterm Exam

Terms and Conditions. This is a take-home, open-book, open-manual,
open-shell exam. The solutions are due by morning of Tuesday February 21.

You are expected to use (at least) DTrace, the OpenGrok source code
browser! and the Modular Debugger’s running kernel inspection capability?,
and any other tools you find useful. The documents in the class directory
http://www.cs.dartmouth.edu/ sergey/cs2568/ and the textbook’s index
might be useful, too.

For each problem, you should “show your work”: the output of the above
tools on your actual platform (virtual or physical). For OS kernel code lines,
provide the filename and the line number, or the OpenGrok URL pointing
to the right line.

You are allowed to discuss the use of tools with your fellow students, but
not the solutions themselves. For example, sharing a tracing trick is OK,
but sharing part of a solution as such is not. Note that in most exercises
you are free to choose your targets (which may help you avoid conflicts with
the above rule). If in doubt, ask.

Note: The default system for these problems is Illumos. For each of the
Problems 1, 2, and 3, you may choose to do that problem on GNU/Linux
instead of Illumos if you so desire; note, however, that Illumos provides more
versatile and stable tools for examining the kernel, so it will likely be more
work, unless you’ve been working on a Linux project idea and practiced with
Linux tools already. Problem 4 is for Solaris only.

Problem 1.

e Using DTrace or MDB? or both, measure how many pages of dynamic
libraries are shared by processes at some point in time. Start with
libc, which is used by most processes. Document the process tree at
the time of your measurement.

e Estimate what part of libc does not appear to be used while running
a typical set of processes (compile some programs, run a webserver or
some other server; script your load).

e Based on the above, make an estimation of the trade-offs of dynamic
vs static linking in terms of RAM use.

http://src.illumos.org/source/
’mdb -k
3If you choose to use GNU/Linux, use comparable tools; you mileage may vary.



Problem 2.

e Enumerate the functions in the kernel that parse the FLF binary for-
mat when a process is started from a binary executable file (e.g., by
an exec system call). For each function, document briefly which part
of the FLF format it deals with.

e Edit a binary file (of a simple program, say ”Hello, world”) to cause
some of these functions to exit with an error. Extra points for causing
this in deeper functions (further down the callstack).

Problem 3. Write a program that messes with its own dynamic link-
ing. Make it call the dynamic linker for the same function over and over
(for example, make it print a string a hundred times, resolving the puts
or printf symbol every time). Use it to measure the overhead of dynamic
linking. Extra points for other ideas that make the dynamic linker do some-
thing unusual. (Instant High Pass for any memory corruption vulnerabilities
discovered in the dynamic linker.)

Problem 4. In Bonwick 2001 USENIX Tech paper,* Figure 3 shows
three boundaries: 1) between the CPU and the Depot layer, 2) between the
Depot and the Slab layer, 3) between the Slab layer and the Vmem arena
layer. With DTrace, instrument the functions that actually perform these
transitions in the kernel code and write a (userland) program that causes
“worst case” allocation patterns (w.r.t. to timing, falling through to the
next layer caching, or locking) in the kernel. You program need not make
sense or output anything in particular; all it needs to do is cause many
kernels objects to be created and freed, in such a way that it’s Vmem'’s
“worst nightmare.”

Note: there are many different types of data structures allocated in
the kernel via the Vmem allocator. You may confer with your classmates
and pick a particular kernel data structure to target. We can then have
a competition between several “worst case” programs targetting the same
structure. The winner gets extra points.

“http://static.usenix.org/event/usenix01/bonwick.html



