
CS 258: Advanced Operating Systems

Sergey Bratus, Winter 2013

Objective: To confidently read code of contemporary production operating systems. To epxlore OS mecha-
nisms that everyone uses every day, but few people know in detail, such as dynamic linking, executable and
linkable format, and OS debugging support. To write working, non-trivial kernel code.

OS and HW: Illumos (fork of OpenSolaris) and Linux on x86 and x86-64.

Course directory: http://www.cs.dartmouth.edu/~sergey/cs258/

Lecture topics:

• Overview of UNIX system calls. The anatomy of a system call and x86 mechanisms for system call
implementation. How the MMU/memory translation, segmentation, and hardware traps interact to
create kernel–user context separation. What makes virtualization work.

• The kernel execution and programming context. Live debugging and tracing. Hardware and software
support for debugging.

• DTrace: programming, implementation/design, internals. Kprobes and SysTrace: Linux catching up.

• Linking and loading. Executable and Linkable Format (ELF). Internals of linking and dynamic linking.

• Internals of effective spinlock implementations on x86. OpenSolaris adaptive mutexes: rationale and
implementation optimization. Pre-emptive kernels. Effects of modern memory hierarchies and related
optimizations.

• Process and thread kernel data structures, process table traversal, lookup, allocation and management
of new structures, /proc internals, optimizations.

• Virtual File System and the layering of a file system call from API to driver. Object-orientation
patterns in kernel code; a review of OO implementation generics (C++ vtables, etc).

• OpenSolaris and Linux virtual memory and address space structures. Tying top-down and bottom-up
object and memory page lookups with the actual x86 page translation and segmentation. How file
operations, I/O buffering, and swapping all converged to using the same mechanism.

• Kmem and Vmem allocators. OO approach to memory allocation. Challenges of multiple CPUs and
memory hierarchy.

• Security: integrity, isolation, mediation, auditing. From MULTICS and MLS to modern UNIX.
SELinux type enforcement: design, implementation, and pragmatics. Kernel hook systems and policies
they enable. Trap systems and policies they enable. Tagged architectures and multi-level UNIX.

• ZFS overview. OpenSolaris boot environments and snapshots.

• OpenSolaris and UNIX System V system administration pragmatics: service startup, dependencies,
management, system updates.

• Overview of the kernel network stack implementation. Path of a packet through a kernel. Berkeley
Packet Filter architecture. Linux Netfilter architecture.

Textbook: Solaris Internals, by Jim Mauro et al (2nd ed.); Linkers and Loaders, by John Levine.


