ORACLE' %%
; A <
X

Crash Dump Analysis

DTrace & SystemTap

Jakub Jermar
Martin Decky

ORACLE

DTrace

* Dynamic Tracing

= Observing production systems

- Safety

- Zero overhead if observation is not activated
- Minimal overhead if observation is activated
- No special debug/release builds

= Merging and correlating data from multiple sources

- Total observabillity

» Global view of the system state

Crash Dump Analysis — MFF UK — DTrace 2

Terminology

e Probe

- A place in code or an event which can be observed

« |f a probe is activated and the code is executed
(or the event happens), the probe is fired

- A special script written in D language is executed

 Provider

- Registers probes to DTrace infrastructure

» Does the dirty work of activation, tracing and inactivation

e Consumer

- Consumes and postprocesses the data from fired probes

Crash Dump Analysis — MFF UK — DTrace 3

Overview

dtrace
script [Iockstat(1M)] [plockstat(1M)] intrstat(1M)] \

\ consumers

[dtrace(1 M)] /

N—
user-space
[provider]

user-space ‘ communication device
———————— dtrace(3D) _e— e — ——— - —_
kernel

DTrace

providers

D virtual machine
J
pid sysinfo sdt fasttrap syscall fbt usdt

/

Crash Dump Analysis — MFF UK — DTrace

DTrace history

31° January 2005

- Official part of Solaris 10

» Released as open source (CDDL)
- First piece of OpenSolaris to be released

27" October 2007
- Ported to Mac OS X 10.5 (Leopard)
2" September 2008
- Ported to FreeBSD 7.1 (released 6" January 2009)
21°% February 2010
- Ported to NetBSD (only for i386, not enabled by default)

Crash Dump Analysis — MFF UK — DTrace 5

ORACLE

DTrace history (2)

Linux

- Cannot be directly integrated (CDDL vs. GPL)
- Beta releases (since 2008)

« Standalone kernel module with no modifications to core sources
* Only some providers (fbt, syscall, usdt)
» Development snapshots available regularly

- SystemTap

 Linux-native analogy

» A script in SystemTap language is converted to a C source code
of a kernel module

- Loaded and executed natively in the running kernel
- Embedded C enabled in guru mode
Crash Dump Analysis — MFF UK — DTrace

ORACLE

DTrace history (3)

- QNX

- Port in progress
- 3" party software with DTrace probes
- Apache
- MySQL
- PostgreSQL
- X.Org
- Firefox
- Oracle JVM
- Perl, Ruby, PHP

Crash Dump Analysis — MFF UK — DTrace 7

ORACLE

D language

probe /predicate/ {
actions

}

» Describe what is executed if a probe fires
= Similar to C or AWK

- Without dangerous constructs (branching, loops, etc.)
= Many of the fields can be absent

- Default predicate/action

Crash Dump Analysis — MFF UK — DTrace 8

ORACLE

D probes

probe /predicate/ {
actions

}

» A pattern consisting of fields split by colon

= provider:module:function:name

- Fields can be omited (other are read from right to left)

» foo:bar match function foo and name bar in all modules
provided by all providers

- Fields can be empty (interpreted as any)

« syscall::: match all probes provided by the syscall provider

Crash Dump Analysis — MFF UK — DTrace 9

ORACLE

D probes (2)

probe /predicate/ {
actions

}

- Shell pattern matching

« Wild characters *, 2, []

- Can be escaped by \

- syscall::*Ilwp*:entry match all probes provided by the syscall
provider, in any module, in all functions
(syscalls) containing the string /wp and
matching syscall entry points

- Special probes

« BEGIN, END, ERROR
- Implemented by dtrace provider

Crash Dump Analysis — MFF UK — DTrace 10

ORACLE

D probes (3)

probe /predicate/ {
actions

- Displaying all configured probes
dtrace -1

Crash Dump Analysis — MFF UK — DTrace 11

ORACLE

D predicates

probe /predicate/ {
actions

}

* Boolean expression guarding the actions

Any expression which evaluates as integer or
pointer
- Zero is considered as false, non-zero as true
- Any D operators, variables and constants
- Can be absent
 Implicitly true

Crash Dump Analysis — MFF UK — DTrace 12

ORACLE

D actions

probe /predicate/ {
actions

}

e List of statements

= Separated by semicolon
= No branching, no loops
= Default action if empty

- Usually the probe name is printed out

Crash Dump Analysis — MFF UK — DTrace 13

ORACLE

D types

« Basic data types reflect C language

= Integer types and aliases

- (unsigned/signed) char, short, int, long, long long

- Int8 _t, int16_t, Int32_t, int64 _t, intptr_t, uint8_t, uint16 _t,
uint32_t, uinté4 _t, uintptr_t

= Floating point types

- float, double, long double

» Values can be assigned, but no floating point arithmetics is
implemented in DTrace

Crash Dump Analysis — MFF UK — DTrace 14

D types (2)

» Derivated and special data types

Pointers

- C-like pointers to other data types
(including pointer arithmetics)
* int *value; void *ptr;
- Constant NULL is zero
» DTrace enforces weak pointer safety

- Invalid memory accesses are fully handled
- However, this does not provide reference safety as in Java

Crash Dump Analysis — MFF UK — DTrace 15

D types (2)

= Scalar arrays

- C-like arrays of basic data types
« Similar to pointers, but can be assigned as a whole
* int values[5][6];
= Strings
- Special type descriptor string (instead of char *)

« Can be assigned as a whole by value (char * copies reference)
» Represented as NULL-terminated character arrays
* Internal strings are always allocated as bounded

- Cannot exceed the predefined maximum length (256 bytes)

Crash Dump Analysis — MFF UK — DTrace 16

D types (3)

« Composed data types

= Structures

- Records of several
other types

- Type declared in a
similar way as in C

- Variables must be
declared explicitly

- Members are
accessed via . and ->
operators

Crash Dump Analysis — MFF UK — DTrace

ORACLE

struct callinfo {
uinted4d t ts;
uinté4 _t calls;
Y

struct callinfo info[string];

syscall::read:entry,

syscall::write:entry {
info[probefunc].ts = timestamp;
info[probefunc].calls++;

Y
END {
printf("read %d %d\n",
info["read"].ts,
info["read"].calls) ;
printf("write %d %d\n",
info["write"].ts,
info["write"].calls);
Y

17

ORACLE

D types (4)

enum typeinfo {

= Unions CHAR_ARRAY = 0,
INT,
- Bit-fields LONG
, }s
= Enumerations

struct info {
enum typeinfo disc;

- Typedefs union {
o _ char c[4];
- All similar as in C int32_t i32;
uint32 t u32;
- | long 1;
Inlines s yatons
- Typed constants int a : 3;
. _ int b : 4;
* inline string desc = b
"something";

typedef struct info info_t;

Crash Dump Analysis — MFF UK — DTrace 18

DTrace operators

» Arithmetic » Bitwise
= +-"/% = & | M <<>>~
» Relational e Assignment
P < <=>>===|= = 4= -= "= /= Y%= &= |=
- Works also on strings "= <<=>>=
(lexical comparison) - Return values as in C
* Logical » Increment and
- && || M decrement
- Short-circuit evaluation . 44 --

Crash Dump Analysis — MFF UK — DTrace 19

ORACLE

DTrace operators (2)

« Conditional expression
= Replacement for branching (which is absent in D)
- condition ? true_expression : false_expression
» Addressing, member access and sizes
- & * . -> sizeof(type/expr) offsetof(type, member)
e Kernel variables access
e Typecasting

orach Do ;nal(ylgstz h>/I<F,F 'L‘t_ D*)rraIiULL’ (string) expression, stringof(expr) .

DTrace variables

e Scalar variables

- Simple global variables

- Storing fixed-size data (integers, pointers, fixed-size
composite types, strings with fixed-size upper bound)

- Do not have to be declared (but can be), duck-typing

/* Explicitly declare an int

/* Implicitly declare variable (initial value
an int variable */ cannot be assigned here) */

value = 1234; int val;

BEGIN {
value = 1234;

BEGIN {

Crash Dump Analysis — MFF UK — DTrace 21

ORACLE

DTrace variables (2)

e Associative arrays

= Global arrays of scalar values indexed by a key

- Key signature is a list of scalar expression values

 Integers, strings or even a tuple of scalar types
« Each array can have a different (but fixed) key signature
» Declared implicitly by assignment or explicitly
- values[123, "key"] = 456;
- All values have also a fixed type

« But each array can have a different value type
» Declared implicitly by assignment or explicitly
- int values[unsigned int, string];

Crash Dump Analysis — MFF UK — DTrace 22

ORACLE

DTrace variables (3)

e Thread-local variables

= Scalar variables or associative arrays specific to a
given thread

- ldentified by a special identifier self

- If no value has been assigned to a thread-local variable
in the given thread, the variable is considered zero-filled

« Assigning zero to a thread-local variable deallocates it

syscall::read:entry { /* Explicit declaration */
/* Mark this thread */ self int tag;
self->tag = 1;

} syscall::read:entry {

self->tag = 1;
Crash Dump Analysis — MFF UK — DTrace } 23

ORACLE

DTrace variables (4)

e Clause-local variables

= Scalar variables or associative arrays specific to a
given probe clause

- ldentified by a special identifier this
- They are not initialized to zero

* The value is kept for multiple clauses associated with the same

probe
syscall::read:entry { /* Explicit declaration */
this->value = 1; this int value;

}

syscall::read:entry {
this->value = 1;
Crash Dump Analysis — MFF UK — DTrace } 24

DTrace aggregations

 Variables for storing statistical data

= Storing values of aggregative data computation

- For aggregating functions f(...) which satisfy the following
property
f(f(x,) Ufix;)U..Ufx))=7fxUx,U..UXx,)
= Aggregations are declared in a simular way as
associative arrays

@values[123, "key"] = aggfunc(args);
@ [123, "key"] = aggfunc(args); /* Simple variable */
@[123, "key"] = aggfunc(args); /* dtto */

Crash Dump Analysis — MFF UK — DTrace 25

ORACLE

DTrace aggregations (2)

= Aggregation functions

- count()

- sum(scalar)

- avg(scalar)

- min(scalar)

- max(scalar)

- lguantize(scalar, lower_bound, upper _bound, step)

 Linear frequency distribution
- quantize(scalar)

» Power-of-two frequency distribution

Crash Dump Analysis — MFF UK — DTrace 26

DTrace aggregations (3)

= By default aggregations are printed out in END

syscall:::entry {
@counts[probefunc] = count();

}

dtrace -s counts.d
dtrace: script 'counts.d' matched 235 probes

AC
resolvepath 8
lwp_park 10
gtime 12
lwp_sigmask 16
stat64d 46
pollsys 93
p_online 256
ioctl 1695

#

Crash Dump Analysis — MFF UK — DTrace 27

ORACLE

DTrace built-in variables

» Global variables defined by DTrace

= Contain various state-dependent values
- Int64 _t argO, argi, ..., arg9

 Input arguments for the current probe
- args]]

« Typed arguments to the current probe (e.g. the syscall
arguments with the appropriate types)

- uintptr_t caller
* |nstruction pointer of the code just before firing the probe
- kthread t *curthread

e Current thread kernel structure
Crash Dump Analysis — MFF UK — DTrace 28

ORACLE

DTrace built-in variables (2)

- string cwd
« Current working directory
- string exechame
« Name which was used to execute the current process
- pid_t pid, tid_t tid
* Current PID, TID
- string probeprov, probemod, probefunc, probename

» Current probe provider, module, function and name

Crash Dump Analysis — MFF UK — DTrace 29

ORACLE

Using action statements

* DTrace records output to a trace buffer

= Most of the action statements produce some sort of
output to the trace buffer

- trace(expr)

» Output value of an expression
- tracemem(address, bytes)

« Copy given number of bytes from the given address to the buffer
- printf(format, ...)

« Output formatted strings (format options covered later)
« Safety checks

Crash Dump Analysis — MFF UK — DTrace 30

ORACLE

Using action statements (2)

- printa(aggregation)
printa(format, aggregation)

« Start processing aggregation data
- Parallel to other execution (output can be delayed)

- stack()
stack(frames)
« QOutput kernel stack trace
- ustack()

ustack(frames)

» Output user space stack trace

« Addresses are not looked up by the kernel, but by the user space

consumer (later)
Crash Dump Analysis — MFF UK — DTrace 31

ORACLE

Using action statements (3)

- ustack(frames, string_size)

« Qutput user space stack trace with symbol lookup (in kernel)

- The kernel allocates string size bytes for the output of the symbol
lookup
- The probe provider must annotate the user space stack with run-
time symbol annotations to make the lookup possible
» Currently only JVM (1.5 or newer) supports this

- |stack()
jstack(frames)

jstack(frames, string _size)
« Alias for ustack() with non-zero default string size

Crash Dump Analysis — MFF UK — DTrace 32

printf() formatting

« Conversion formats

= %a

- Pointer as kernel
symbol name

= 9%C
- ASCII character
= %C

- Printable ASCII or
escape

: c>/od, c>/oi, c>/oO, c>/oU, %X

Crash Dump Analysis — MFF UK — DTrace

= Y%e
- Float as [-]d.dddexdd
= Y%f
- Float as [-]ddd.ddd
= %P
- Hexadecimal pointer
= %S
- ASCII string
= %S
- ASCI! string or escape,

ORACLE

Subroutines

« Special actions which alter the state of DTrace

= But do not produce any output to the trace buffer
= Are completely safe

- Usually manipulate the local memory storage of DTrace
- "alloca(size)

 Allocate size bytes of scratch memory
 The memory is released after the current clause ends

- bcopy(*src, *dest, size)

» Copy size bytes from outside scratch memory to scratch memory

Crash Dump Analysis — MFF UK — DTrace 34

Subroutines (2)

- *copyin(adadr, size)

» Copy size bytes from the user memory of the current process to
scratch memory

- *copyinstr(adar)

* Copy NULL-terminated string from the user memory of the
current process to scratch memory

- mutex_owned(mutex)
 Tell whether a kernel mutex is currently locked or not
- *mutex_owner(*mutex)

» Return the pointer to kthread_t of the thread which owns the
given mutex (or NULL)

- mutex_type_ adaptive(*mutex)

Crash Dump Analysis — MFF UK — DTrace 35

Subroutines (3)

- strlen(string)
» Return length of a NULL-terminated string
- strjoin(*str, *str)
» Concatenate two NULL-terminated strings
- basename(*str)
* Return a basename of a given filename
- dirname(*str)
- cleanpath(*str)
* Return a filesystem path without elements such as ../
- rand()

* Return a (weak) pseudo-random number

Crash Dump Analysis — MFF UK — DTrace 36

ORACLE

Destructive actions

» Changing the state of the system

= |n a deterministic way

- But it can be still dangerous in production environment

- Need to be explicitly enabled using dtrace -w
- stop()
« Stop the current process (e.g. to dump the core or attach mdb)
- raise(signal)
« Send a signal to the current process
- panic()

Crash Dump Analysis — MFF UK — DTrace 37

ORACLE

Destructive actions (2)

- copyout(*buffer, addr, bytes)

« Store given number of bytes from a buffer to the given address
» Page faults are detected and avoided

- copyoutstr(string, addr, maxlen)

« Store at most maxlen bytes from a NULL-terminated string to the
given address

- system(program, ...)

« Execute a program as it would be executed by a shell (program
Is actually a printf() format specifier)

- breakpoint()

* Induce a kernel breakpoint (if a kernel debugger is loaded, it is
executed)

Crash Dump Analysis — MFF UK — DTrace 38

ORACLE

Destructive actions (3)

- chill(nanoseconds)

» Spin actively for a given number of nanoseconds
« Useful for analyzing timing bugs

- exit(status)

 Exit the tracing session and return the given status to the
consumer

Crash Dump Analysis — MFF UK — DTrace 39

Speculative tracing

* Predicates are good for filtering out unimportant
probes before they are fired

« But how to effectively filter out unimportant
probes eventually some time after they are
fired?

You can tell that you are interested in the data from
a probe n only after probe n+k (k > 0) is fired

Solution: Speculatively record all the data, but
decide later whether to commit it or not

Crash Dump Analysis — MFF UK — DTrace 40

ORACLE

Speculative tracing (2)

- speculation()

« Create a new speculative buffer and return its ID

» By default the number of speculative buffers is limited to 1
- speculate(/d)

* The rest of the clause will be recorded to the speculative buffer
given by id

» This must be the first data processing action in a clause

» Disallowed actions: aggregating, destructive

- commit(/d)

« Commit the speculative buffer given by id to the trace buffer

Crash Dump Analysis — MFF UK — DTrace 41

Provider: syscall

 Tracing of kernel system calls

Probes for entry and exit points of a syscall

- Access to (typed) arguments

- Access to the return value (on exit)
- Access to kernel errno

- Access to kernel variables

Internally uses the original syscall tracing
mechanism

Crash Dump Analysis — MFF UK — DTrace 42

Provider: bt

» Function boundary tracing
Probes on function entry point and (all) exit points
of almost all kernel functions
- Inlined and leaf functions cannot be traced
In entry

- All typed function arguments can be accessed via args]
In return

- Offset of the return instruction is stored in arg0
- Typed return value is stored in args|1]

Crash Dump Analysis — MFF UK — DTrace 43

Provider: fbt (2)

« How does it work?

ufs mount:

ufs mount+1:
ufs mount+4:
ufs _mount+0Oxb:

ufs mount+0Ox3f3:
ufs mount+0Ox3f4:
ufs mount+0Ox3f7:
ufs mount+0Ox3f8:

pushqg %rbp
movq %rsp,%rbp
subg $0x88,%rsp
pushqg %rbx

popg %rbx
movq %rbp,%rsp

popq %rbp

ret
/

uninstrumented

Crash Dump Analysis — MFF UK — DTrace

ORACLE

int $0x3

movqg %rsp,%rbp
subg $0x88,%rsp
pushqg %rbx

popg %rbx
movqg %rbp,%rsp

popqg %rbp
int $0x3

/

instrumented

44

ORACLE

Provider: sdt

 Static kernel probes

Probes declared on arbitrary places in the kernel
code (via a macro)

Currently just a few of them actually defined

- Interrupt-start
interrupt-complete

« arg0 contains pointer to dev_info structure

Crash Dump Analysis — MFF UK — DTrace 45

ORACLE

Provider: sdt (2)

« How does it work?

squeue_enter_chain+Oxlaf:
squeue_enter_chain+Ox1lbl:
squeue_enter_chain+0Ox1lb2:
squeue_enter_chain+0Ox1b3:
squeue_enter_chain+0Ox1b4:
squeue_enter_chain+0Ox1b5:
squeue_enter_chain+0Ox1b6:

Crash Dump Analysis — MFF UK — DTrace

xorl %eax,%eax
nop

nop

nop

nop

nop

movb %bl,%bh

/

uninstrumented

Xor %eax,%eax
nop

nop

lock nop

nop
movb %bl,%bh

/

instrumented

46

Provider: proc

* Probes corresponding to process and thread
life-cycle
Creating a process (using fork() and friends)
Executing a binary
Exiting a process
Creating a thread, destroying a thread
Receiving signals

Crash Dump Analysis — MFF UK — DTrace 47

ORACLE

Provider: sched

« Kernel scheduler abstraction probes
Changing of priorities

Thread being scheduled

nread being preempted

T
Thread going to sleep
Thread waking up

Crash Dump Analysis — MFF UK — DTrace 48

Provider: io

* Input/output subsystem probes

Starting an 1/O request
Finishing an I/O request
Waiting for a device

Crash Dump Analysis — MFF UK — DTrace 49

ORACLE

Provider: pid

 Tracing user space functions

Does not enforce serialization

- Traced process in never stopped
- Boundary probes similar to fbt

* Function entry and return

- Arguments in arg0, argi, ... arg9 are raw unfiltered int64_t
values

- Arbitrary function offset
- User space symbol information is required to support
symbolic function names

* On Solaris, standard shared libraries contain symbol information
Crash Dump Analysis — MFF UK — DTrace 50

ORACLE

Other providers

« Many other providers exist

- Application specific providers (X.Org, PostgreSQL,
Firefox, etc.)

 Via DTrace total observability you can correlate information such
as which SQL transaction is generating a particular 1/0O load in
the kernel

- VM based providers (JVM, PHP, Perl, Ruby)
- More kernel providers

« Memory management provider (vminfo)
» Network stack provider (mid)

 Profiling provider (profile)

- Interval-based probes
Crash Dump Analysis — MFF UK — DTrace 51

ORACLE

DTrace and mdb

» Accessing DTrace data from a crash dump

Analyzing DTrace state

- Display trace buffers, consumers, etc.

> r:dtrace_state

ADDR MINOR PROC NAME FILE
ccabad00 2 - <anonymous> -
ccab9d80 3 dld6ed7e0® intrstat cda3/078
cbfb56c0 4 d71377f0 dtrace ceb51bdo
ccabbl00 5 d713b0cO lockstat ceb51b60
d7ac97c0 6 d713b7e8 dtrace ceb51ab8

Crash Dump Analysis — MFF UK — DTrace 52

DTrace and mdb (2)

Displaying the contents of a trace buffer

> ccabad40@: :dtrace

CPU ID FUNCTION:NAME
0 344 resolvepath:entry init
0 16 close:entry init
0 202 xstat:entry init
0 202 xstat:entry init
0 14 open:entry init
0 206 fxstat:entry init
0 186 mmap:entry init
0 186 mmap:entry init
0 186 mmap:entry init
0 190 munmap:entry init
0 344 resolvepath:entry init
0 216 memcntl:entry init
0 16 close:entry init
0 202 xstat:entry init

Crash Dump Analysis — MFF UK — DTrace 53

ORACLE

DTrace and mdb (3)

- Interpretting the results

 The output of : :dtrace is the same as the output of dtrace
utility
* The order is always oldest to youngest within each CPU

« The CPU buffers are displayed in numerical order (you can
use ::dtrace -c cpu to show only a specific CPU)

* Only in-kernel data which has not yet been processed by an user
space consumer can be displayed

- To keep as much data as possible in the kernel buffer, the
following dtrace options can be used
dtrace -s ... -b 64k -x bufpolicy=ring

Crash Dump Analysis — MFF UK — DTrace 54

Resources

* Richard McDougall, Jim Mauro, Brendan
Gregg: Solaris Performance and Tools: Dirace
and MDB Techniques for Solaris 10 and
OpenSolaris

« Solaris Dynamic Tracing Guide
http://docs.sun.com/app/docs/doc/817-6223

Crash Dump Analysis — MFF UK — DTrace 55

http://docs.sun.com/app/docs/doc/817-6223

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

