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ORACLE

DTrace

* Dynamic Tracing

= Observing production systems

- Safety

- Zero overhead if observation is not activated
- Minimal overhead if observation is activated
- No special debug/release builds

= Merging and correlating data from multiple sources

- Total observabillity

» Global view of the system state
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Terminology

e Probe

- A place in code or an event which can be observed

« |f a probe is activated and the code is executed
(or the event happens), the probe is fired

- A special script written in D language is executed

 Provider

- Registers probes to DTrace infrastructure

» Does the dirty work of activation, tracing and inactivation

e Consumer

- Consumes and postprocesses the data from fired probes
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Overview
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DTrace history

31° January 2005

- Official part of Solaris 10

» Released as open source (CDDL)
- First piece of OpenSolaris to be released

27" October 2007
- Ported to Mac OS X 10.5 (Leopard)
2" September 2008
- Ported to FreeBSD 7.1 (released 6" January 2009)
21°% February 2010
- Ported to NetBSD (only for i386, not enabled by default)
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DTrace history (2)

Linux

- Cannot be directly integrated (CDDL vs. GPL)
- Beta releases (since 2008)

« Standalone kernel module with no modifications to core sources
* Only some providers (fbt, syscall, usdt)
» Development snapshots available regularly

- SystemTap

 Linux-native analogy

» A script in SystemTap language is converted to a C source code
of a kernel module

- Loaded and executed natively in the running kernel
- Embedded C enabled in guru mode
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DTrace history (3)

- QNX

- Port in progress
- 3" party software with DTrace probes
- Apache
- MySQL
- PostgreSQL
- X.Org
- Firefox
- Oracle JVM
- Perl, Ruby, PHP
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D language

probe /predicate/ {
actions

}

» Describe what is executed if a probe fires
= Similar to C or AWK

- Without dangerous constructs (branching, loops, etc.)
= Many of the fields can be absent

- Default predicate/action
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D probes

probe /predicate/ {
actions

}

» A pattern consisting of fields split by colon

= provider:module:function:name

- Fields can be omited (other are read from right to left)

» foo:bar match function foo and name bar in all modules
provided by all providers

- Fields can be empty (interpreted as any)

« syscall:::  match all probes provided by the syscall provider
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D probes (2)

probe /predicate/ {
actions

}

- Shell pattern matching

« Wild characters *, 2, []

- Can be escaped by \

- syscall::*Ilwp*:entry match all probes provided by the syscall
provider, in any module, in all functions
(syscalls) containing the string /wp and
matching syscall entry points

- Special probes

« BEGIN, END, ERROR
- Implemented by dtrace provider

Crash Dump Analysis — MFF UK — DTrace 10



ORACLE

D probes (3)

probe /predicate/ {
actions

- Displaying all configured probes
dtrace -1
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D predicates

probe /predicate/ {
actions

}

* Boolean expression guarding the actions

Any expression which evaluates as integer or
pointer
- Zero is considered as false, non-zero as true
- Any D operators, variables and constants
- Can be absent
 Implicitly true

Crash Dump Analysis — MFF UK — DTrace 12



ORACLE

D actions

probe /predicate/ {
actions

}

e List of statements

= Separated by semicolon
= No branching, no loops
= Default action if empty

- Usually the probe name is printed out
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D types

« Basic data types reflect C language

= Integer types and aliases

- (unsigned/signed) char, short, int, long, long long

- Int8 _t, int16_t, Int32_t, int64 _t, intptr_t, uint8_t, uint16 _t,
uint32_t, uinté4 _t, uintptr_t

= Floating point types

- float, double, long double

» Values can be assigned, but no floating point arithmetics is
implemented in DTrace
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D types (2)

» Derivated and special data types

Pointers

- C-like pointers to other data types
(including pointer arithmetics)
* int *value; void *ptr;
- Constant NULL is zero
» DTrace enforces weak pointer safety

- Invalid memory accesses are fully handled
- However, this does not provide reference safety as in Java
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D types (2)

= Scalar arrays

- C-like arrays of basic data types
« Similar to pointers, but can be assigned as a whole
* int values[5][6];
= Strings
- Special type descriptor string (instead of char *)

« Can be assigned as a whole by value (char * copies reference)
» Represented as NULL-terminated character arrays
* Internal strings are always allocated as bounded

- Cannot exceed the predefined maximum length (256 bytes)
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D types (3)

« Composed data types

= Structures

- Records of several
other types

- Type declared in a
similar way as in C

- Variables must be
declared explicitly

- Members are
accessed via . and ->
operators
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struct callinfo {
uinted4d t ts;
uinté4 _t calls;
Y

struct callinfo info[string];

syscall::read:entry,

syscall::write:entry {
info[probefunc].ts = timestamp;
info[probefunc].calls++;

Y
END {
printf("read %d %d\n",
info["read"].ts,
info["read"].calls) ;
printf("write %d %d\n",
info["write"].ts,
info["write"].calls);
Y
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D types (4)

enum typeinfo {

= Unions CHAR_ARRAY = 0,
INT,
- Bit-fields LONG
, }s
= Enumerations

struct info {
enum typeinfo disc;

- Typedefs union {
o _ char c[4];
- All similar as in C int32_t i32;
uint32 t u32;
- | long 1;
Inlines s yatons
- Typed constants int a : 3;
. _ int b : 4;
* inline string desc = b
"something";

typedef struct info info_t;
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DTrace operators

» Arithmetic » Bitwise
= +-"/% = & | M <<>>~
» Relational e Assignment
P < <=>>===|= = 4= -= "= /= Y%= &= |=
- Works also on strings "= <<=>>=
(lexical comparison) - Return values as in C
* Logical » Increment and
- && || M decrement
- Short-circuit evaluation . 44 --
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DTrace operators (2)

« Conditional expression
= Replacement for branching (which is absent in D)
- condition ? true_expression : false_expression
» Addressing, member access and sizes
- & * . -> sizeof(type/expr) offsetof(type, member)
e Kernel variables access
e Typecasting

orach Do ;nal(ylgstz h>/I<F,F 'L‘t_ D*)rraIiULL’ (string) expression, stringof(expr) .



DTrace variables

e Scalar variables

- Simple global variables

- Storing fixed-size data (integers, pointers, fixed-size
composite types, strings with fixed-size upper bound)

- Do not have to be declared (but can be), duck-typing

/* Explicitly declare an int

/* Implicitly declare variable (initial value
an int variable */ cannot be assigned here) */

value = 1234; int val;

BEGIN {
value = 1234;

BEGIN {
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DTrace variables (2)

e Associative arrays

= Global arrays of scalar values indexed by a key

- Key signature is a list of scalar expression values

 Integers, strings or even a tuple of scalar types
« Each array can have a different (but fixed) key signature
» Declared implicitly by assignment or explicitly
- values[123, "key"] = 456;
- All values have also a fixed type

« But each array can have a different value type
» Declared implicitly by assignment or explicitly
- int values[unsigned int, string];
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DTrace variables (3)

e Thread-local variables

= Scalar variables or associative arrays specific to a
given thread

- ldentified by a special identifier self

- If no value has been assigned to a thread-local variable
in the given thread, the variable is considered zero-filled

« Assigning zero to a thread-local variable deallocates it

syscall::read:entry { /* Explicit declaration */
/* Mark this thread */ self int tag;
self->tag = 1;

} syscall::read:entry {

self->tag = 1;
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DTrace variables (4)

e Clause-local variables

= Scalar variables or associative arrays specific to a
given probe clause

- ldentified by a special identifier this
- They are not initialized to zero

* The value is kept for multiple clauses associated with the same

probe
syscall::read:entry { /* Explicit declaration */
this->value = 1; this int value;

}

syscall::read:entry {
this->value = 1;
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DTrace aggregations

 Variables for storing statistical data

= Storing values of aggregative data computation

- For aggregating functions f(...) which satisfy the following
property
f(f(x,) Ufix;)U..Ufx))=7fxUx,U..UXx,)
= Aggregations are declared in a simular way as
associative arrays

@values[123, "key"] = aggfunc(args);
@ [123, "key"] = aggfunc(args); /* Simple variable */
@[123, "key"] = aggfunc(args); /* dtto */
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DTrace aggregations (2)

= Aggregation functions

- count()

- sum(scalar)

- avg(scalar)

- min(scalar)

- max(scalar)

- lguantize(scalar, lower_bound, upper _bound, step)

 Linear frequency distribution
- quantize(scalar)

» Power-of-two frequency distribution
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DTrace aggregations (3)

= By default aggregations are printed out in END

syscall:::entry {
@counts[probefunc] = count();

}

# dtrace -s counts.d
dtrace: script 'counts.d' matched 235 probes

AC
resolvepath 8
lwp_park 10
gtime 12
lwp_sigmask 16
stat64d 46
pollsys 93
p_online 256
ioctl 1695

#
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DTrace built-in variables

» Global variables defined by DTrace

= Contain various state-dependent values
- Int64 _t argO, argi, ..., arg9

 Input arguments for the current probe
- args]]

« Typed arguments to the current probe (e.g. the syscall
arguments with the appropriate types)

- uintptr_t caller
* |nstruction pointer of the code just before firing the probe
- kthread t *curthread

e Current thread kernel structure
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DTrace built-in variables (2)

- string cwd
« Current working directory
- string exechame
« Name which was used to execute the current process
- pid_t pid, tid_t tid
* Current PID, TID
- string probeprov, probemod, probefunc, probename

» Current probe provider, module, function and name
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Using action statements

* DTrace records output to a trace buffer

= Most of the action statements produce some sort of
output to the trace buffer

- trace(expr)

» Output value of an expression
- tracemem(address, bytes)

« Copy given number of bytes from the given address to the buffer
- printf(format, ...)

« Output formatted strings (format options covered later)
« Safety checks
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Using action statements (2)

- printa(aggregation)
printa(format, aggregation)

« Start processing aggregation data
- Parallel to other execution (output can be delayed)

- stack()
stack(frames)
« QOutput kernel stack trace
- ustack()

ustack(frames)

» Output user space stack trace

« Addresses are not looked up by the kernel, but by the user space

consumer (later)
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Using action statements (3)

- ustack(frames, string_size)

« Qutput user space stack trace with symbol lookup (in kernel)

- The kernel allocates string size bytes for the output of the symbol
lookup
- The probe provider must annotate the user space stack with run-
time symbol annotations to make the lookup possible
» Currently only JVM (1.5 or newer) supports this

- |stack()
jstack(frames)

jstack(frames, string _size)
« Alias for ustack() with non-zero default string size
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printf() formatting

« Conversion formats

= %a

- Pointer as kernel
symbol name

= 9%C
- ASCII character
= %C

- Printable ASCII or
escape

: c>/od, c>/oi, c>/oO, c>/oU, %X
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= Y%e
- Float as [-]d.dddexdd
= Y%f
- Float as [-]ddd.ddd
= %P
- Hexadecimal pointer
= %S
- ASCII string
= %S
- ASCI! string or escape,
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Subroutines

« Special actions which alter the state of DTrace

= But do not produce any output to the trace buffer
= Are completely safe

- Usually manipulate the local memory storage of DTrace
- "alloca(size)

 Allocate size bytes of scratch memory
 The memory is released after the current clause ends

- bcopy(*src, *dest, size)

» Copy size bytes from outside scratch memory to scratch memory
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Subroutines (2)

- *copyin(adadr, size)

» Copy size bytes from the user memory of the current process to
scratch memory

- *copyinstr(adar)

* Copy NULL-terminated string from the user memory of the
current process to scratch memory

- mutex_owned( mutex)
 Tell whether a kernel mutex is currently locked or not
- *mutex_owner(*mutex)

» Return the pointer to kthread_t of the thread which owns the
given mutex (or NULL)

- mutex_type_ adaptive( *mutex)
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Subroutines (3)

- strlen(string)
» Return length of a NULL-terminated string
- strjoin(*str, *str)
» Concatenate two NULL-terminated strings
- basename( *str)
* Return a basename of a given filename
- dirname( *str)
- cleanpath(*str)
* Return a filesystem path without elements such as ../
- rand()

* Return a (weak) pseudo-random number
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Destructive actions

» Changing the state of the system

= |n a deterministic way

- But it can be still dangerous in production environment

- Need to be explicitly enabled using dtrace -w
- stop()
« Stop the current process (e.g. to dump the core or attach mdb)
- raise(signal)
« Send a signal to the current process
- panic()
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Destructive actions (2)

- copyout( *buffer, addr, bytes)

« Store given number of bytes from a buffer to the given address
» Page faults are detected and avoided

- copyoutstr(string, addr, maxlen)

« Store at most maxlen bytes from a NULL-terminated string to the
given address

- system(program, ...)

« Execute a program as it would be executed by a shell (program
Is actually a printf() format specifier)

- breakpoint()

* Induce a kernel breakpoint (if a kernel debugger is loaded, it is
executed)
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Destructive actions (3)

- chill(nanoseconds)

» Spin actively for a given number of nanoseconds
« Useful for analyzing timing bugs

- exit(status)

 Exit the tracing session and return the given status to the
consumer
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Speculative tracing

* Predicates are good for filtering out unimportant
probes before they are fired

« But how to effectively filter out unimportant
probes eventually some time after they are
fired?

You can tell that you are interested in the data from
a probe n only after probe n+k (k > 0) is fired

Solution: Speculatively record all the data, but
decide later whether to commit it or not
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Speculative tracing (2)

- speculation()

« Create a new speculative buffer and return its ID

» By default the number of speculative buffers is limited to 1
- speculate(/d)

* The rest of the clause will be recorded to the speculative buffer
given by id

» This must be the first data processing action in a clause

» Disallowed actions: aggregating, destructive

- commit(/d)

« Commit the speculative buffer given by id to the trace buffer
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Provider: syscall

 Tracing of kernel system calls

Probes for entry and exit points of a syscall

- Access to (typed) arguments

- Access to the return value (on exit)
- Access to kernel errno

- Access to kernel variables

Internally uses the original syscall tracing
mechanism
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Provider: bt

» Function boundary tracing
Probes on function entry point and (all) exit points
of almost all kernel functions
- Inlined and leaf functions cannot be traced
In entry

- All typed function arguments can be accessed via args]
In return

- Offset of the return instruction is stored in arg0
- Typed return value is stored in args|1]
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Provider: fbt (2)

« How does it work?

ufs mount:

ufs mount+1:
ufs mount+4:
ufs _mount+0Oxb:

ufs mount+0Ox3f3:
ufs mount+0Ox3f4:
ufs mount+0Ox3f7:
ufs mount+0Ox3f8:

pushqg %rbp
movq %rsp,%rbp
subg $0x88,%rsp
pushqg %rbx

popg %rbx
movq %rbp,%rsp

popq %rbp

ret
/

uninstrumented
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int $0x3

movqg %rsp,%rbp
subg $0x88,%rsp
pushqg %rbx

popg %rbx
movqg %rbp,%rsp

popqg %rbp
int $0x3

/

instrumented
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Provider: sdt

 Static kernel probes

Probes declared on arbitrary places in the kernel
code (via a macro)

Currently just a few of them actually defined

- Interrupt-start
interrupt-complete

« arg0 contains pointer to dev_info structure
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Provider: sdt (2)

« How does it work?

squeue_enter_chain+Oxlaf:
squeue_enter_chain+Ox1lbl:
squeue_enter_chain+0Ox1lb2:
squeue_enter_chain+0Ox1b3:
squeue_enter_chain+0Ox1b4:
squeue_enter_chain+0Ox1b5:
squeue_enter_chain+0Ox1b6:
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xorl %eax,%eax
nop

nop

nop

nop

nop

movb %bl,%bh

/

uninstrumented

Xor %eax,%eax
nop

nop

lock nop

nop
movb %bl,%bh

/

instrumented
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Provider: proc

* Probes corresponding to process and thread
life-cycle
Creating a process (using fork() and friends)
Executing a binary
Exiting a process
Creating a thread, destroying a thread
Receiving signals
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Provider: sched

« Kernel scheduler abstraction probes
Changing of priorities

Thread being scheduled

nread being preempted

T
Thread going to sleep
Thread waking up
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Provider: io

* Input/output subsystem probes

Starting an 1/O request
Finishing an I/O request
Waiting for a device
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Provider: pid

 Tracing user space functions

Does not enforce serialization

- Traced process in never stopped
- Boundary probes similar to fbt

* Function entry and return

- Arguments in arg0, argi, ... arg9 are raw unfiltered int64_t
values

- Arbitrary function offset
- User space symbol information is required to support
symbolic function names

* On Solaris, standard shared libraries contain symbol information
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Other providers

« Many other providers exist

- Application specific providers (X.Org, PostgreSQL,
Firefox, etc.)

 Via DTrace total observability you can correlate information such
as which SQL transaction is generating a particular 1/0O load in
the kernel

- VM based providers (JVM, PHP, Perl, Ruby)
- More kernel providers

« Memory management provider (vminfo)
» Network stack provider (mid)

 Profiling provider (profile)

- Interval-based probes
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DTrace and mdb

» Accessing DTrace data from a crash dump

Analyzing DTrace state

- Display trace buffers, consumers, etc.

> r:dtrace_state

ADDR MINOR PROC NAME FILE
ccabad00 2 - <anonymous> -
ccab9d80 3 dld6ed7e0® intrstat cda3/078
cbfb56c0 4 d71377f0 dtrace ceb51bdo
ccabbl00 5 d713b0cO lockstat ceb51b60
d7ac97c0 6 d713b7e8 dtrace ceb51ab8
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DTrace and mdb (2)

Displaying the contents of a trace buffer

> ccabad40@: :dtrace

CPU ID FUNCTION:NAME
0 344 resolvepath:entry init
0 16 close:entry init
0 202 xstat:entry init
0 202 xstat:entry init
0 14 open:entry init
0 206 fxstat:entry init
0 186 mmap:entry init
0 186 mmap:entry init
0 186 mmap:entry init
0 190 munmap:entry init
0 344 resolvepath:entry init
0 216 memcntl:entry init
0 16 close:entry init
0 202 xstat:entry init
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DTrace and mdb (3)

- Interpretting the results

 The output of : :dtrace is the same as the output of dtrace
utility
* The order is always oldest to youngest within each CPU

« The CPU buffers are displayed in numerical order (you can
use ::dtrace -c cpu to show only a specific CPU)

* Only in-kernel data which has not yet been processed by an user
space consumer can be displayed

- To keep as much data as possible in the kernel buffer, the
following dtrace options can be used
dtrace -s ... -b 64k -x bufpolicy=ring

Crash Dump Analysis — MFF UK — DTrace 54



Resources

* Richard McDougall, Jim Mauro, Brendan
Gregg: Solaris Performance and Tools: Dirace
and MDB Techniques for Solaris 10 and
OpenSolaris

« Solaris Dynamic Tracing Guide
http://docs.sun.com/app/docs/doc/817-6223
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